1
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
2
|
Gu X, Jiang K, Chen R, Chen Z, Wu X, Xiang H, Huang X, Nan B. Identification of common stria vascularis cellular alteration in sensorineural hearing loss based on ScRNA-seq. BMC Genomics 2024; 25:213. [PMID: 38413848 PMCID: PMC10897997 DOI: 10.1186/s12864-024-10122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. METHODS We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. RESULTS Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. CONCLUSION Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kanglun Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Fenglin Road 180, Xuhui District, Shanghai, 200030, People's Republic of China
| | - Ruru Chen
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhifeng Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xianmin Wu
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijie Xiang
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Fenglin Road 180, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Benyu Nan
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Yu W, Zong S, Du P, Zhou P, Li H, Wang E, Xiao H. Role of the Stria Vascularis in the Pathogenesis of Sensorineural Hearing Loss: A Narrative Review. Front Neurosci 2021; 15:774585. [PMID: 34867173 PMCID: PMC8640081 DOI: 10.3389/fnins.2021.774585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss is a common sensory impairment in humans caused by abnormalities in the inner ear. The stria vascularis is regarded as a major cochlear structure that can independently degenerate and influence the degree of hearing loss. This review summarizes the current literature on the role of the stria vascularis in the pathogenesis of sensorineural hearing loss resulting from different etiologies, focusing on both molecular events and signaling pathways, and further attempts to explore the underlying mechanisms at the cellular and molecular biological levels. In addition, the deficiencies and limitations of this field are discussed. With the rapid progress in scientific technology, new opportunities are arising to fully understand the role of the stria vascularis in the pathogenesis of sensorineural hearing loss, which, in the future, will hopefully lead to the prevention, early diagnosis, and improved treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hejie Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338:52-63. [PMID: 26802581 DOI: 10.1016/j.heares.2016.01.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically, the BLB is comprised of endothelial cells (ECs) in the strial microvasculature, elaborated tight and adherens junctions, pericytes (PCs), basement membrane (BM), and perivascular resident macrophage-like melanocytes (PVM/Ms), which together form a complex "cochlear-vascular unit" in the stria vascularis. Physical interactions between the ECs, PCs, and PVM/Ms, as well as signaling between the cells, is critical for controlling vascular permeability and providing a proper environment for hearing function. Breakdown of normal interactions between components of the BLB is seen in a wide range of pathological conditions, including genetic defects and conditions engendered by inflammation, loud sound trauma, and ageing. In this review, we will discuss prevailing views of the structure and function of the strial cochlear-vascular unit (also referred to as the "intrastrial fluid-blood barrier"). We will also discuss the disrupted homeostasis seen in a variety of hearing disorders. Therapeutic targeting of the strial barrier may offer opportunities for improvement of hearing health and amelioration of auditory disorders. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
|
5
|
Noise alters guinea pig's blood-labyrinth barrier ultrastructure and permeability along with a decrease of cochlear Claudin-5 and Occludin. BMC Neurosci 2014; 15:136. [PMID: 25539640 PMCID: PMC4299297 DOI: 10.1186/s12868-014-0136-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/11/2014] [Indexed: 01/25/2023] Open
Abstract
Background Noise exposure (NE) is a severe modern health hazard that induces hearing impairment. However, the noise-induced ultrastructural changes of blood-labyrinth barrier (BLB) and the potential involvements of tight junction proteins (TJP) remain inconclusive. We investigated the effects of NE on not only the ultrastructure of cochlea and permeability of BLB but also the expression of TJP within the guinea pig cochlea. Results Male albino guinea pigs were exposed to white noise for 4 h or 2 consecutive days (115 dB sound pressure level, 6 hours per day) and the hearing impairments and light microscopic change of BLB were evaluated with auditory brainstem responses (ABR) and the cochlear sensory epithelia surface preparation, respectively. The cochlear ultrastructure and BLB permeability after NE 2d were revealed with transmission electron microscope (TEM) and lanthanum nitrate-tracing techniques, respectively. The potential alterations of TJPs Claudin-5 and Occludin were quantified with immunohistochemistry and western blot. NE induced significant hearing impairment and NE 2d contributed to significant outer hair cell (OHC) loss that is most severe in the first row of outer hair cells. Furthermore, the loosen TJ and an obvious leakage of lanthanum nitrate particles beneath the basal lamina were revealed with TEM. Moreover, a dose-dependent decrease of Claudin-5 and Occludin was observed in the cochlea after NE. Conclusions All these findings suggest that both decrease of Claudin-5 and Occludin and increased BLB permeability are involved in the pathologic process of noise-induced hearing impairment; however, the causal relationship and underlying mechanisms should be further investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12868-014-0136-0) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Liu J, Niu YG, Li WX, Yuan YY, Han WJ, Yu N, Yang SM, Li XQ. Interaction of a calcium channel blocker with noise in cochlear function in guinea pig. Acta Otolaryngol 2012; 132:1140-4. [PMID: 22780109 DOI: 10.3109/00016489.2012.690534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS Both nifedipine and noise exposure had damaging effects on cochlear function. These damaging effects were subtractive rather than additive, suggesting that calcium channel blockers may have a protective role in noise-induced hearing loss. OBJECTIVE We assessed the interaction of nifedipine, a calcium channel blocker, with noise in cochlear function by evaluating changes in the compound action potential (CAP) threshold after the administration of nifedipine with or without noise exposure. METHODS Eighty guinea pigs were randomly assigned to eight groups based on those with cochlear perfusion with nifedipine only (0, 0.15, 0.5, and 3 µM, groups 1-4) and noise exposure (groups 5-8). CAP thresholds were recorded using a round window electrode before and 120 min after cochlear perfusion. RESULTS Cochlear perfusion of different concentrations of nifedipine caused 2.5, 5.5, 28, and 21.5 dB SPL threshold shift, respectively, at 0, 0.15, 0.5, and 3 µM concentrations (groups 1-4). In comparison, the CAP thresholds after nifedipine perfusion with noise exposure were 43.5, 46.5, 20, and 21.5 dB SPL, respectively, in groups 5-8.
Collapse
Affiliation(s)
- Jun Liu
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Acoustic trauma increases cochlear and hair cell uptake of gentamicin. PLoS One 2011; 6:e19130. [PMID: 21552569 PMCID: PMC3084257 DOI: 10.1371/journal.pone.0019130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/16/2011] [Indexed: 02/07/2023] Open
Abstract
Background Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of aminoglycosides and subsequent ototoxicity. Methods Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear tissues by confocal microscopy. Results Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear uptake of aminoglycosides. Conclusions Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity.
Collapse
|
8
|
Li H, Steyger PS. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics. Noise Health 2009; 11:26-32. [PMID: 19265251 DOI: 10.4103/1463-1741.45310] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acoustic exposure to high intensity and/or prolonged noise causes temporary or permanent threshold shifts in auditory perception, reflected by reversible or irreversible damage in the cochlea. Aminoglycoside antibiotics, used for treating or preventing life-threatening bacterial infections, also induce cytotoxicity in the cochlea. Combined noise and aminoglycoside exposure, particularly in neonatal intensive care units, can lead to auditory threshold shifts greater than simple summation of the two insults. The synergistic toxicity of acoustic exposure and aminoglycoside antibiotics is not limited to simultaneous exposures. Prior acoustic insult which does not result in permanent threshold shifts potentiates aminoglycoside ototoxicity. In addition, exposure to subdamaging doses of aminoglycosides aggravates noise-induced cochlear damage. The mechanisms by which aminoglycosides cause auditory dysfunction are still being unraveled, but likely include the following: 1) penetration into the endolymphatic fluid of the scala media, 2) permeation of nonselective cation channels on the apical surface of hair cells, and 3) generation of toxic reactive oxygen species and interference with other cellular pathways. Here we discuss the effect of combined noise and aminoglycoside exposure to identify pivotal synergistic events that can potentiate ototoxicity, in addition to a current understanding of aminoglycoside trafficking within the cochlea. Preventing the ototoxic synergy of noise and aminoglycosides is best achieved by using non-ototoxic bactericidal drugs, and by attenuating perceived noise intensity when life-saving aminoglycoside therapy is required.
Collapse
Affiliation(s)
- Hongzhe Li
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
9
|
Abstract
High-intensity and/or prolonged exposure to noise causes temporary or permanent threshold shifts in auditory perception. Occupational exposure to solvents or administration of clinically important drugs, such as aminoglycoside antibiotics and cisplatin, also can induce permanent hearing loss. The mechanisms by which these ototoxic insults cause auditory dysfunction are still being unraveled, yet they share common sequelae, particularly generation of reactive oxygen species, that ultimately lead to hearing loss and deafness. Individuals are frequently exposed to ototoxic chemical contaminants (e.g., fuel) and noise simultaneously in a variety of work and recreational environments. Does simultaneous exposure to chemical ototoxins and noise potentiate auditory dysfunction? Exposure to solvent vapor in noisy environments potentiates the permanent threshold shifts induced by noise alone. Moderate noise levels potentiate both aminoglycoside- and cisplatin-induced ototoxicity in both rate of onset and in severity of auditory dysfunction. Thus, simultaneous exposure to chemical ototoxins and moderate levels of noise can potentiate auditory dysfunction. Preventing the ototoxic synergy of noise and chemical ototoxins requires removing exposure to ototoxins and/or attenuating noise exposure levels when chemical ototoxins are present.
Collapse
Affiliation(s)
- Peter S Steyger
- Oregon Hearing Research Center, Oregon Health, Sciences University, Portland, Oregon
| |
Collapse
|
10
|
Shi X. Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1692-704. [PMID: 19349367 DOI: 10.2353/ajpath.2009.080739] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study explored the effect of acoustic trauma on cochlear pericytes. Transmission electron microscopy revealed that pericytes on capillaries of the stria vascularis were closely associated with the endothelium in both control guinea pigs and mice. Pericyte foot processes were tightly positioned adjacent to endothelial cells. Exposure to wide-band noise at a level of 120 dB for 3 hours per day for 2 consecutive days produced a significant hearing threshold shift and structurally damaged blood vessels in the stria vascularis. Additionally, the serum protein, IgG, was observed to leak from capillaries of the stria vascularis, and pericytes lost their tight association with endothelial cells. Levels of the pericyte structural protein, desmin, substantially increased after noise exposure in both guinea pigs and mice with a corresponding increase in pericyte coverage of vessels. Increased expression levels of desmin were associated with the induction of hypoxia inducible factor (HIF)-1alpha and the up-regulation of vascular endothelial growth factor (VEGF). Inhibition of HIF-1alpha activity caused a decrease in VEGF expression levels in stria vascularis vessels. Blockade of VEGF activity with SU1498, a VEGF receptor inhibitor, significantly attenuated the expression of desmin in pericytes. These data demonstrate that cochlear pericytes are markedly affected by acoustic trauma and display an abnormal morphology. HIF-1alpha activation and VEGF up-regulation are important factors for the alteration of the pericyte structural protein desmin.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Otolaryngology and Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098, USA. Institute of Microcirculation, Chinese Academy of MedicalSciences (CAMS) & Peking Union Medical College(PUMC), 5 Dong Dan San Tiao, Beijing, 100005, China.
| |
Collapse
|
11
|
Shi X, Nuttall AL. Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice. Hear Res 2006; 224:1-14. [PMID: 17184942 DOI: 10.1016/j.heares.2006.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 10/18/2006] [Accepted: 10/30/2006] [Indexed: 12/16/2022]
Abstract
Sound can damage peripheral cochlear function through a number of mechanisms, and emerging evidence suggests that inflammation may be one of them. Using immunohistochemistry and poly (ADP-ribose) polymerase-1 (PARP-1) mutant mice, we tested whether PARP-1 contributes to loud-sound induced cochlear lateral wall damage by triggering inflammatory effects, including upregulating intercellular adhesion molecule-1 (ICAM-1), P-selectin and platelet-endothelial cell-adhesion molecule-1 (PECAM-1). In control conditions, we found that there was no detectable poly-ADP-ribose (PAR) in the marginal cells and microvessels. ICAM-1 was expressed only at low levels in the vessels of the stria vascularis and the spiral ligament. P-selectin and PECAM-1 were barely detected and only in the vessels of the spiral ligament. Following loud-sound exposure, PAR was detected in numbers of marginal cells and some vessels of the spiral ligament. Also, an elevated expression of ICAM-1 was demonstrated in some vessels of the stria vascularis and spiral ligament. Increased expression of P-selectin and PECAM-1 were mainly located in the vessels of the spiral ligament, while increased populations of non-migrated and migrated leukocytes were observed in the area of the spiral ligament. However, neither increased expression of adhesion proteins nor increased population of leukocytes, were observed in the PARP-1 knockout mouse. We thus conclude that loud-sound stress activates the expression of adhesion molecular proteins in the lateral wall and that PARP-1 modulates inflammation-linked protein expression and leukocyte migration.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Department of Otolaryngology and Head and Neck Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, NRC04, Portland, OR 97239-3098, USA
| | | |
Collapse
|
12
|
Shi X, Nuttall AL. Upregulated iNOS and oxidative damage to the cochlear stria vascularis due to noise stress. Brain Res 2003; 967:1-10. [PMID: 12650960 DOI: 10.1016/s0006-8993(02)04090-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous work has revealed increased nitric oxide (NO) production in the cochlear perilymph following noise stress. However, it is not clear if the increase of NO is related to iNOS and whether NO-related oxidative stress can cause vascular tissue damage. In this study, iNOS immunoreactivity, NO production, and reactive oxygen species (ROS) in the lateral wall were examined in normal mice and compared with similar animals exposed to 120 dBA broadband noise, 3 h/day, for 2 consecutive days. In the normal animals, iNOS expression was not observed in the vascular endothelium of the stria vascularis and only weak iNOS immunoactivity was detected in the marginal cells. However, expression of iNOS in the wall of the blood vessels of stria vascularis and marginal cells was observed after loud sound stress (LSS). Relatively low levels of NO production and low ROS activity were detected in the stria vascularis in the unstimulated condition. In contrast, NO production was increased and ROS activity was elevated in the stria vascularis after LSS. These changes were attenuated by the iNOS inhibitor, GW 274150. To explore whether noise induces apoptotic processes in the stria vascularis, we examined morphological changes in endothelial- and marginal-cells. In vitro, annexin-V phosphatidylserine (PS) (to label and detect early evidence of apoptosis) was combined with propidium iodide (PI) (to probe plasma membrane integrity). PI alone was used in fixed tissues to detect later stage apoptotic cells by morphology of the nuclei. Following LSS, PS was expressed on cell surfaces of endothelial cells of blood vessels and marginal cells of the stria vascularis. Later stage apoptosis, characterized by irregular nuclei and condensation of nuclei, was also observed in these cells. The data indicate that increased iNOS expression and production of both NO and ROS following noise stress may lead to marginal cell pathology, and the dysfunction of cochlear microcirculation by inducing blood vessel wall damage.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Otolaryngology, The General Hospital of the Chinese People's Armed Police Army, Yong Ding Road 69, Beijing 100039, China
| | | |
Collapse
|
13
|
Abstract
The influence of noise exposure on the endothelial transport system in the cochlea was investigated using cationic polyethyleneimine (PEI), since systemically administered PEI passes through the capillary endothelial cell and attaches to basal lamina (BL) anionic sites in the cochlea. Under general anesthesia, all guinea pigs were administered an intravenous injection of 0.5% PEI. Thirty minutes later, five animals were exposed to noise (10 kHz, broad band noise, 105 dB SPL) for 30 min, via speakers inserted into the external auditory canal. The remaining five animals (controls) were left without noise exposure for 1 h following PEI injection. All guinea pigs were then immediately sacrificed, and the bony labyrinths were removed. PEI distribution on the BL was assessed in the stria vascularis, spiral ligament, basilar membrane, spiral limbus and Reissner's membrane throughout the cochlea with transmission electron microscopy. Compared to control animals, PEI distribution in the noise-exposed animals was significantly increased in the strial vessels of the basal and second turns and in Reissner's membrane of all turns. In the spiral ligament, basilar membrane and spiral limbus, no significant difference in PEI distribution was observed between the control and noise-exposed animals. These findings indicate that noise exposure increases macromolecular transport in the stria vascularis but not in the spiral ligament, spiral limbus and basilar membrane and that systemically administered macromolecules are more readily transported to Reissner's membrane by noise exposure.
Collapse
Affiliation(s)
- Mitsuya Suzuki
- Department of Otolaryngology, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-8655, Japan.
| | | | | | | | | |
Collapse
|
14
|
Dehne N, Lautermann J, ten Cate WJ, Rauen U, de Groot H. In vitro effects of hydrogen peroxide on the cochlear neurosensory epithelium of the guinea pig. Hear Res 2000; 143:162-70. [PMID: 10771193 DOI: 10.1016/s0378-5955(00)00036-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Reactive oxygen species (ROS) have been postulated to be involved in drug ototoxicity and noise-induced hearing loss. Hydrogen peroxide (H(2)O(2))-induced cell damage in the inner ear was investigated using the neurosensory epithelium of a guinea pig cochlea. Hair cells and supporting cells of the epithelium incubated in Hanks' balanced salt solution were viable up to 6 h. After 2 h of treatment with 0.2 mM H(2)O(2) about 85% of the outer hair cells lost their viability. In contrast inner hair cells slowly began to die after 2 h of H(2)O(2) treatment. The Deiters cells and Hensen cells did not show any signs of damage in the presence of H(2)O(2). Nifedipine, a calcium channel blocker, Quin-2 AM, an intracellular calcium chelator, and 2,2'-dipyridyl, a membrane-permeable iron chelator, all provided partial protection against H(2)O(2)-induced outer hair cell death. The combination of both chelators showed an additional protective effect. The antioxidants N-acetylcysteine and glutathione-monoethyl ester completely protected against H(2)O(2) damage. These results suggest that calcium, iron, and thiol homeostasis play a crucial role in hair cell death caused by H(2)O(2).
Collapse
Affiliation(s)
- N Dehne
- Department of Otorhinolaryngology, University of Essen, Hufelandstr. 55, 45122, Essen, Germany
| | | | | | | | | |
Collapse
|
15
|
Lamm K, Arnold W. The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res 2000; 141:199-219. [PMID: 10713508 DOI: 10.1016/s0378-5955(00)00005-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of blood flow promoting drugs, such as hydroxyethyl starch (HES) either of low or high molecular weight (HES 70, HES 200), pentoxifylline, ginkgo biloba, naftidrofuryl and betahistine, and various combinations of the drugs was studied in unexposed and noise-exposed (broad-band noise, bandwidth 1-12 kHz, 106 dB SPL, 30 min) guinea pigs. The results were compared without therapy and placebo (isotonic saline, NaCl). The cochlear blood flow (CoBF) and the partial pressure of oxygen in the perilymph (PL-pO(2)) were continuously and simultaneously recorded over a period of 210 min. In addition, cochlear microphonics (CMs), compound action potentials of the auditory nerve (CAPs) and auditory brain stem responses (ABRs) were registered. Noise-induced hearing loss (NIHL) paralleled a decrease of PL-pO(2). Both were found to occur before evidence of reduced CoBF. PL-pO(2) and CoBF declined progressively post-exposure, while CMs, CAPs and ABRs showed no further deterioration or signs of recovery up to 180 min after cessation of noise. Treatment started 60 min post-exposure, respectively after 90 min, without manipulation in unexposed animals, and was then studied for a further 120 min. In unexposed animals, CoBF increased significantly during infusion of HES 70, HES 200, pentoxifylline and betahistine. NaCl, ginkgo biloba and naftidrofuryl did not alter CoBF. PL-pO(2) decreased significantly during infusion of all administered drugs and combinations, except for NaCl. CMs, CAPs and ABRs remained constant, with the exception of increased ABRs after infusion of HES 70 and HES 200. In noise-exposed animals, a sustained therapeutic effect on cochlear ischemia was achieved only by HES 200 and pentoxifylline. HES 70, betahistine and ginkgo biloba compensated cochlear ischemia only during infusion; however, 30-60 min after termination of therapy, no significant difference of values for CoBF was observed compared to the untreated noise-exposed groups. NaCl and naftidrofuryl showed no effect on CoBF. None of the applied drugs had a sustained compensatory effect on cochlear hypoxia. CMs, CAPs and ABRs improved significantly after HES 70, HES 200 and betahistine, resulting in partial recovery of CMs, and partial (betahistine) or even full (HES 70 and HES 200) recovery of CAPs and ABRs. In contrast, NaCl, pentoxifylline, ginkgo biloba and naftidrofuryl had no therapeutic effect on NIHL.
Collapse
Affiliation(s)
- K Lamm
- Department of Otolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, D-81675, Munich, Germany.
| | | |
Collapse
|