1
|
Camarda ND, Lu Q, Meola DM, Man JJ, Song Z, Travers RJ, Lopez KE, Powers SN, Papanastasiou M, DeRuff KC, Mullahoo J, Egri SB, Davison D, Sebastiani P, Eblen ST, Buchsbaum R, Huggins GS, London CA, Jaffe JD, Upshaw JN, Yang VK, Jaffe IZ. Identifying mitigating strategies for endothelial cell dysfunction and hypertension in response to VEGF receptor inhibitors. Clin Sci (Lond) 2024; 138:1131-1150. [PMID: 39282930 DOI: 10.1042/cs20240537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/02/2024]
Abstract
Vascular endothelial growth factor receptor inhibitors (VEGFRis) improve cancer survival but are associated with treatment-limiting hypertension, often attributed to endothelial cell (EC) dysfunction. Using phosphoproteomic profiling of VEGFRi-treated ECs, drugs were screened for mitigators of VEGFRi-induced EC dysfunction and validated in primary aortic ECs, mice, and canine cancer patients. VEGFRi treatment significantly raised systolic blood pressure (SBP) and increased markers of endothelial and renal dysfunction in mice and canine cancer patients. α-Adrenergic-antagonists were identified as drugs that most oppose the VEGFRi proteomic signature. Doxazosin, one such α-antagonist, prevented EC dysfunction in murine, canine, and human aortic ECs. In mice with sorafenib-induced-hypertension, doxazosin mitigated EC dysfunction but not hypertension or glomerular endotheliosis, while lisinopril mitigated hypertension and glomerular endotheliosis without impacting EC function. Hence, reversing EC dysfunction was insufficient to mitigate VEGFRi-induced-hypertension in this mouse model. Canine cancer patients with VEGFRi-induced-hypertension were randomized to doxazosin or lisinopril and both agents significantly decreased SBP. The canine clinical trial supports safety and efficacy of doxazosin and lisinopril as antihypertensives for VEGFRi-induced-hypertension and the potential of trials in canines with spontaneous cancer to accelerate translation. The overall findings demonstrate the utility of phosphoproteomics to identify EC-protective agents to mitigate cardio-oncology side effects.
Collapse
Affiliation(s)
- Nicholas D Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, U.S.A
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
| | - Dawn M Meola
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | - Joshua J Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, U.S.A
| | - Zeyuan Song
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, MA, U.S.A
| | - Richard J Travers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Division of Hematology Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, U.S.A
| | - Katherine E Lopez
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | - Sarah N Powers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
| | | | | | | | | | | | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, MA, U.S.A
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Rachel Buchsbaum
- Division of Hematology Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, U.S.A
| | - Gordon S Huggins
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Division of Cardiology, Tufts Medical Center, Boston, MA, U.S.A
| | - Cheryl A London
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | | | - Jenica N Upshaw
- Division of Cardiology, Tufts Medical Center, Boston, MA, U.S.A
| | - Vicky K Yang
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, U.S.A
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, U.S.A
- Genetics, Molecular, and Cellular Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, U.S.A
| |
Collapse
|
2
|
Wu S, Ootawa T, Sekio R, Smith H, Islam MZ, Uno Y, Shiraishi M, Miyamoto A. Involvement of beta3-adrenergic receptors in relaxation mediated by nitric oxide in chicken basilar artery. Poult Sci 2023; 102:102633. [PMID: 37001317 PMCID: PMC10070147 DOI: 10.1016/j.psj.2023.102633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The response of basilar arteries to noradrenaline varies among many animal species, but remains little studied in poultry. Accordingly, we aimed to characterize the adrenergic receptor (AR) subtypes that modulate vascular response in basilar arteries in the chicken, with isometric recording of arterial ring tension using an organ bath. We demonstrated the presence of both alpha and beta (α and β) receptor subtypes through evaluating the response to noradrenaline, with and without a range of β-AR and α-AR antagonists. The concentration-dependent relaxations then induced by a range of β-AR agonists indicated a potency ranking of isoproterenol > noradrenaline > adrenaline > procaterol. We then investigated the effects of β-AR antagonists that attenuate the effect of isoproterenol (propranolol for β1,2,3-ARs, atenolol for β1-ARs, butoxamine for β2-ARs, and SR 59230A for β3-ARs), with Schild regression analysis, ascertaining multiple β-AR subtypes, with neither the β1-AR nor the β2-AR as the dominant subtype. SR 59230A was the only antagonist to yield a pA2 value (7.52) close to the reported equivalent for the relevant receptor subtype. Furthermore, treatment with SR 58611 (a β3-AR agonist) induced relaxation, which was inhibited (P < 0.01) by L-NNA and SR 59230A. Additionally, treating basilar arterial strips (containing endothelium) with SR 58611 induced nitric oxide (NO) production, which was inhibited (P < 0.01) by L-NNA and SR 59230A. Based on this first characterization of AR subtypes in chicken basilar arteries (to our knowledge), we suggest that α- and β-ARs are involved in contraction and relaxation, and that β3-ARs, especially those on the endothelium, may play an important role in vasodilation via NO release.
Collapse
|
3
|
β-Adrenoreceptors as Therapeutic Targets for Ocular Tumors and Other Eye Diseases-Historical Aspects and Nowadays Understanding. Int J Mol Sci 2023; 24:ijms24054698. [PMID: 36902129 PMCID: PMC10003534 DOI: 10.3390/ijms24054698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
β-adrenoreceptors (ARs) are members of the superfamily of G-protein-coupled receptors (GPCRs), and are activated by catecholamines, such as epinephrine and norepinephrine. Three subtypes of β-ARs (β1, β2, and β3) have been identified with different distributions among ocular tissues. Importantly, β-ARs are an established target in the treatment of glaucoma. Moreover, β-adrenergic signaling has been associated with the development and progression of various tumor types. Hence, β-ARs are a potential therapeutic target for ocular neoplasms, such as ocular hemangioma and uveal melanoma. This review aims to discuss the expression and function of individual β-AR subtypes in ocular structures, as well as their role in the treatment of ocular diseases, including ocular tumors.
Collapse
|
4
|
de Souza MDGC, Cyrino FZGA, Sicuro FL, Bouskela E. Effects of Ruscus extract on muscarinic receptors: Is there a role for endothelium derived relaxing factors on macromolecular permeability protection and microvascular diameter changes? Clin Hemorheol Microcirc 2021; 77:443-459. [PMID: 33459701 DOI: 10.3233/ch-201019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Protective effects of Ruscus extract on macromolecular permeability depend on its capacity to stimulate muscarinic receptors on endothelial cells and induce the release of endothelium derived relaxing factors (EDRFs). OBJECTIVE To investigate if these effects depend only on activation of muscarinic receptors or if EDRFs release are also necessary. We have also investigated the participation of Ruscus extract on muscarinic-induced release of EDRFs on microvascular diameters. METHODS Hamsters were treated daily during two weeks with Ruscus extract (50, 150 and 450 mg/kg/day) and then macromolecular permeability induced by histamine and arteriolar and venular diameters after cyclooxygenase (COX) and nitric oxide synthase (NOS) inhibitors: indomethacin and Nω-Nitro-L-arginine (LNA), respectively applied topically at 10-8M, 10-6M and 10-4M were observed on the cheek pouch preparation. RESULTS Ruscus extract decreased macromolecular permeability in a dose-dependent fashion and did not affect microvascular diameters. NOS and COX inhibitors enhanced its effect on microvascular permeability. NOS inhibition reduced arteriolar diameter and COX blocking decreased arteriolar and venular diameters at the lowest dose and increased them at higher doses of Ruscus extract. CONCLUSION The protective effect of Ruscus extract on macromolecular permeability seems to be mediated only via muscarinic receptors. Muscarinic activation attenuated vasoconstrictive tone through cyclooxygenase-independent endothelium derived relaxing factors.
Collapse
Affiliation(s)
- Maria das Graças C de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fatima Z G A Cyrino
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando L Sicuro
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Arruda-Barbosa L, Vasconcelos-Silva AA, Borges RS, Duarte GP, Magalhães PJC, Lahlou S. Vasodilatory action of trans-4-methoxy-β-nitrostyrene in rat isolated pulmonary artery. Clin Exp Pharmacol Physiol 2021; 48:717-725. [PMID: 33506524 DOI: 10.1111/1440-1681.13467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/28/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023]
Abstract
Trans-4-methoxy-β-nitrostyrene (T4MN) induced more potent vasorelaxant effects in resistance arteries from hypertensive rats than its parent drug, β-nitrostyrene 1-nitro-2-phenylethene (NPe). To better understand the influence of insertion of the electron-releasing methoxy group in the aromatic ring of NPe, we investigated vasorelaxant effects of T4MN in isolated pulmonary artery and compared them with those of NPe in view of the potential interest of T4MN in pulmonary arterial hypertension. T4MN and NPe both caused concentration-dependent vasorelaxation in pulmonary artery rings pre-contracted with either phenylephrine (1 µmol/L) or KCl (60 mmol/L), an effect unaffected by endothelium removal. In endothelium-intact preparations pre-contracted with phenylephrine, the vasorelaxant effect of T4MN was more potent than that of NPe. However, unlike NPe, this effect was significantly reduced following pretreatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µmol/L, a guanylate cyclase inhibitor) or tetraethylammonium (5 mmol/L, a potassium channel blocker). T4MN abolished the CaCl2 -induced contractions in pulmonary artery preparations stimulated with phenylephrine (PHE) under Ca2+ -free conditions in the presence of verapamil, to preferentially activate receptor-operated calcium channels. From these findings, we propose that T4MN evokes endothelium-independent vasorelaxant effects in isolated rat pulmonary artery, partially by inhibiting Ca2+ influx through L-type Ca2+ channels, as well as by activating soluble guanylate cyclase and potassium channels. The present results suggest the therapeutic potential of T4MN in treating pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Loeste Arruda-Barbosa
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Gloria Pinto Duarte
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | | | - Saad Lahlou
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
7
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020; 60:3625-3631. [DOI: 10.1002/anie.202010553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
8
|
Seiler A, Sood AK, Jenewein J, Fagundes CP. Can stress promote the pathophysiology of brain metastases? A critical review of biobehavioral mechanisms. Brain Behav Immun 2020; 87:860-880. [PMID: 31881262 DOI: 10.1016/j.bbi.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic stress can promote tumor growth and progression through immunosuppressive effects and bi-directional interactions between tumor cells and their microenvironment. β-Adrenergic receptor signaling plays a critical role in mediating stress-related effects on tumor progression. Stress-related mechanisms that modulate the dissemination of tumor cells to the brain have received scant attention. Brain metastases are highly resistant to chemotherapy and contribute considerably to morbidity and mortality in various cancers, occurring in up to 20% of patients in some cancer types. Understanding the mechanisms promoting brain metastasis could help to identify interventions that improve disease outcomes. In this review, we discuss biobehavioral, sympathetic, neuroendocrine, and immunological mechanisms by which chronic stress can impact tumor progression and metastatic dissemination to the brain. The critical role of the inflammatory tumor microenvironment in tumor progression and metastatic dissemination to the brain, and its association with stress pathways are delineated. We also discuss translational implications for biobehavioral and pharmacological interventions.
Collapse
Affiliation(s)
- Annina Seiler
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Josef Jenewein
- Clinic Zugersee, Center for Psychiatry and Psychotherapy, Oberwil-Zug, Switzerland
| | - Christopher P Fagundes
- Department of Psychology, Rice University, Houston, TX, United States; Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Schwinghammer UA, Melkonyan MM, Hunanyan L, Tremmel R, Weiskirchen R, Borkham-Kamphorst E, Schaeffeler E, Seferyan T, Mikulits W, Yenkoyan K, Schwab M, Danielyan L. α2-Adrenergic Receptor in Liver Fibrosis: Implications for the Adrenoblocker Mesedin. Cells 2020; 9:E456. [PMID: 32085378 PMCID: PMC7072854 DOI: 10.3390/cells9020456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 01/06/2023] Open
Abstract
The noradrenergic system is proposed to play a prominent role in the pathogenesis of liver fibrosis. While α1- and β-adrenergic receptors (ARs) are suggested to be involved in a multitude of profibrogenic actions, little is known about α2-AR-mediated effects and their expression pattern during liver fibrosis and cirrhosis. We explored the expression of α2-AR in two models of experimental liver fibrosis. We further evaluated the capacity of the α2-AR blocker mesedin to deactivate hepatic stellate cells (HSCs) and to increase the permeability of human liver sinusoidal endothelial cells (hLSECs). The mRNA of α2a-, α2b-, and α2c-AR subtypes was uniformly upregulated in carbon tetrachloride-treated mice vs the controls, while in bile duct-ligated mice, only α2b-AR increased in response to liver injury. In murine HSCs, mesedin led to a decrease in α-smooth muscle actin, transforming growth factor-β and α2a-AR expression, which was indicated by RT-qPCR, immunocytochemistry, and Western blot analyses. In a hLSEC line, an increased expression of endothelial nitric oxide synthase was detected along with downregulated transforming growth factor-β. In conclusion, we suggest that the α2-AR blockade alleviates the activation of HSCs and may increase the permeability of liver sinusoids during liver injury.
Collapse
Affiliation(s)
- Ute A. Schwinghammer
- Department of Clinical Pharmacology, University Hospital of Tuebingen, 72076 Tuebingen, Germany; (U.A.S.); (M.S.)
| | - Magda M. Melkonyan
- Department of Medical Chemistry, Yerevan State Medical University, 0025 Yerevan, Armenia; (M.M.M.); (L.H.)
| | - Lilit Hunanyan
- Department of Medical Chemistry, Yerevan State Medical University, 0025 Yerevan, Armenia; (M.M.M.); (L.H.)
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany, and University of Tuebingen, 72074 Tuebingen, Germany; (R.T.); (E.S.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, 52074 Aachen, Germany; (R.W.); (E.B.-K.)
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, 52074 Aachen, Germany; (R.W.); (E.B.-K.)
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany, and University of Tuebingen, 72074 Tuebingen, Germany; (R.T.); (E.S.)
| | - Torgom Seferyan
- H. Buniatian Institute of Biochemistry, National Academy of Sciences of the Republic of Armenia (NAS RA), 0014 Yerevan, Armenia;
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Konstantin Yenkoyan
- Department of Biochemistry and Neuroscience Laboratory, Yerevan State Medical University, 0025 Yerevan, Armenia;
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital of Tuebingen, 72076 Tuebingen, Germany; (U.A.S.); (M.S.)
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany, and University of Tuebingen, 72074 Tuebingen, Germany; (R.T.); (E.S.)
- Department of Biochemistry and Neuroscience Laboratory, Yerevan State Medical University, 0025 Yerevan, Armenia;
- Department of Biochemistry and Pharmacy, University of Tuebingen, 72076 Tuebingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, 72076 Tuebingen, Germany; (U.A.S.); (M.S.)
| |
Collapse
|
10
|
d'Uscio LV, Katusic ZS. Vascular phenotype of amyloid precursor protein-deficient mice. Am J Physiol Heart Circ Physiol 2019; 316:H1297-H1308. [PMID: 30901278 PMCID: PMC6620686 DOI: 10.1152/ajpheart.00539.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/04/2023]
Abstract
The amyloid precursor protein (APP) is expressed in the blood vessel wall, but the physiological function of APP is not completely understood. Previous studies established that APP has amine oxidase activity responsible for degradation of catecholamines. In the present study, we characterized the vascular phenotype of APP-knockout (APP-/-) mice. We demonstrate that circulating levels of catecholamines are significantly increased in male as compared with female APP-/- mice. Studies of vasomotor function in isolated aortas revealed that contractions to the α1-receptor agonist phenylephrine were significantly reduced in male APP-/- mice but not in females. In addition, contractions to G protein activation with sodium fluoride were reduced exclusively in male APP-/- mice aortas. The endothelium-dependent relaxations to acetylcholine were not affected by the loss of APP in mice of both sexes. Further analysis of the mechanisms underlying endothelium-dependent relaxations revealed that inhibition of cyclooxygenase by indomethacin significantly impaired relaxations to acetylcholine exclusively in male APP-/- mice. Furthermore, acetylcholine-induced production of cyclic guanosine monophosphate (cGMP) was significantly reduced in male APP-/- mice aortas while acetylcholine-induced production of cyclic adenosine monophosphate (cAMP) was enhanced. We concluded that altered vascular reactivity to phenylephrine appears to be in part the result of chronic exposure of male APP-/- aorta to high circulating levels of catecholamines. The mechanisms responsible for the impairment of endothelium-dependent cGMP signaling and adaptive enhancement of endothelium-dependent production of cAMP remain to be defined. NEW & NOTEWORTHY Male amyloid precursor protein (APP)-deficient mice have higher circulating levels of catecholamines as compared with female APP-deficient mice. As a consequence, endothelium-dependent and endothelium-independent vasomotor functions of male APP-deficient mice are significantly altered. Under physiological conditions, expression of APP appears to play an important role in vascular function.
Collapse
MESH Headings
- Amyloid beta-Protein Precursor/genetics
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Catecholamines/blood
- Cyclic AMP/metabolism
- Cyclic GMP/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Female
- Genotype
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phenotype
- Receptors, Adrenergic, alpha-1/metabolism
- Second Messenger Systems
- Sex Factors
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
11
|
Mechanisms underlying the vasorelaxant effect of trans-4-methoxy-β-nitrostyrene in the rat mesenteric resistance arteries. Eur J Pharmacol 2019; 853:201-209. [DOI: 10.1016/j.ejphar.2019.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022]
|
12
|
Evlakhov VI, Poyasov IZ. [Adrenergic mechanisms of regulation of pulmonary microvessels tonicity and endothelial permeability]. ANGIOLOGIIA I SOSUDISTAIA KHIRURGIIA = ANGIOLOGY AND VASCULAR SURGERY 2019; 25:11-16. [PMID: 31503242 DOI: 10.33529/angi02019320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The review contains the data on adrenergic mechanisms of regulation of pulmonary microvessels tonicity and endothelial permeability. On smooth muscle cells of pulmonary vessels there are postsynaptic α1A-, α1B-, α1D- and α2A-, α2B-, α2C-adrenoreceptors whose activation by norepinephrine induces vasoconstriction. Excitation of β1- and β2-subtypes of adrenoreceptors leads to vasodilatation, Activation of α1-2- and β1-3-adrenoreceptors of the endothelium contributes to enhancement of nitric oxide synthesis. The resulting reaction of pulmonary microvessels in response to administration of catecholamines appears be determined by interaction of adrenergic mechanisms of regulation of tonicity of smooth muscle cells and synthesis of nitric oxide by the endothelium. Constrictor and dilator reactions of pulmonary venous vessels in response to activation of α- and β-adrenoreceptors, respectively, are more pronounced than in pulmonary arteries and make a significant contribution to the shifts of pulmonary vascular resistance. Excitation of α2- and β2-adrenoreceptors of endothelial cells of microvessels of the lungs contributes to a decrease in their permeability. In order to find out the role of adrenergic mechanisms in shifts of the capillary filtration coefficient in simulating various pathology of pulmonary circulation, it is necessary to carry out integral studies that would make it possible to evaluate alterations in macro- and microhaemodynamics of the lungs.
Collapse
Affiliation(s)
- V I Evlakhov
- Laboratory of Physiology of Visceral Systems named after K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - I Z Poyasov
- Laboratory of Physiology of Visceral Systems named after K.M. Bykov, Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
13
|
Beis D, von Känel R, Heimgartner N, Zuccarella-Hackl C, Bürkle A, Ehlert U, Wirtz PH. The Role of Norepinephrine and α-Adrenergic Receptors in Acute Stress-Induced Changes in Granulocytes and Monocytes. Psychosom Med 2018; 80:649-658. [PMID: 29965944 DOI: 10.1097/psy.0000000000000620] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Acute stress induces redistribution of circulating leucocytes in humans. Although effects on lymphocytes as adaptive immune cells are well understood, the mechanisms underlying stress effects on granulocytes and monocytes as innate immune blood cells are still elusive. We investigated whether the stress hormone norepinephrine (NE) and α-adrenergic receptors (α-ADRs) may play a mediating role. METHODS In a stress study, we cross-sectionally tested 44 healthy men for associations between stress-induced NE increases and simultaneous granulocyte and monocyte cell count increases, as measured immediately before and several times after the Trier Social Stress Test. In a subsequent infusion study, 21 healthy men participated in three different experimental trials with sequential infusions of 1- and 15-minute duration with varying substances (saline as placebo, the nonspecific α-ADR blocker phentolamine [2.5 mg/min], and NE [5 μg/min]): trial 1 = saline+saline, trial 2 = saline+NE, trial 3 = phentolamine+NE. Granulocyte and monocyte cell numbers were assessed before, immediately after, 10 minutes, and 30 minutes after infusion procedures. RESULTS In the stress study, higher NE related to higher neutrophil stress changes (β = .31, p = .045, R change = .09), but not epinephrine stress changes. In the infusion study, saline+NE induced significant increases in neutrophil (F(3/60) = 43.50, p < .001, η = .69) and monocyte (F(3/60) = 18.56, p < .001, η = .48) numbers compared with saline+saline. With phentolamine+NE, neutrophil (F(3/60) = 14.41, p < .001, η = .42) and monocyte counts (F(2.23/44.6) = 4.32, p = .016, η = .18) remained increased compared with saline+saline but were lower compared with saline+NE (neutrophils: F(3/60) = 19.55, p < .001, η = .494, monocytes: F(3/60) = 2.54, p = .065, η = .11) indicating partial mediation by α-ADRs. Trials did not differ in eosinophil and basophil count reactivity. CONCLUSIONS Our findings suggest that NE-induced immediate increases in neutrophil and monocyte numbers resemble psychosocial stress effects and can be reduced by blockade of α-ADRs.
Collapse
Affiliation(s)
- Daniel Beis
- From the Biological Work and Health Psychology (Beis, Wirtz), Department of Psychology, University of Konstanz, Germany; Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine (von Känel), University Hospital Zurich; Department of Clinical Psychology and Psychotherapy (Heimgartner, Ehlert), University of Zurich; Biological and Health Psychology (Zuccarella-Hackl, Wirtz), University of Bern; Department of Neurorehabilitation (Zuccarella-Hackl), Zurich RehaZentrum, Wald, Switzerland; and Molecular Toxicology (Bürkle), Department of Biology, University of Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 2017; 550:543-547. [PMID: 29045395 DOI: 10.1038/nature24264] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/08/2017] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors mediate the biological effects of many hormones and neurotransmitters and are important pharmacological targets. They transmit their signals to the cell interior by interacting with G proteins. However, it is unclear how receptors and G proteins meet, interact and couple. Here we analyse the concerted motion of G-protein-coupled receptors and G proteins on the plasma membrane and provide a quantitative model that reveals the key factors that underlie the high spatiotemporal complexity of their interactions. Using two-colour, single-molecule imaging we visualize interactions between individual receptors and G proteins at the surface of living cells. Under basal conditions, receptors and G proteins form activity-dependent complexes that last for around one second. Agonists specifically regulate the kinetics of receptor-G protein interactions, mainly by increasing their association rate. We find hot spots on the plasma membrane, at least partially defined by the cytoskeleton and clathrin-coated pits, in which receptors and G proteins are confined and preferentially couple. Imaging with the nanobody Nb37 suggests that signalling by G-protein-coupled receptors occurs preferentially at these hot spots. These findings shed new light on the dynamic interactions that control G-protein-coupled receptor signalling.
Collapse
|
15
|
Tazumi S, Omoto S, Nagatomo Y, Kawahara M, Yokota-Nakagi N, Kawakami M, Takamata A, Morimoto K. Estrogen replacement attenuates stress-induced pressor responses through vasorelaxation via β 2-adrenoceptors in peripheral arteries of ovariectomized rats. Am J Physiol Heart Circ Physiol 2017; 314:H213-H223. [PMID: 29030338 DOI: 10.1152/ajpheart.00148.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether chronic estrogen replacement has an inhibitory effect on stress-induced pressor responses via activation of β2-adrenoceptor (AR) in peripheral arteries of ovariectomized rats. Female Wistar rats aged 9 wk were ovariectomized. After 4 wk, pellets containing either 17β-estradiol (E2) or placebo (Pla) were subcutaneously implanted into the rats. After 4 wk of treatment, rats underwent cage-switch stress, and, in a separate experiment, a subset received an infusion of isoproterenol (ISO) with or without pretreatment with the β1-AR blocker atenolol or the β2-AR blocker butoxamine. In addition, the isolated mesenteric artery was used to assess the concentration-related relaxing responses to ISO and the β1- or β2-AR mRNA level. The cage-switch stress-induced pressor response was significantly attenuated in the E2-treated group compared with the Pla-treated group. Pretreatment with atenolol reduced blood pressure responses in both groups. However, butoxamine enhanced the pressor response only in the E2-treated group, resulting in no difference between the two groups. In addition, the intravenous ISO-induced depressor response was significantly enhanced in the E2-treated group compared with the Pla-treated group. Furthermore, the difference in the depressor response was abolished by pretreatment with butoxamine but not by atenolol. In the isolated mesenteric artery, butoxamine caused a rightward shift in ISO-induced concentration-related relaxation in the E2-treated group. The β2-AR mRNA level in the mesenteric artery was higher in the E2-treated group than in the Pla-treated group. These results suggest that estrogen replacement attenuated the stress-induced pressor response probably by suppressing vasoconstriction via activation of β2-ARs in peripheral arteries of ovariectomized rats. NEW & NOTEWORTHY In this study, we show, for the first time, that estrogen replacement has an inhibitory effect on the psychological stress-induced pressor response through vasorelaxation via β2-adrenoceptors, probably due to overexpression of β2-adrenoceptor mRNA, in peripheral arteries of ovariectomized rats.
Collapse
Affiliation(s)
- Shoko Tazumi
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Sayo Omoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Yu Nagatomo
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Mariko Kawahara
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Naoko Yokota-Nakagi
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Mizuho Kawakami
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Akira Takamata
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| | - Keiko Morimoto
- Department of Environmental Health, Faculty of Life Science and Human Technology, Nara Women's University , Nara , Japan
| |
Collapse
|
16
|
Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice. Vascul Pharmacol 2015; 74:114-121. [PMID: 26254103 PMCID: PMC4675083 DOI: 10.1016/j.vph.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 11/22/2022]
Abstract
Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcatwt) and LCAT knockout (LcatKO) mice exposed to noradrenaline showed reduced contractility in LcatKO mice (P < 0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in LcatKO mice (P < 0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in LcatKO mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcatwt and LcatKO mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity.
Collapse
|
17
|
Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 2015; 95:549-601. [PMID: 25834232 DOI: 10.1152/physrev.00035.2013] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Gunduz E, Arun O, Bagci ST, Oc B, Salman A, Yilmaz SA, Celik C, Duman A. Effects of propofol and sevoflurane on isolated human umbilical arteries pre-contracted with dopamine, adrenaline and noradrenaline. J Obstet Gynaecol Res 2014; 41:697-703. [PMID: 25511326 DOI: 10.1111/jog.12624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/23/2014] [Indexed: 11/28/2022]
Abstract
AIM To assess the effects of propofol and sevoflurane on the contraction elicited by dopamine, adrenaline and noradrenaline on isolated human umbilical arteries. METHODS Umbilical arteries were cut into endothelium-denuded spiral strips and suspended in organ baths containing Krebs-Henseleit solution bubbled with O2 +CO2 mixture. Control contraction to phenylephrine (10(-5) M) was recorded. Response curves were obtained to 10(-5) M dopamine, 10(-5) M adrenaline or 10(-5) M noradrenaline. Afterwards, either cumulative propofol (10(-6) M, 10(-5) M and 10(-4) M) or cumulative sevoflurane (1.2%, 2.4% and 3.6%) was added to the organ bath, and the responses were recorded. Responses are expressed percentage of phenylephrine-induced contraction (mean ± standard deviation) (P < 0.05 = significance). RESULTS Propofol and sevoflurane elicited concentration-dependent relaxations in strips pre-contracted with dopamine, adrenaline and noradrenaline (P < 0.05). Highest (10(-4) M) concentration of propofol caused significantly higher relaxation compared with the highest (3.6%) concentration of sevoflurane in the contraction elicited by dopamine. High (10(-5) M) and highest concentrations of propofol caused significantly higher relaxation compared with the high (2.4%) and highest concentrations of sevoflurane on the contraction elicited by adrenaline. High and highest concentrations of sevoflurane caused significantly higher relaxation compared with the high and highest concentrations of propofol on the contraction elicited by noradrenaline. CONCLUSION Dopamine, adrenaline and noradrenaline elicit contractions in human umbilical arteries, and noradrenaline causes the highest contraction. Both propofol and sevoflurane inhibit these contractions in a dose-dependent manner. Propofol caused greater relaxation in the contractions elicited by dopamine and adrenaline while sevoflurane caused greater relaxation in the contraction elicited by noradrenaline.
Collapse
Affiliation(s)
- Ergun Gunduz
- Department of Anesthesiology and Reanimation, Selcuk University, Faculty of Medicine, Konya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Flacco N, Segura V, Perez-Aso M, Estrada S, Seller JF, Jiménez-Altayó F, Noguera MA, D'Ocon P, Vila E, Ivorra MD. Different β-adrenoceptor subtypes coupling to cAMP or NO/cGMP pathways: implications in the relaxant response of rat conductance and resistance vessels. Br J Pharmacol 2014; 169:413-25. [PMID: 23373597 DOI: 10.1111/bph.12121] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/07/2013] [Accepted: 01/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE To analyse the relative contribution of β1 -, β2 - and β3 -adrenoceptors (Adrb) to vasodilatation in conductance and resistance vessels, assessing the role of cAMP and/or NO/cGMP signalling pathways. EXPERIMENTAL APPROACH Rat mesenteric resistance artery (MRA) and aorta were used to analyse the Adrb expression by real-time-PCR and immunohistochemistry, and for the pharmacological characterization of Adrb-mediated activity by wire myography and tissue nucleotide accumulation. KEY RESULTS The mRNAs and protein for all Adrb were identified in endothelium and/or smooth muscle cells (SMCs) in both vessels. In MRA, Adrb1 signalled through cAMP, Adrb3 through both cAMP and cGMP, but Adrb2, did not activate nucleotide formation; isoprenaline relaxation was inhibited by propranolol (β1 , β2 ), CGP20712A (β1 ), and SQ22536 (adenylyl cyclase inhibitor), but not by ICI118,551 (β2 ), SR59230A (β3 ), ODQ (soluble guanylyl cyclase inhibitor), L-NAME or endothelium removal. In aorta, Adrb1 signalled through cAMP, while β2 - and β3 -subtypes through cGMP; isoprenaline relaxation was inhibited by propranolol, ICI118,551, ODQ, L-NAME, and to a lesser extent, by endothelium removal. CL316243 (β3 -agonist) relaxed aorta, but not MRA. CONCLUSION AND IMPLICATION Despite all three Adrb subtypes being found in both vessels, Adrb1, located in SMCs and acting through the adenylyl cyclase/cAMP pathway, are primarily responsible for vasodilatation in MRA. However, Adrb-mediated vasodilatation in aorta is driven by endothelial Adrb2 and Adrb3, but also by the Adrb2 present in SMCs, and is coupled to the NO/cGMP pathway. These results could help to understand the different physiological roles played by Adrb signalling in regulating conductance and resistance vessels.
Collapse
Affiliation(s)
- N Flacco
- Departament de Farmacologia, Facultat de Farmacia, Universitat de Valencia, Burjassot, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Herrera-García AM, Domínguez-Luis MJ, Arce-Franco M, Armas-González E, Álvarez de La Rosa D, Machado JD, Pec MK, Feria M, Barreiro O, Sánchez-Madrid F, Díaz-González F. Prevention of neutrophil extravasation by α2-adrenoceptor-mediated endothelial stabilization. THE JOURNAL OF IMMUNOLOGY 2014; 193:3023-35. [PMID: 25114107 DOI: 10.4049/jimmunol.1400255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenergic receptors are expressed on the surface of inflammation-mediating cells, but their potential role in the regulation of the inflammatory response is still poorly understood. The objectives of this work were to study the effects of α2-adrenergic agonists on the inflammatory response in vivo and to determine their mechanism of action. In two mouse models of inflammation, zymosan air pouch and thioglycolate-induced peritonitis models, the i.m. treatment with xylazine or UK14304, two α2-adrenergic agonists, reduced neutrophil migration by 60%. The α2-adrenergic antagonist RX821002 abrogated this effect. In flow cytometry experiments, the basal surface expression of L-selectin and CD11b was modified neither in murine nor in human neutrophils upon α2-agonist treatment. Similar experiments in HUVEC showed that UK14304 prevented the activation-dependent upregulation of ICAM-1. In contrast, UK14304 augmented electrical resistance and reduced macromolecular transport through a confluent HUVEC monolayer. In flow chamber experiments, under postcapillary venule-like flow conditions, the pretreatment of HUVECs, but not neutrophils, with α2-agonists decreased transendothelial migration, without affecting neutrophil rolling. Interestingly, α2-agonists prevented the TNF-α-mediated decrease in expression of the adherens junctional molecules, VE-cadherin, β-catenin, and plakoglobin, and reduced the ICAM-1-mediated phosphorylation of VE-cadherin by immunofluorescence and confocal analysis and Western blot analysis, respectively. These findings indicate that α2-adrenoceptors trigger signals that protect the integrity of endothelial adherens junctions during the inflammatory response, thus pointing at the vascular endothelium as a therapeutic target for the management of inflammatory processes in humans.
Collapse
Affiliation(s)
- Ada María Herrera-García
- Departamento de Medicina, Facultad de Medicina, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - María Jesús Domínguez-Luis
- Centro para la Investigación Biomédica de las Islas Canarias, Instituto de Tecnologías Biomedicas, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - María Arce-Franco
- Servicio de Reumatología, Hospital Universitario de Canarias, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Estefanía Armas-González
- Departamento de Medicina, Facultad de Medicina, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Diego Álvarez de La Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Martina K Pec
- Departamento de Medicina, Facultad de Medicina, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel Feria
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Olga Barreiro
- Departamento de Biología Vascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain; and
| | - Francisco Sánchez-Madrid
- Departamento de Biología Vascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain; and Servicio de Inmunología, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Federico Díaz-González
- Departamento de Medicina, Facultad de Medicina, Universidad de La Laguna, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain; Servicio de Reumatología, Hospital Universitario de Canarias, La Cuesta, 38320 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain;
| |
Collapse
|
21
|
Resin glycosides from Ipomoea tyrianthina and their sedative and vasorelaxant effects. J Nat Med 2014; 68:655-67. [PMID: 24838512 DOI: 10.1007/s11418-014-0844-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
The methanol-soluble extract from the root of Ipomoea tyrianthina was studied in order to isolate compounds with activity on the central nervous system and vasorelaxant effects. Chromatographic methods were used to isolate and purify seven new glycolipids (2-8). The structures of compounds 1-8 were elucidated by a combination of NMR spectroscopy and mass spectrometry. Tyrianthinoic acid (1) is a glycosidic acid composed of a linear pentasaccharide core bonded to a 11-hydroxyhexadecanoic acid. The structure of tyrianthinic acids III (2), IV (3), and V (4) consists of a partially acylated tyrianthinoic acid. Tyrianthinic acid VI (8) is a tetrasaccharide core bonded to a jalapinolic acid, acylated by a 2-methyl-3-hydroxybutanoic acid. Tyrianthins C (5), D (6), and E (7) are ester-type heterodimers of scammonic acid A with different acylating residues in the two monomeric units. The macrolactonization site was located at C-3 of the rhamnose unit. The position of the ester linkage for monomeric unit B on the macrocyclic unit A was established at C-4 of the terminal quinovose. Compounds 5-7 increased the sleeping time induced by pentobarbital and the release of gamma-aminobutyric acid in brain cortex. In addition, compounds 5-7 showed significant in vitro relaxant effects on aortic rat rings, in endothelium- and concentration-dependent manners.
Collapse
|
22
|
Menezes de Carvalho MT, Celotto AC, Sumarelli Albuquerque AA, Garros Ferreira L, Capellini VK, Cassiano Silveira AP, Rubens de Nadai T, Evora PRB. In vitro Effects of the Organophosphorus Pesticide Malathion on the Reactivity of Rat Aorta. Pharmacology 2014; 94:157-62. [DOI: 10.1159/000367897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022]
|
23
|
Avila-Villarreal G, Hernández-Abreu O, Hidalgo-Figueroa S, Navarrete-Vázquez G, Escalante-Erosa F, Peña-Rodríguez LM, Villalobos-Molina R, Estrada-Soto S. Antihypertensive and vasorelaxant effects of dihydrospinochalcone-A isolated from Lonchocarpus xuul Lundell by NO production: computational and ex vivo approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1241-1246. [PMID: 23880329 DOI: 10.1016/j.phymed.2013.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/11/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
Current work was conducted to evaluate the vasorelaxant effect of dihydrospinochalcone-A (1) and isocordoin (2), compounds type chalcone isolated from Lonchocarpus xuul, an endemic tree of the Yucatan Peninsula, Mexico. Compounds 1 and 2 were found to induce significant relaxant effect in a concentration-dependent manner on aortic rat rings pre-contracted with noradrenaline (NA, 0.1 μM). Compound 1 was the most active and its effect was endothelium-dependent (Emax=79.67% and EC50=21.46 μM with endothelium and Emax=23.58% and EC50=91.8 μM without endothelium, respectively). The functional mechanism of action for 1 was elucidated. Pre-incubation with L-NAME (unspecific nitric oxide synthase inhibitor), indomethacin (unspecific COX inhibitor), ODQ (soluble guanylyl cyclase inhibitor), atropine (cholinergic receptor antagonist), TEA (unspecific potassium channel blocker) reduced relaxations induced by 1. Oral administration of 50 mg/kg of compound 1 exhibited significant decrease in diastolic and systolic blood pressure in SHR rats. The heart rate was not modified. Compound 1 was docked with a crystal structure of eNOS. Dihydrospinochalcone-A showed calculated affinity with eNOS in the C1 binding pockets, near the catalytic site; Trp449, Trp447 and His373 through aromatic and π-π interactions, also His463 and Arg367 are the residues that make hydrogen bonds with the carbonyl and hydroxyl groups. In conclusion, dihydrospinochalcone-A induces a significant antihypertensive effect due to its direct vasorelaxant action on rat aorta rings, through NO/sCG/PKG pathway and potassium channel opening.
Collapse
Affiliation(s)
- Gabriela Avila-Villarreal
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Enouri S, Monteith G, Johnson R. Functional characteristics of alpha adrenergic and endothelinergic receptors in pressurized rat mesenteric veins. Can J Physiol Pharmacol 2013; 91:538-46. [DOI: 10.1139/cjpp-2012-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing transmural pressure can alter the functional role of post-junctional receptor subtypes. Under conditions of changing transmural pressure, we investigated the relative contributions of alpha adrenergic (α-ARs) and endothelinergic receptors to norepinephrine (NE) and endothelin (ET-1) contractile responses, respectively, in third-order rat mesenteric small veins (MSV) and arteries (MSA). NE, phenylephrine (PE), clonidine, and ET-1 concentration–response curves were constructed in the absence and presence of α-adrenergic and ET-1 receptor antagonists, respectively. MSV were more sensitive to NE, PE, and ET-1 compared with MSA. The sensitivity of MSV to NE was higher than that to PE. Phentolamine (α1-AR/α2-AR antagonist) and prazosin (α1-AR antagonist) completely abolished NE responses. Yohimbine (α2-AR antagonist) reduced NE and clonidine contractile responses in MSV. Clonidine contractile responses were reduced by prazosin in MSA. In MSA and MSV, BQ-610 (ETA receptor antagonist) but not BQ-788 (ETB receptor antagonist) reduced ET-1 contractile responses. Combined application of BQ-610 and BQ-788 caused further reduction in ET-1 concentration–response curves obtained in MSV. These results suggest that in addition to α1-ARs and ETA receptors, α2-ARs and ETB receptors also mediate NE and ET-1 contractile responses in MSV, respectively, with no change in the participation of these receptors as transmural pressure is increased.
Collapse
Affiliation(s)
- Saad Enouri
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gabrielle Monteith
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ron Johnson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
25
|
Rios MY, López-Martínez S, López-Vallejo F, Medina-Franco JL, Villalobos-Molina R, Ibarra-Barajas M, Navarrete-Vazquez G, Hidalgo-Figueroa S, Hernández-Abreu O, Estrada-Soto S. Vasorelaxant activity of some structurally related triterpenic acids from Phoradendron reichenbachianum (Viscaceae) mainly by NO production: Ex vivo and in silico studies. Fitoterapia 2012; 83:1023-9. [DOI: 10.1016/j.fitote.2012.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
|
26
|
Rangel RAS, Marinho BG, Fernandes PD, de Moura RS, Lessa MA. Pharmacological mechanisms involved in the antinociceptive effects of dexmedetomidine in mice. Fundam Clin Pharmacol 2012; 28:104-13. [PMID: 22924641 DOI: 10.1111/j.1472-8206.2012.01068.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 11/30/2022]
Abstract
Dexmedetomidine (DEX) is a α₂ -adrenoceptor (α₂ -AR) agonist used as an anesthetic adjuvant and as sedative in critical care settings. Typically, α₂ -AR agonists release nitric oxide (NO) and subsequently activate NO-GMPc pathway and have been implicated with antinociception. In this study, we investigate the pharmacological mechanisms involved in the antinociceptive effects of DEX, using an acetic acid-induced writhing assay in mice. Saline or DEX (1, 2, 5, or 10 μg/kg) was intravenously injected 5 min before ip administration of acetic acid and the resulting abdominal constrictions were then counted for 10 min. To investigate the possible mechanisms related to antinociceptive effect of DEX (10 μg/kg), the animals were also pretreated with one of the following drugs: 7-nitroindazole (7-NI; 30 mg/kg ip); 1H-[1,2,4] oxadiazole [4,3-a] quinoxaline-1-one (ODQ; 2.5 mg/kg, ip); yohimbine (YOH; 1 mg/kg, ip); atropine (ATRO; 2 mg/kg, ip); glibenclamide (GLIB; 1 mg/kg, i.p.) and naloxone (NAL; 0.2 mg/kg, ip). A rotarod and open-field performance test were performed with DEX at 10 μg/kg dose. DEX demonstrated its potent antinociceptive effect in a dose-dependent manner. The pretreatment with 7-NI, ODQ, GLIB, ATRO, and YOH significantly reduced the antinociceptive affects of DEX. However, NAL showed no effecting DEX-induced antinociception. The rotarod and open-field tests confirmed there is no detectable sedation or even significant motor impairment with DEX at 10 μg/kg dose. Our results suggest that the α₂ -AR and NO-GMPc pathways play important roles in the systemic antinociceptive effect of DEX in a murine model of inflammatory pain. Furthermore, the antinociceptive effect exerted by DEX appears to be dependent on KATP channels, independent of opioid receptor activity.
Collapse
Affiliation(s)
- Rafael A S Rangel
- Department of Pharmacology and Psychobiology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
27
|
Kawai M, Nagaoka T, Takahashi A, Sato E, Yoshida A. Effects of topical carteolol on retinal arterial blood flow in primary open-angle glaucoma patients. Jpn J Ophthalmol 2012; 56:458-63. [DOI: 10.1007/s10384-012-0156-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
28
|
Abstract
Adrenoceptors and dopamine receptors are grouped together under the name 'catecholamine receptors.' Catecholamines and catecholaminergic drugs act on catecholamine receptors located on or near the cardiovascular system. The physiological effects of catecholamine receptor stimulation are only partly understood. The catecholaminergic drugs used in critical care medicine today are not selective, or are, at best, in part selective for the various catecholamine receptor subtypes. Many patients, however, depend on them. A variety of animal models has been developed to unravel catecholamine distribution and function. However, the identification of species heterogeneity makes it imperative to determine catecholamine receptor distribution and function in humans. In addition, age-related alterations in catecholamine receptor distribution and function have been identified in human adults. This might have implications for our understanding of the effect of catecholamines in pediatric patients. This article will focus on the pediatric population and will review currently available in vitro data on the distribution and the function of catecholamine receptors in the cardiovascular system of fetuses and children. Also discussed are relevant young animal models and in vivo hemodynamic effects of cardiotonic drugs acting on the catecholamine receptor in children requiring major cardiac surgery. A better understanding of these topics might provide clues for new, receptor subtype-selective, therapeutic approaches in newborns and children with cardiac disease.
Collapse
|
29
|
Alpha2C-adrenoceptors play a prominent role in sympathetic constriction of porcine pulmonary arteries. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:595-603. [DOI: 10.1007/s00210-012-0741-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/10/2012] [Indexed: 12/28/2022]
|
30
|
Matsumoto T, Szasz T, Tostes RC, Webb RC. Impaired β-adrenoceptor-induced relaxation in small mesenteric arteries from DOCA-salt hypertensive rats is due to reduced K(Ca) channel activity. Pharmacol Res 2012; 65:537-45. [PMID: 22388053 DOI: 10.1016/j.phrs.2012.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/07/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
β-Adrenoceptor (β-AR)-mediated relaxation plays an important role in the regulation of vascular tone. β-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that β-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. β-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of l-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IK(Ca)/SK(Ca) channels (TRAM-34 plus UCL1684) or BK(Ca) channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SK(Ca) channel was decreased in DOCA-salt arteries. The expression of BK(Ca) channel α subunit was increased whereas the expression of BK(Ca) channel β subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BK(Ca) channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of β-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IK(Ca)/SK(Ca) and/or BK(Ca) channels activities rather than cAMP/PKA pathway. Impaired β-AR-stimulated BK(Ca) channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | |
Collapse
|
31
|
Biochemical and molecular aspects of vascular adrenergic regulation of blood pressure in the elderly. Int J Hypertens 2011; 2012:915057. [PMID: 21961055 PMCID: PMC3179865 DOI: 10.1155/2012/915057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 01/08/2023] Open
Abstract
Hypertension, orthostatic hypotension, arterial insufficiency, and atherosclerosis are common disorders in the elderly that lead to significant morbidity and mortality. One common factor to these conditions is an age-related decline in vascular beta-adrenergic receptor-mediated function and subsequent cAMP generation. Presently, there is no single cellular factor that can explain this age-related decline, and thus, the primary cause of this homeostatic imbalance is yet to be identified. However, the etiology is clearly associated with an age-related change in the ability of beta-adrenergic receptor to respond to agonist at the cellular level in the vasculature. This paper will review what is presently understood regarding the molecular and biochemical basis of age-impaired beta-adrenergic receptor-mediated signaling. A fundamental understanding of why β-AR-mediated vasorelaxation is impaired with age will provide new insights and innovative strategies for the management of multiple clinical disorders.
Collapse
|
32
|
Behnke BJ, Armstrong RB, Delp MD. Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium. Am J Physiol Regul Integr Comp Physiol 2011; 301:R783-90. [PMID: 21677269 DOI: 10.1152/ajpregu.00205.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of the sympathetic nervous system (SNS) upon vascular resistance is more profound in muscles comprised predominately of low-oxidative type IIB vs. high-oxidative type I fiber types. However, within muscles containing high-oxidative type IIA and IIX fibers, the role of the SNS on vasomotor tone is not well established. The purpose of this study was to examine the influence of sympathetic neural vasoconstrictor tone in muscles composed of different fiber types. In adult male rats, blood flow to the red and white portions of the gastrocnemius (Gast(Red) and Gast(White), respectively) and the soleus muscle was measured pre- and postdenervation. Resistance arterioles from these muscles were removed, and dose responses to α₁-phenylephrine or α₂-clonidine adrenoreceptor agonists were determined with and without the vascular endothelium. Denervation resulted in a 2.7-fold increase in blood flow to the soleus and Gast(Red) and an 8.7-fold increase in flow to the Gast(White). In isolated arterioles, α₂-mediated vasoconstriction was greatest in Gast(White) (∼50%) and less in Gast(Red) (∼31%) and soleus (∼17%); differences among arterioles were abolished with the removal of the endothelium. There was greater sensitivity to α(1)-mediated vasoconstriction in the Gast(White) and Gast(Red) vs. the soleus, which was independent of whether the endothelium was present. These data indicate that 1) control of vascular resistance by the SNS in high-oxidative, fast-twitch muscle is intermediate to that of low-oxidative, fast-twitch and high-oxidative, slow-twitch muscles; and 2) the ability of the SNS to control blood flow to low-oxidative type IIB muscle appears to be mediated through postsynaptic α₁- and α₂-adrenoreceptors on the vascular smooth muscle.
Collapse
Affiliation(s)
- Bradley J Behnke
- Department of Applied Physiology and Kinesiology and Center for Exercise Science, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
33
|
León-Rivera I, Herrera-Ruiz M, Estrada-Soto S, Gutiérrez MDC, Martínez-Duncker I, Navarrete-Vázquez G, Rios MY, Aguilar B, Castillo-España P, Aguirre-Moreno A. Sedative, vasorelaxant, and cytotoxic effects of convolvulin from Ipomoea tyrianthina. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:434-439. [PMID: 21440616 DOI: 10.1016/j.jep.2011.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/14/2011] [Accepted: 03/18/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Ipomoea tyrianthina has been used in Mexican traditional medicine as a mild purgative, for the treatment of nervous disorders, and against tumors. In this study, the effect of convolvulin (an ether-insoluble resin glycoside) from the root of Ipomoea tyrianthina on: Central Nervous System; as spasmolytic and vasodilator; cytotoxic against cancer cell lines is evaluated. MATERIALS AND METHODS Convolvulin isolated from the root of Ipomoea tyrianthina (IT-EM) was tested on pentylentetrazole induced seizures, pentobarbital-induced hypnosis, release of GABA and glutamic acid, isolated rat aorta and ileum rings, and against Caco-2 and KB cell lines. RESULTS IT-EM increased the hypnotic effect induced by pentobarbital and the release of GABA in brain cortex of mice, but did not protect mice against pentylenetetrazole-induced convulsions. IT-EM produced a significant vasodilator effect in concentration- and endothelium-dependent manners on isolated rat aorta, but did not inhibit significantly contractions on rat ileum, colon, and jejune rings. IT-EM showed cytotoxic activity against nasopharyngeal carcinoma KB cell line. CONCLUSIONS Convolvulin (IT-EM) from Ipomoea tyrianthina has sedative effect, vasorelaxant effect in concentration- and endothelium-dependent manners, and cytotoxic activity against nasopharyngeal carcinoma KB cell line.
Collapse
Affiliation(s)
- Ismael León-Rivera
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Morais K, Hayashi M, Bruni F, Lopes-Ferreira M, Camargo A, Ulrich H, Lameu C. Bj-PRO-5a, a natural angiotensin-converting enzyme inhibitor, promotes vasodilatation mediated by both bradykinin B2 and M1 muscarinic acetylcholine receptors. Biochem Pharmacol 2011; 81:736-42. [DOI: 10.1016/j.bcp.2010.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/16/2010] [Indexed: 11/24/2022]
|
35
|
Posti JP, Valve L, Ruohonen S, Akkila J, Scheinin M, Snapir A. Dorsal hand vein responses to the α₁-adrenoceptor agonist phenylephrine do not predict responses to the α₂-adrenoceptor agonist dexmedetomidine. Eur J Pharmacol 2010; 653:70-4. [PMID: 21147097 DOI: 10.1016/j.ejphar.2010.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 11/18/2010] [Indexed: 11/30/2022]
Abstract
Significant inter-individual variability exists in responses of human dorsal hand veins to activation of α-adrenoceptors. Simultaneous graded infusions of the α₁- and α₂-adrenoceptor agonists phenylephrine (3.66-8000 ng/min) and dexmedetomidine (0.0128-1000 ng/min) were given into dorsal veins of both hands and responses of 75 subjects were analyzed to assess whether a subject's sensitivity to phenylephrine (ED(50)) predicts his sensitivity to dexmedetomidine. Individual ED(50) estimates of dexmedetomidine and phenylephrine ranged between 0.06-412 and 14.2-7450 ng/min and exhibited only a weak positive relationship (r² =0.074, P=0.018). Finger temperature, body mass index, age and phenylephrine sensitivity together accounted for about 30% of dexmedetomidine ED(50) variation (r² =0.315, P<0.001). The large inter-individual variability observed in the responses of dorsal hand veins to both α₁- and α₂-adrenoceptor agonists is not explained by some common factors; instead, dorsal hand vein responsivity is separately determined for both receptor mechanisms.
Collapse
Affiliation(s)
- Jussi P Posti
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Wong ESW, Man RYK, Vanhoutte PM, Ng KFJ. Dexmedetomidine Induces Both Relaxations and Contractions, via Different α2-Adrenoceptor Subtypes, in the Isolated Mesenteric Artery and Aorta of the Rat. J Pharmacol Exp Ther 2010; 335:659-64. [DOI: 10.1124/jpet.110.170688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Martínez AC, Pagán RM, Prieto D, Recio P, García-Sacristán A, Hernández M, Benedito S. Modulation of noradrenergic neurotransmission in isolated rat radial artery. J Pharmacol Sci 2010; 111:299-311. [PMID: 19926936 DOI: 10.1254/jphs.09135fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The present study was designed to characterize the neurogenic contraction of rat radial artery. Electrical field stimulation (EFS) evoked frequency-dependent contraction that was abolished by tetrodotoxin (neuronal Na(+) channel blocker), guanethidine (sympathetic neuron blocker), or phentolamine (alpha-adrenoceptor blocker). The alpha(1)-adrenoceptor antagonist prazosin inhibited endothelium-independent contractions to EFS, noradrenaline (NA), and the alpha(1)-adrenoceptor agonist phenylephrine. Rauwolscine, an alpha(2)-adrenoceptor antagonist, augmented nerve-mediated contractions and reduced sensitivity to NA and the alpha(2)-adrenoceptor agonist BHT-920. The beta-adrenoceptor antagonist propranolol diminished EFS-elicited contractions, while sensitivity to NA was enhanced by propranolol. Relaxations evoked by isoproterenol, a beta-adrenoceptor agonist, were abolished by propranolol. N(G)-Nitro-L-arginine (L-NOARG), a nitric oxide (NO) synthase inhibitor, increased both nerve-mediated and NA-induced responses in endothelium-intact, but not in endothelium-denuded arteries. Moreover, endothelium-dependent responses to BHT-920 and isoproterenol were modified by L-NOARG. Tetraethylammonium (TEA) or 4-aminopyridine, the Ca2+-activated (K(Ca)) or voltage-dependent K+ (K(V)) channel blockers, respectively, enhanced the neurogenic contractions observed. TEA but not 4-aminopyridine increased NA-induced contractions. The ATP-sensitive K+ (K(ATP))-channel blocker glibenclamide failed to modify adrenergic contractions. Blockade of capsaicin-sensitive primary afferents increased EFS-induced contractions. In conclusion, adrenergic contractions are predominantly mediated by muscular alpha(1)-adrenoceptors, while endothelial alpha(2)- and beta-adrenoceptors play a minor role. Presynaptic alpha(2)- and beta-adrenoceptors cannot be precluded. Noradrenergic neurotransmission in rat radial artery seems to be modulated by both stimulation of endothelial NO, K(Ca), and K(V) channels and sensory C-fiber activation.
Collapse
|
38
|
Vergara-Galicia J, Aguirre-Crespo F, Castillo-España P, Arroyo-Mora A, López-Escamilla AL, Villalobos-Molina R, Estrada-Soto S. Micropropagation and vasorelaxant activity ofLaelia autumnalis(Orchidaceae). Nat Prod Res 2010; 24:106-14. [DOI: 10.1080/14786410802340820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Yinhua, Harada N, Mawatari K, Yasui S, Segawa H, Takahashi A, Oshita S, Nakaya Y. L-DOPA inhibits nitric oxide-dependent vasorelaxation via production of reactive oxygen species in rat aorta. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56:120-9. [PMID: 19763024 DOI: 10.2152/jmi.56.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To clarify the underlying mechanisms of L-DOPA induced vasoconstriction in rat aorta. METHODS The effect of L-DOPA on phenylephrine-induced contractile force of blood vessels was examined in vitro using rat aortic ring preparations by isometric tension experiment. Involvement of nitric oxide (NO) in the effect of L-DOPA on vascular smooth muscle was studied by using N(omega)-Nitro-L-arginine (L-NNA), Sodium nitroprusside (SNP) in endothelium-intact and endothelium-denuded aortic rings. RESULTS L-DOPA potentiated alpha-adrenergic receptor- and depolarization-induced vascular contraction and inhibited acetylcholine-induced vasorelaxation. This effect was diminished by pretreatment of the aortic rings with L-NNA, an inhibitor of NO synthesis, or by removing the endothelium from the ring preparations. In endothelium-denuded rings, L-DOPA inhibited exogenous NO-dependent but not cGMP-mediated vasorelaxation. Increases in cGMP levels in response to an NO donor were attenuated by L-DOPA in cultured rat aortic smooth muscle cells. L-DOPA could not contract rings (without endothelium) pretreated with 3-(5'-hydroxymethyl- 2'-furyl)-1-benzyl indazole (YC-1), an activator of guanylyl cyclase, but SOD (150 U/ml) pretreatment of rings with endothelium inhibited contraction by L-DOPA. CONCLUSIONS These results suggest that L-DOPA inhibits nitric-dependent vasorelaxation on vascular smooth muscle cells via production of reactive oxygen species.
Collapse
Affiliation(s)
- Yinhua
- Department of Anesthesiology, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Piterina AV, Cloonan AJ, Meaney CL, Davis LM, Callanan A, Walsh MT, McGloughlin TM. ECM-based materials in cardiovascular applications: Inherent healing potential and augmentation of native regenerative processes. Int J Mol Sci 2009; 10:4375-4417. [PMID: 20057951 PMCID: PMC2790114 DOI: 10.3390/ijms10104375] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/07/2009] [Accepted: 09/30/2009] [Indexed: 01/21/2023] Open
Abstract
The in vivo healing process of vascular grafts involves the interaction of many contributing factors. The ability of vascular grafts to provide an environment which allows successful accomplishment of this process is extremely difficult. Poor endothelisation, inflammation, infection, occlusion, thrombosis, hyperplasia and pseudoaneurysms are common issues with synthetic grafts in vivo. Advanced materials composed of decellularised extracellular matrices (ECM) have been shown to promote the healing process via modulation of the host immune response, resistance to bacterial infections, allowing re-innervation and reestablishing homeostasis in the healing region. The physiological balance within the newly developed vascular tissue is maintained via the recreation of correct biorheology and mechanotransduction factors including host immune response, infection control, homing and the attraction of progenitor cells and infiltration by host tissue. Here, we review the progress in this tissue engineering approach, the enhancement potential of ECM materials and future prospects to reach the clinical environment.
Collapse
Affiliation(s)
- Anna V. Piterina
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Aidan J. Cloonan
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Claire L. Meaney
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Laura M. Davis
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Anthony Callanan
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Michael T. Walsh
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| | - Tim M. McGloughlin
- Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical & Aeronautical Engineering, and Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland; E-Mails:
(A.V.P.);
(A.J.C.);
(C.L.M.);
(L.M.D.);
(A.C.);
(M.T.W.)
| |
Collapse
|
41
|
Glycolipid ester-type heterodimers from Ipomoea tyrianthina and their pharmacological activity. Bioorg Med Chem Lett 2009; 19:4652-6. [DOI: 10.1016/j.bmcl.2009.06.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 11/18/2022]
|
42
|
Hernández-Abreu O, Castillo-España P, León-Rivera I, Ibarra-Barajas M, Villalobos-Molina R, González-Christen J, Vergara-Galicia J, Estrada-Soto S. Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochem Pharmacol 2009; 78:54-61. [PMID: 19447223 DOI: 10.1016/j.bcp.2009.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
Abstract
Current investigation was undertaken to elucidate the mode of action of tilianin, isolated from Agastache mexicana, as a vasorelaxant agent on in vitro functional rat thoracic aorta test and to investigate the in vivo antihypertensive effect on spontaneously hypertensive rats (SHR). Tilianin (0.002-933 microM) induced significant relaxation in a concentration- and endothelium-dependent and -independent manners in aortic rings pre-contracted with noradrenaline (NA, 0.1 microM), and serotonin (5-HT, 100 microM). Effect was more significant (p < 0.05) in endothelium-intact (+E) aorta rings than when endothelium was removed(E). Pre-treatment with N-nitro-L-arginine methyl ester (L-NAME; 10 microM) or 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) produced a significant change of the relaxant response and activity was markedly inhibited, but not by indomethacin (10 microM) or atropine (1 microM). Furthermore, tilianin (130 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP; 0.32 nM to 0.1 microM). Moreover, tilianin induced significant in vitro NO overproduction (1.49 +/- 0.86 microM of nitrites/g of tissue) in rat aorta compared with vehicle (p < 0.05). In addition, pre-treatment with tetraethylammonium (TEA, 5 mM) and 2-aminopyridine (2-AP, 0.1 microM) shifted to the right the relaxant curve induced by tilianin (p < 0.05). Finally, a single oral administration of tilianin (50 mg/kg) exhibited a significant decrease in systolic and diastolic blood pressures (p < 0.05) in SHR model. Results indicate that tilianin mediates relaxation mainly by an endothelium-dependent manner,probably due to NO release, and also through an endothelium-independent pathway by opening K+ channels, both causing the antihypertensive effect.
Collapse
Affiliation(s)
- Oswaldo Hernández-Abreu
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62209 Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cankar K, Finderle Ž, Štrucl M. The effect of α-adrenoceptor agonists and L-NMMA on cutaneous postocclusive reactive hyperemia. Microvasc Res 2009; 77:198-203. [DOI: 10.1016/j.mvr.2008.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/29/2008] [Accepted: 10/27/2008] [Indexed: 11/17/2022]
|
44
|
Isometric contraction increases endothelial nitric oxide synthase activity via a calmodulin antagonist-sensitive pathway in rat aorta. Vascul Pharmacol 2009; 50:14-9. [DOI: 10.1016/j.vph.2008.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/16/2008] [Accepted: 08/15/2008] [Indexed: 11/18/2022]
|
45
|
|
46
|
|
47
|
Sánchez-Salgado JC, Ortiz-Andrade RR, Aguirre-Crespo F, Vergara-Galicia J, León-Rivera I, Montes S, Villalobos-Molina R, Estrada-Soto S. Hypoglycemic, vasorelaxant and hepatoprotective effects of Cochlospermum vitifolium (Willd.) Sprengel: a potential agent for the treatment of metabolic syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2007; 109:400-5. [PMID: 16978815 DOI: 10.1016/j.jep.2006.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 07/10/2006] [Accepted: 08/11/2006] [Indexed: 05/11/2023]
Abstract
Cochlospermum vitifolium (Willd.) Sprengel is a Mexican medicinal plant that is used in the folk medicine for the treatment of hypertension, diabetes, hepatitis and related diseases. The purpose of the present study was to assess the pharmacological properties of different extracts from Cochlospermum vitifolium bark as potential agent for the treatment of some factors related with metabolic syndrome (MS), a complex disease produced for several pathophysiological factors such as visceral fat obesity, insulin resistance, hypertension, dyslipidemia and liver steatosis. Hexane (HECv), dichloromethane (DECv) and methanol (MECv) extracts were subjected to some pharmacological assays to determine their vasorelaxant and hypoglycemic activity. On the other hand, MECv was also evaluated to determine its hepatoprotective effect on sub-chronic experimental assay. HECv showed a significant endothelium-independent relaxation on rat aorta rings (intact endothelium: IC(50)=14.42+/-5.90 microg/mL, E(max)=92.71+/-8.9%; denuded endothelium: IC(50)=27.94+/-4.0 microg/mL, E(max)=78.68+/-4.6%) and MECv produced an endothelium-dependent relaxation (IC(50)=21.94+/-6.87 microg/mL, E(max)=79.12+/-7.80%) on this tissue. Furthermore, HECv (at a dose of 120 mg/kg) also showed a significant decrease of blood glucose levels (p<0.05) on normoglycemic rats. Moreover, MECv (at a dose of 100 mg/kg) also was administered to bile duct-obstructed rats to determine its hepatoprotective activity, showing a statistically significant decrease of serum glutamic-pyruvic transaminase (PGT, 45%) and alkaline phosphatase (APh, 15%) (p<0.05). Finally, we obtained a crystalline polyphenolic compound from MECv by spontaneous precipitation. Those crystals were identified as (+/-)-naringenin by X-ray diffraction, NMR, IR and GC-MS techniques. Results suggest that Cochlospermum vitifolium could be used as a potential agent against MS since it shows hypoglycemic, vasorelaxant and hepatoprotective properties.
Collapse
Affiliation(s)
- J C Sánchez-Salgado
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pérez-Rivera AA, Hlavacova A, Rosario-Colón LA, Fink GD, Galligan JJ. Differential contributions of alpha-1 and alpha-2 adrenoceptors to vasoconstriction in mesenteric arteries and veins of normal and hypertensive mice. Vascul Pharmacol 2007; 46:373-82. [PMID: 17329171 PMCID: PMC3549429 DOI: 10.1016/j.vph.2007.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 10/21/2006] [Accepted: 01/18/2007] [Indexed: 11/19/2022]
Abstract
Mesenteric veins are more sensitive than arteries to the constrictor effects of sympathetic nerve stimulation and alpha-adrenergic receptor agonists. In the present study, we tested the hypothesis that alpha(2)-adrenergic receptors (alpha(2)-ARs) contribute to in vitro agonist-induced constriction in veins but not arteries and that alpha(2)-AR function is down-regulated in mesenteric arteries and veins in deoxycorticosterone acetate-salt (DOCA-salt) hypertension. Norepinephrine (NE) concentration-response curves were similar in SHAM and DOCA-salt arteries and veins indicating that adrenergic reactivity of mesenteric blood vessels is not altered in murine DOCA-salt hypertension in vitro. Veins were 30-fold more sensitive to NE than arteries. The alpha(1)-AR antagonist, prazosin (0.003-0.3 microM), produced concentration-dependent rightward shifts of the NE concentration-response curves in arteries but not veins. The alpha(2)-AR agonists, clonidine and UK-14,304, did not constrict arteries or veins in the absence or presence of indomethacin (10 microM) and nitro-L-arginine (NLA; 100 microM). The alpha(2)-AR antagonists, yohimbine (0.003-0.3 microM) and rauwolscine (0.1 microM) did not affect NE responses in SHAM or DOCA-salt arteries but antagonized NE responses in veins. These data indicate that there are different alpha-AR contractile mechanisms in murine mesenteric arteries and veins. Alpha(1)-ARs, but not alpha(2)-ARs, mediate direct contractile responses in arteries and veins while alpha(2)-ARs contribute indirectly to NE-induced constrictions in veins but not arteries in vitro. There may be direct protein-protein interactions between alpha(1)- and alpha(2)-ARs or between their signaling pathways in veins. This contribution of alpha(2)-ARs may account for the greater sensitivity of veins compared to arteries to the contractile effects of NE.
Collapse
MESH Headings
- Adrenergic Antagonists/pharmacology
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Desoxycorticosterone
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hypertension/chemically induced
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiopathology
- Mesenteric Veins/drug effects
- Mesenteric Veins/metabolism
- Mesenteric Veins/physiopathology
- Mice
- Mice, Inbred C57BL
- Norepinephrine/pharmacology
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Sodium Chloride
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Alex A Pérez-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
49
|
Donato AJ, Lesniewski LA, Delp MD. Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles. J Physiol 2006; 579:115-25. [PMID: 17082231 PMCID: PMC2075385 DOI: 10.1113/jphysiol.2006.120055] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
UNLABELLED Ageing is associated with increased leg vascular resistance and reductions in leg blood flow during rest and exercise, potentially predisposing older adults to a host of functional and cardiovascular complications. The purpose of these studies was to examine the effects and possible mechanisms of ageing and exercise training on arteriolar adrenergic vasoreactivity. Young and old male Fischer 344 rats were divided into young sedentary (YS), old sedentary (OS), young exercise-trained (YT) or old exercise-trained (OT) groups, where training consisted of chronic treadmill exercise. Isolated soleus (SOL) and gastrocnemius (GAS) muscle arterioles were studied in vitro. Responses to noradrenaline in endothelium-intact and endothelium-denuded arterioles, as well as during nitric oxide synthase (NOS) inhibition were determined. Vasodilator responses to isoproterenol and forskolin were also determined. RESULTS Noradrenaline-mediated vasoconstriction was increased in SOL arterioles with ageing, and exercise training in old rats attenuated alpha-adrenergic vasoconstriction in arterioles from both muscle types. Removal of the endothelium and NOS inhibition eliminated these ageing and training effects. Isoproterenol-mediated vasodilatation was impaired with ageing in SOL and GAS arterioles, and exercise training had little effect on this response. Forskolin-induced vasodilatation was not affected by age. The data demonstrate that ageing augments alpha-adrenergic vasoconstriction while exercise training attenuates this response, and both of these alterations are mediated through an endothelial alpha-receptor-NOS-signalling pathway. In contrast, ageing diminishes beta-receptor-mediated vasodilatation, but this impairment is specific to the smooth muscle. These studies indicate that alpha- and beta-adrenergic mechanisms may serve to increase systemic vascular resistance with ageing, and that the effects of exercise training on adrenergic vasomotor properties could contribute to the beneficial effects of exercise on cardiovascular disease.
Collapse
Affiliation(s)
- Anthony J Donato
- Department of Health and Kinisiology, Texas A and M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
50
|
Aguirre-Crespo F, Vergara-Galicia J, Villalobos-Molina R, Javier López-Guerrero J, Navarrete-Vázquez G, Estrada-Soto S. Ursolic acid mediates the vasorelaxant activity of Lepechinia caulescens via NO release in isolated rat thoracic aorta. Life Sci 2006; 79:1062-8. [PMID: 16630635 DOI: 10.1016/j.lfs.2006.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/14/2006] [Accepted: 03/08/2006] [Indexed: 11/24/2022]
Abstract
We have determined that the methanolic extract of L. caulescens (MELc) produced a significant vasodilator effect in a concentration-dependent and endothelium-dependent manner. This relaxation was blocked by N(omega)-nitro-L-arginine methylester (L-NAME), indicating that MELc vasodilator properties are endothelium mediated due to liberation of nitric oxide (NO). In this paper we aimed to corroborate its mode of action. MELc effects on noradrenaline (NA)-induced contraction in isolated rat aortic thoracic rings with endothelium (+E), in the presence of atropine (0.1 microM) and 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) were conducted. MELc relaxation curve was significantly shifted to the right in the presence of ODQ and atropine, thus confirming that its mode of action is related with activation of nitric oxide synthase (NOS) and the consequent increment in NO formation. Bio-guided study of MELc allowed the isolation of ursolic acid (UA, 50 mg) and ursolic-oleanolic acids mixture [UA/OA (7:3), 450 mg]. The relaxant effect of UA (0.038-110 microM) was evaluated in functional experiments. UA induced a significant relaxation in a concentration- and endothelium-dependent manner (IC(50)=44.15 microM) and did not produce a vasorelaxant effect on contraction evoked by KCl (80 mM). In addition, NA-induced contraction was significantly displaced to the right by UA (30 microM). In order to determine its mode of action, UA-induced relaxant effect was evaluated in the presence of atropine (0.1 microM), indomethacin (10 microM), L-NAME (100 microM) and ODQ (1 microM). Relaxation was blocked by L-NAME and ODQ. On the other hand, UA (3 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP, 0.32 nM to 0.1 microM), but it was not significant in the presence of Carbamoyl choline (carbachol, 1 nM to 10 microM). These results indicate that UA-mediated relaxation is endothelium dependent, probably due to NO release, and the consequent activation of vascular smooth muscle soluble guanylate cyclase (sGC), a signal transduction enzyme that forms the second messenger cGMP.
Collapse
Affiliation(s)
- Francisco Aguirre-Crespo
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62210 Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|