1
|
Huang D, Wang X, Gonjo T, Takagi H, Huang B, Huang W, Shan Q, Chow DHK. Effects of Creatine Supplementation on the Performance, Physiological Response, and Body Composition Among Swimmers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. SPORTS MEDICINE - OPEN 2024; 10:115. [PMID: 39441446 PMCID: PMC11499511 DOI: 10.1186/s40798-024-00784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Although recent studies have increasingly focused on examining the potential benefits of creatine supplementation to improve performance in swimming events, the impact of creatine supplementation on swimming performance remains a topic of debate and controversy. A comprehensive meta-analytical review was undertaken to evaluate the effects of creatine supplementation on the performance, physiological response, and body composition among swimmers. METHODS The research methodology adhered strictly to the guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A comprehensive search was conducted across six databases (Cochrane Library, Web of Science, Scopus, Embase, PubMed, and SPORTDiscus) until March 23, 2024. Eligible studies that investigated the impact of creatine supplementation on swimming time, physiological parameters, and body composition in swimmers were included. For the meta-analysis, a random-effects model was employed to determine the collective effect and assess variations across distinct subgroups defined by swimming time, physiological metrics, and body composition. Meta-regression analysis was conducted on datasets comprising ten or more studies. Standardized mean differences (SMD) along with their corresponding 95% confidence intervals (CI) were calculated. To evaluate the methodological rigor of the included studies, the Physiotherapy Evidence Database (PEDro) scale was utilized. RESULTS The systematic review included seventeen studies with a total of 361 subjects. No significant differences were observed in the overall effect during single sprint swimming (SMD: -0.05, 95% CI: -0.26, 0.15; p = 0.61), repeated interval swimming (SMD: -0.11; 95% CI: -0.46, 0.25; p = 0.56), physiological response (SMD: 0.04, 95% CI: -0.16, 0.23; p = 0.71), and body composition (SMD: 0.18; 95% CI: -0.05, 0.41; p = 0.12) between creatine and placebo groups. CONCLUSIONS Creatine supplementation exhibited ineffectiveness in enhancing the performance, physiological response, and body composition among swimmers.
Collapse
Affiliation(s)
- Dongxiang Huang
- School of Physical Education, Shaoguan University, Shaoguan, P.R. China
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, P.R. China
| | - Xiaobing Wang
- School of Physical Education, Shaoguan University, Shaoguan, P.R. China
| | - Tomohiro Gonjo
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Hideki Takagi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bo Huang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, P.R. China
| | - Wenrui Huang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P.R. China
| | - Qi Shan
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, P.R. China
| | - Daniel Hung-Kay Chow
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, P.R. China.
| |
Collapse
|
2
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
3
|
Buck EA, Saunders MJ, Edwards ES, Womack CJ. Body composition measured by multi-frequency bioelectrical impedance following creatine supplementation. J Sports Med Phys Fitness 2023; 63:1188-1193. [PMID: 37675500 DOI: 10.23736/s0022-4707.23.15058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
BACKGROUND Acute fluid ingestion increases estimated body fat percentage (BF%) measurements by single frequency (SF-BIA) and multi-frequency bioelectrical impedance (MF-BIA). It is unknown if MF-BIA accurately measures total BF% and total body water (TBW) after creatine supplementation, which causes fluid retention, and resultant increases in fat-free mass and TBW. The purpose of this study was to analyze the effect of creatine supplementation on body composition and TBW measured through a popular MF-BIA device (InBody 770). METHODS Thirteen male and 14 female subjects (18-22 years) completed one week of creatine monohydrate (0.3 g/kg body weight) or maltodextrin. Pre- and post-supplementation body composition measurements included dual-energy X-ray absorptiometry (DEXA), SF-BIA measured by an Omron HBF-306C device, and MF-BIA measured by an InBody 770 device to measure BF%, fat free mass (FFM), and fat mass (FM). Additionally, intracellular water (ICW), extracellular water (ECW), and TBW were estimated by MF- BIA. RESULTS FFM increased more in the creatine group than the placebo group measured by all body composition modes (1.2 kg, 1.9 kg, and 1.1 kg increase for SF-BIA, MF-BIA, and DEXA respectively, P<0.05). Creatine supplementation resulted in a 2% increase (P<0.05) in TBW measured by MF-BIA (40.4±9.5 to 41.2±9.6 kg). CONCLUSIONS One week of creatine supplementation increased TBW as detected by the InBody 770 device. Changes in body composition that occurred due to the increase in TBW were detected as an increase in FFM measured by SF-BIA, MF-BIA, and DEXA.
Collapse
Affiliation(s)
- Emily A Buck
- Human Performance Laboratory, James Madison University, Harrisonburg, VA, USA
| | - Michael J Saunders
- Human Performance Laboratory, James Madison University, Harrisonburg, VA, USA
| | - Elizabeth S Edwards
- Human Performance Laboratory, James Madison University, Harrisonburg, VA, USA
| | | |
Collapse
|
4
|
de Carvalho MR, Duarte EF, Mendonça MLM, de Morais CS, Ota GE, Gaspar-Junior JJ, de Oliveira Filiú WF, Damatto FC, Okoshi MP, Okoshi K, Oliveira RJ, Martinez PF, de Oliveira-Junior SA. Effects of Creatine Supplementation on the Myostatin Pathway and Myosin Heavy Chain Isoforms in Different Skeletal Muscles of Resistance-Trained Rats. Nutrients 2023; 15:2224. [PMID: 37432386 DOI: 10.3390/nu15092224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
Creatine has been used to maximize resistance training effects on skeletal muscles, including muscle hypertrophy and fiber type changes. This study aimed to evaluate the impact of creatine supplementation on the myostatin pathway and myosin heavy chain (MyHC) isoforms in the slow- and fast-twitch muscles of resistance-trained rats. Twenty-eight male Wistar rats were divided into four groups: a sedentary control (Cc), sedentary creatine supplementation (Cr), resistance training (Tc), and resistance training combined with creatine supplementation (Tcr). Cc and Tc received standard commercial chow; Cr and Tcr received a 2% creatine-supplemented diet. Tc and Tcr performed a resistance training protocol on a ladder for 12 weeks. Morphology, MyHC isoforms, myostatin, follistatin, and ActRIIB protein expressions were analyzed in soleus and white gastrocnemius portion samples. The results were analyzed using two-way ANOVA and Tukey's test. Tc and Tcr exhibited higher performance than their control counterparts. Resistance training increased the ratio between muscle and body weight, the cross-sectional area, as well as the interstitial collagen fraction. Resistance training alone increased MyHC IIx and follistatin while reducing myostatin (p < 0.001) and ActRIIB (p = 0.040) expressions in the gastrocnemius. Resistance training induced skeletal muscle hypertrophy and interstitial remodeling, which are more evident in the gastrocnemius muscle. The effects were not impacted by creatine supplementation.
Collapse
Affiliation(s)
- Marianna Rabelo de Carvalho
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Ellen Fernandes Duarte
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Maria Lua Marques Mendonça
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Camila Souza de Morais
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Gabriel Elias Ota
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Jair José Gaspar-Junior
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Felipe Cesar Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Marina Politi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Rodrigo Juliano Oliveira
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Paula Felippe Martinez
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Silvio Assis de Oliveira-Junior
- Graduate Program in Health and Development in the Midwestern Region, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
5
|
Psychosocial aspects of sports medicine in pediatric athletes: Current concepts in the 21 st century. Dis Mon 2022:101482. [PMID: 36100481 DOI: 10.1016/j.disamonth.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Behavioral aspects of organized sports activity for pediatric athletes are considered in a world consumed with winning at all costs. In the first part of this treatise, we deal with a number of themes faced by our children in their sports play. These concepts include the lure of sports, sports attrition, the mental health of pediatric athletes (i.e., effects of stress, anxiety, depression, suicide in athletes, ADHD and stimulants, coping with injuries, drug use, and eating disorders), violence in sports (i.e., concepts of the abused athlete including sexual abuse), dealing with supervisors (i.e., coaches, parents), peers, the talented athlete, early sports specialization and sports clubs. In the second part of this discussion, we cover ergolytic agents consumed by young athletes in attempts to win at all costs. Sports doping agents covered include anabolic steroids (anabolic-androgenic steroids or AAS), androstenedione, dehydroepiandrostenedione (DHEA), human growth hormone (hGH; also its human recombinant homologue: rhGH), clenbuterol, creatine, gamma hydroxybutyrate (GHB), amphetamines, caffeine and ephedrine. Also considered are blood doping that includes erythropoietin (EPO) and concepts of gene doping. In the last section of this discussion, we look at disabled pediatric athletes that include such concepts as athletes with spinal cord injuries (SCIs), myelomeningocele, cerebral palsy, wheelchair athletes, and amputee athletes; also covered are pediatric athletes with visual impairment, deafness, and those with intellectual disability including Down syndrome. In addition, concepts of autonomic dysreflexia, boosting and atlantoaxial instability are emphasized. We conclude that clinicians and society should protect our precious pediatric athletes who face many challenges in their involvement with organized sports in a world obsessed with winning. There is much we can do to help our young athletes find benefit from sports play while avoiding or blunting negative consequences of organized sport activities.
Collapse
|
6
|
Jiaming Y, Rahimi MH. Creatine supplementation effect on recovery following exercise-induced muscle damage: A systematic review and meta-analysis of randomized controlled trials. J Food Biochem 2021; 45:e13916. [PMID: 34472118 DOI: 10.1111/jfbc.13916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Exercise-induced muscle damage (EIMD) causes increased soreness, impaired function of muscles, and reductions in muscle force. Accumulating evidence suggests the beneficial effects of creatine on EIMD. Nevertheless, outcomes differ substantially across various articles. The main aim of this meta-analysis was to evaluate the effect of creatine on recovery following EIMD. Medline, Embase, Cochrane Library, Scopus, and Google Scholar were systematically searched up to March 2021. The Cochrane Collaboration tool for examining the risk of bias was applied for assessing the quality of studies. Weighted mean difference (WMD), 95% confidence interval (CI), and random-effects model, were applied for estimating the overall effect. Between studies, heterogeneity was examined using the chi-squared and I2 statistics. Nine studies met the inclusion criteria. Pooled data showed that creatine significantly reduced creatine kinase (CK) concentration overall (WMD = -30.94; 95% CI: -53.19, -8.69; p = .006) and at three follow-up times (48, 72, and 96 hr) in comparison with placebo. In contrast, effects were not significant in lactate dehydrogenase (LDH) concentration overall (WMD = -5.99; 95% CI: -14.49, 2.50; p = .167), but creatine supplementation leaded to a significant reduction in LDH concentrations in trials with 48 hr measurement of LDH. The current data indicate that creatine consumption is better than rest after diverse forms of damaging and exhaustive exercise or passive recovery. The benefits relate to a decrease in muscle damage indices and improved muscle function because of muscle power loss after exercise. PRACTICAL APPLICATIONS: Creatine supplementation would be effective in reducing the immediate muscle damage that happens <24, 24, 48, 72, and 96 hr post-exercise. In the current meta-analysis, the positive effects of creatine could cause a decrease in CK concentration overall. But, due to high heterogeneity and the medium risk of bias for articles, we suggest that these results are taken into account and the facts are interpreted with caution by the readers.
Collapse
Affiliation(s)
- Yue Jiaming
- China Football College, Beijing Sport University, Beijing, China
| | | |
Collapse
|
7
|
Fry AC, Parra ME, Cabarkapa D. Supplemental Creatine Modified With Polyethylene Glycol Effectively Loads Skeletal Muscle With Lower Doses. J Strength Cond Res 2021; 35:1256-1261. [PMID: 33900258 DOI: 10.1519/jsc.0000000000003906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Fry, AC, Parra, ME, and Cabarkapa, D. Supplemental creatine modified with polyethylene glycol effectively loads skeletal muscle with lower doses. J Strength Cond Res 35(5): 1256-1261, 2021-The purpose of this study was to compare the efficacy of skeletal muscle uptake of creatine monohydrate (Cr H2O) with that of creatine bound to polyethylene glycol (Cr PEG). Healthy men (X ± SE; age = 23.5 ± 1.0 years) were divided into control (Con, n = 9, 20 g·d-1 of Cr H2O) and experimental (Exp, n = 8, 10 g·d-1 of Cr PEG) groups. Blood samples and muscle biopsies were used to determine acute gastrointestinal absorption over 5 hours and muscle cellular uptake over 5 days. Both groups exhibited significantly (p < 0.05) elevated concentrations of muscle-free Cr (M·gdw-1; Con, pre = 23.0 ± 4.2, post = 39.2 ± 2.7; Exp pre = 22.1 ± 2.9, post = 33.6 ± 3.2), total Cr (M·gdw-1, Con pre = 94.7 ± 5.4, post = 114.8 ± 7.4; Exp pre = 92.6 ± 5.4, post = 106.6 ± 8.4), which were also elevated when these values were normalized for adenosine triphosphate using molar ratios. Circulatory uptake of Cr was significantly different between the groups, with blood concentrations (mg·dL-1) for the Con group peaking at 2 hours post-ingestion (25.99 ± 2.96), whereas the concentrations for the Exp group were lower and were still rising at 5 hours (4.05 ± 0.87). The integrated area under the curve for the 5-hour postingestion period was 7-fold greater for the Con group. Although total Cr ingested over the 5 days supplementation period was less for the Cr PEG group, skeletal muscle uptake of Cr PEG was similar to Cr H2O. Based on circulating Cr concentrations, it seems that Cr PEG is cleared more slowly from the gastrointestinal tract. Thus, lower dosages of Cr may be ingested while maintaining optimal loading kinetics.
Collapse
Affiliation(s)
- Andrew C Fry
- Jayhawk Athletic Performance Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas
| | - Mandy E Parra
- Department of Applied Health Sciences, Baker University, Baldwin City, Kansas
| | - Dimitrije Cabarkapa
- Jayhawk Athletic Performance Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
8
|
Short-Term Creatine Loading Improves Total Work and Repetitions to Failure but Not Load-Velocity Characteristics in Strength-Trained Men. Nutrients 2021; 13:nu13030826. [PMID: 33802283 PMCID: PMC8001551 DOI: 10.3390/nu13030826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
This study assessed the effects of a 7-day creatine (CRE) supplementation on the load–velocity profile and repeated sub-maximal bouts in the deep squat using mean propulsive velocity (MPV) and mean propulsive power (MPP). Eleven strength-trained men (31.4 ± 5.4 years) supplemented 0.3 g·kg−1·d−1 CRE or a placebo (PLA, maltodextrin) for seven days in a randomized order, separated by a 30-day washout period. Prior to and after the supplementation, the subjects performed an incremental maximal strength (1RM) test, as well as 3 × 10 repetitions and a repetitions-to-failure test (RFT), all at 70% 1RM. Maximal strength remained statistically unaltered in CRE (p = 0.107) and PLA (p = 0.568). No statistical main effect for time (p = 0.780) or interaction (p = 0.737) was observed for the load–velocity profile. The number of repetitions during RFT remained statistically unaltered in both conditions (CRE: +16.8 ± 32.8%, p = 0.112; PLA: +8.2 ± 47.2%, p = 0.370), but the effect size was larger in creatine compared to placebo (g = 0.51 vs. g = 0.01). The total work during RFT increased following creatine supplementation (+23.1 ± 35.9%, p = 0.043, g = 0.70) but remained statistically unaltered in the placebo condition (+15.0 ± 60.8%, p = 0.801, g = 0.08; between conditions: p = 0.410, g = 0.25). We showed that CRE loading over seven days did not affect load–velocity characteristics but may have increased total work and power output during submaximal deep squat protocols, as was indicated by moderate effect sizes.
Collapse
|
9
|
The Role of Creatine in the Development and Activation of Immune Responses. Nutrients 2021; 13:nu13030751. [PMID: 33652752 PMCID: PMC7996722 DOI: 10.3390/nu13030751] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
The use of dietary supplements has become increasingly common over the past 20 years. Whereas supplements were formerly used mainly by elite athletes, age and fitness status no longer dictates who uses these substances. Indeed, many nutritional supplements are recommended by health care professionals to their patients. Creatine (CR) is a widely used dietary supplement that has been well-studied for its effects on performance and health. CR also aids in recovery from strenuous bouts of exercise by reducing inflammation. Although CR is considered to be very safe in recommended doses, a caveat is that a preponderance of the studies have focused upon young athletic individuals; thus there is limited knowledge regarding the effects of CR on children or the elderly. In this review, we examine the potential of CR to impact the host outside of the musculoskeletal system, specifically, the immune system, and discuss the available data demonstrating that CR can impact both innate and adaptive immune responses, together with how the effects on the immune system might be exploited to enhance human health.
Collapse
|
10
|
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2021; 18:13. [PMID: 33557850 PMCID: PMC7871530 DOI: 10.1186/s12970-021-00412-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, Florida, USA.
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Medicine, FMUSP, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrew R Jagim
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | |
Collapse
|
11
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
12
|
Machek SB, Hwang PS, Cardaci TD, Wilburn DT, Bagley JR, Blake DT, Galpin AJ, Willoughby DS. Myosin Heavy Chain Composition, Creatine Analogues, and the Relationship of Muscle Creatine Content and Fast-Twitch Proportion to Wilks Coefficient in Powerlifters. J Strength Cond Res 2020; 34:3022-3030. [PMID: 33105350 DOI: 10.1519/jsc.0000000000003804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Machek, SB, Hwang, PS, Cardaci, TD, Wilburn, DT, Bagley, JR, Blake, DT, Galpin, AJ, and Willoughby, DS. Myosin heavy chain composition, creatine analogues, and the relationship of muscle creatine content and fast-twitch proportion to Wilks coefficient in powerlifters. J Strength Cond Res 34(11): 3022-3030, 2020-Little data exist on powerlifting-specific skeletal muscle adaptations, and none elucidate sex differences in powerlifters. Powerlifters tend to display higher fast-twitch fiber content and phosphagen system dependence. Nevertheless, it is unknown whether fast-twitch fiber or muscle creatine content are predictive of competitive powerlifting performance (via Wilks coefficient). Twelve actively competing powerlifters (PL; n = 6M/6F; age = 21.3 ± 1.0; 3.0 ± 1.8 year competing; 7.3 ± 6.6 meets attended) and 10 sedentary controls (CON; n = 5M/5F; age = 19.4 ± 2.0 year) underwent vastus lateralis muscle biopsies and venipuncture to compare the myosin heavy chain (MHC) fiber type and creatine analogue profiles between groups of both sexes, and determine whether MHC IIa and muscle total creatine (MTC) composition predict powerlifting performance. Samples were analyzed for specific MHC isoform (I, IIa, and IIx) content via mixed homogenate SDS-PAGE, and creatine analogues (MTC, muscle creatine transporter [SLC6A8], serum total creatine [STC], and serum creatinine [CRT]). Furthermore, MHC IIa and MTC content were compared with Wilks coefficient using Pearson correlation coefficients. Male PL MHC content was 50 ± 6% I, 45 ± 6% IIa, and 5 ± 11% IIx, versus 46 ± 6% I, 53 ± 6 IIa, and 0% IIx in female PL. Conversely, male CON MHC content was 33 ± 5% I, 38 ± 7% IIa, and 30 ± 8% IIx, vs. 35 ± 9% I, 44 ± 8% IIa, and 21 ± 17% IIx in female CON. Muscle total creatine, SLC6A8, STC, and CRT did not significantly differ between groups nor sexes. Finally, neither MHC IIa content (r = -0.288; p = 0.364) nor MTC (r = 0.488; p = 0.108) significantly predicted Wilks coefficient, suggesting these characteristics alone do not determine powerlifting skill variation.
Collapse
Affiliation(s)
- Steven B Machek
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas
| | - Paul S Hwang
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas
| | - Thomas D Cardaci
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas
| | - Dylan T Wilburn
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, Texas
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, California
| | - Daniel T Blake
- Department of Kinesiology, Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California; and
| | - Andrew J Galpin
- Department of Kinesiology, Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California; and
| | - Darryn S Willoughby
- Mayborn College of Health Sciences, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas
| |
Collapse
|
13
|
Dietary Supplement and Food Contaminations and Their Implications for Doping Controls. Foods 2020; 9:foods9081012. [PMID: 32727139 PMCID: PMC7466328 DOI: 10.3390/foods9081012] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
A narrative review with an overall aim of indicating the current state of knowledge and the relevance concerning food and supplement contamination and/or adulteration with doping agents and the respective implications for sports drug testing is presented. The identification of a doping agent (or its metabolite) in sports drug testing samples constitutes a violation of the anti-doping rules defined by the World Anti-Doping Agency. Reasons for such Adverse Analytical Findings (AAFs) include the intentional misuse of performance-enhancing/banned drugs; however, also the scenario of inadvertent administrations of doping agents was proven in the past, caused by, amongst others, the ingestion of contaminated dietary supplements, drugs, or food. Even though controversial positions concerning the effectiveness of dietary supplements in healthy subjects exist, they are frequently used by athletes, anticipating positive effects on health, recovery, and performance. However, most supplement users are unaware of the fact that the administration of such products can be associated with unforeseeable health risks and AAFs in sports. In particular anabolic androgenic steroids (AAS) and stimulants have been frequently found as undeclared ingredients of dietary supplements, either as a result of cross-contaminations due to substandard manufacturing practices and missing quality controls or an intentional admixture to increase the effectiveness of the preparations. Cross-contaminations were also found to affect therapeutic drug preparations. While the sensitivity of assays employed to test pharmaceuticals for impurities is in accordance with good manufacturing practice guidelines allowing to exclude any physiological effects, minute trace amounts of contaminating compounds can still result in positive doping tests. In addition, food was found to be a potential source of unintentional doping, the most prominent example being meat tainted with the anabolic agent clenbuterol. The athletes’ compliance with anti-doping rules is frequently tested by routine doping controls. Different measures including offers of topical information and education of the athletes as well as the maintenance of databases summarizing low- or high-risk supplements are important cornerstones in preventing unintentional anti-doping rule violations. Further, the collection of additional analytical data has been shown to allow for supporting result management processes.
Collapse
|
14
|
Almeida D, Colombini A, Machado M. Creatine supplementation improves performance, but is it safe? Double-blind placebo-controlled study. J Sports Med Phys Fitness 2020; 60:1034-1039. [PMID: 32597619 DOI: 10.23736/s0022-4707.20.10437-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Creatine represents a natural supplement and ergogenic aid for sport performance, but there are several concerns regarding its safety for health. The present double-blind placebo-controlled study evaluated the effect of creatine monohydrate supplementation on a panel of blood and urine health indicators in resistance training practitioners. METHODS Eighteen males performing resistance training three times per week were supplemented with 0.3 g/kg per day creatine monohydrate for 7 days and compared with matched controls supplemented with dextrosol. Blood and urine samples were collected pre- and 30 days post-supplementation to evaluate 41 biochemical parameters and renal function. RESULTS Creatine monohydrate supplementation did not cause adverse events and, as expected, promoted an increase of the performance and body weight. No modification of red blood cells parameters, white blood cells profile, blood lipid profile, metabolic and urine markers, hepatic and renal function were observed in the supplemented group. CONCLUSIONS Despite the expected weight increase, the creatine monohydrate supplementation is safe for health and no detrimental effects on different organs and physiological systems were observed in our cohort of volunteers.
Collapse
Affiliation(s)
- Douglas Almeida
- Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, UNIG Campus V, Itaperuna, Brazil
| | - Alessandra Colombini
- Orthopedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy -
| | - Marco Machado
- Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, UNIG Campus V, Itaperuna, Brazil.,Laboratory of Human Movement Studies, University Foundation of Itaperuna (FUNITA), Itaperuna, Brazil
| |
Collapse
|
15
|
de Guingand DL, Palmer KR, Snow RJ, Davies-Tuck ML, Ellery SJ. Risk of Adverse Outcomes in Females Taking Oral Creatine Monohydrate: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E1780. [PMID: 32549301 PMCID: PMC7353222 DOI: 10.3390/nu12061780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Creatine Monohydrate (CrM) is a dietary supplement routinely used as an ergogenic aid for sport and training, and as a potential therapeutic aid to augment different disease processes. Despite its increased use in recent years, studies reporting potential adverse outcomes of CrM have been mostly derived from male or mixed sex populations. A systematic search was conducted, which included female participants on CrM, where adverse outcomes were reported, with meta-analysis performed where appropriate. Six hundred and fifty-six studies were identified where creatine supplementation was the primary intervention; fifty-eight were female only studies (9%). Twenty-nine studies monitored for adverse outcomes, with 951 participants. There were no deaths or serious adverse outcomes reported. There were no significant differences in total adverse events, (risk ratio (RR) 1.24 (95% CI 0.51, 2.98)), gastrointestinal events, (RR 1.09 (95% CI 0.53, 2.24)), or weight gain, (mean difference (MD) 1.24 kg pre-intervention, (95% CI -0.34, 2.82)) to 1.37 kg post-intervention (95% CI -0.50, 3.23)), in CrM supplemented females, when stratified by dosing regimen and subject to meta-analysis. No statistically significant difference was reported in measures of renal or hepatic function. In conclusion, mortality and serious adverse events are not associated with CrM supplementation in females. Nor does the use of creatine supplementation increase the risk of total adverse outcomes, weight gain or renal and hepatic complications in females. However, all future studies of creatine supplementation in females should consider surveillance and comprehensive reporting of adverse outcomes to better inform participants and health professionals involved in future trials.
Collapse
Affiliation(s)
- Deborah L. de Guingand
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (M.L.D.-T.); (S.J.E.)
| | - Kirsten R. Palmer
- Department of Obstetrics and Gynaecology, Monash University, Melbourne 3168, Australia;
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | - Rodney J. Snow
- Institute of Physical Activity and Nutrition, Deakin University, Melbourne 3125, Australia;
| | - Miranda L. Davies-Tuck
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (M.L.D.-T.); (S.J.E.)
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (M.L.D.-T.); (S.J.E.)
- Department of Obstetrics and Gynaecology, Monash University, Melbourne 3168, Australia;
| |
Collapse
|
16
|
Supplements and Nutritional Interventions to Augment High-Intensity Interval Training Physiological and Performance Adaptations-A Narrative Review. Nutrients 2020; 12:nu12020390. [PMID: 32024038 PMCID: PMC7071320 DOI: 10.3390/nu12020390] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval training (HIIT) involves short bursts of intense activity interspersed by periods of low-intensity exercise or rest. HIIT is a viable alternative to traditional continuous moderate-intensity endurance training to enhance maximal oxygen uptake and endurance performance. Combining nutritional strategies with HIIT may result in more favorable outcomes. The purpose of this narrative review is to highlight key dietary interventions that may augment adaptations to HIIT, including creatine monohydrate, caffeine, nitrate, sodium bicarbonate, beta-alanine, protein, and essential amino acids, as well as manipulating carbohydrate availability. Nutrient timing and potential sex differences are also discussed. Overall, sodium bicarbonate and nitrates show promise for enhancing HIIT adaptations and performance. Beta-alanine has the potential to increase training volume and intensity and improve HIIT adaptations. Caffeine and creatine have potential benefits, however, longer-term studies are lacking. Presently, there is a lack of evidence supporting high protein diets to augment HIIT. Low carbohydrate training enhances the upregulation of mitochondrial enzymes, however, there does not seem to be a performance advantage, and a periodized approach may be warranted. Lastly, potential sex differences suggest the need for future research to examine sex-specific nutritional strategies in response to HIIT.
Collapse
|
17
|
Marzuca-Nassr GN, Fortes MAS, Guimarães-Ferreira L, Murata GM, Vitzel KF, Vasconcelos DAA, Bassit RA, Curi R. Short-term creatine supplementation changes protein metabolism signaling in hindlimb suspension. ACTA ACUST UNITED AC 2019; 52:e8391. [PMID: 31596311 PMCID: PMC6787955 DOI: 10.1590/1414-431x20198391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
The effect of a short-term creatine supplementation on hindlimb suspension (HS)-induced muscle atrophy was investigated. Creatine monohydrate (5 g/kg b.w. per day) or placebo, divided in 2 daily doses, was given by oral gavage for 5 days. Rats were maintained in HS with dietary supplementation concomitantly for 5 days. Body weight, soleus and EDL muscle masses, and cross-sectional areas (CSA) of the muscle fibers were measured. Signaling pathways associated with skeletal muscle mass regulation (FST, MSTN, FAK, IGF-1, MGF, Akt, mTOR, atrogin-1, and MuRF1 expressions, and Akt, S6, GSK3B, and 4EBP1 proteins) were evaluated in the muscles. Soleus muscle exhibited more atrophy than the EDL muscle due to HS. Creatine supplementation attenuated the decrease of wet weight and increased p-4EBP1 protein in the EDL muscle of HS rats. Also, creatine increased mTOR and atrogin-1 expressions in the same muscle and condition. In the absence of HS, creatine supplementation increased FAK and decreased MGF expressions in the EDL muscle. Creatine attenuated the increase in FST expression due to HS in the soleus muscle. MuRF1 expression increased in the soleus muscle due to creatine supplementation in HS animals whereas atrogin-1 expression increased still further in this group compared with untreated HS rats. In conclusion, short-term creatine supplementation changed protein metabolism signaling in soleus and EDL muscles. However, creatine supplementation only slightly attenuated the mass loss of both muscles and did not prevent the CSA reduction and muscle strength decrease induced by HS for 5 days.
Collapse
Affiliation(s)
- G N Marzuca-Nassr
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M A S Fortes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L Guimarães-Ferreira
- Grupo de Estudos em Fisiologia Muscular e Performance Humana, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - G M Murata
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - K F Vitzel
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.,School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - D A A Vasconcelos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R A Bassit
- Departamento da Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R Curi
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.,Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Schäfer LU, Hayes M, Dekerle J. Creatine supplementation improves performance above critical power but does not influence the magnitude of neuromuscular fatigue at task failure. Exp Physiol 2019; 104:1881-1891. [PMID: 31512330 DOI: 10.1113/ep087886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the magnitude of neuromuscular fatigue depend on the amount of work done (W') at task failure when cycling above critical power (CP)? What is the main finding and its importance? Creatine supplementation increases W' and enhances supra-CP performance, but induces similar magnitudes of neuromuscular fatigue at task failure compared to placebo. Increased W' does not lead to higher levels of neuromuscular fatigue. This supports the notion of a critical level of neuromuscular fatigue at task failure and challenges a direct causative link between W' depletion and neuromuscular fatigue. ABSTRACT The present study examined the effect of creatine supplementation on neuromuscular fatigue and exercise tolerance when cycling above critical power (CP). Eleven males performed an incremental cycling test with four to five constant-load trials to task failure (TTF) to obtain asymptote (CP) and curvature constant (W') of the power-duration relationship, followed by three constant-load supra-CP trials: (1) one TTF following placebo supplementation (PLA); (2) one TTF following creatine supplementation (CRE); and (3) one trial of equal duration to PLA following creatine supplementation (ISO). Neuromuscular assessment of the right knee extensors was performed pre- and post-exercise to measure maximal voluntary contraction (MVC), twitch forces evoked by single (Qpot ) and paired high- (PS100) and low- (PS10) frequency stimulations and voluntary activation. Creatine supplementation increased TTF in CRE vs. PLA by ∼11% (P = 0.017) and work done above CP by ∼10% (P = 0.015), with no difference (P > 0.05) in reductions in MVC (-24 ± 8% vs. -20 ± 9%), Qpot (-39 ± 13% vs. -32 ± 14%), PS10 (-42 ± 14% vs. -36 ± 13%), PS100 (-25 ± 10% vs. -18 ± 12%) and voluntary activation (-7 ± 8% vs. -5 ± 7%). No significant difference was found between ISO and either PLA or CRE (P > 0.05). These findings suggest similar levels of neuromuscular fatigue can be found following supra-CP cycling despite increases in performance time and amount of work done above CP, supporting the notion of a critical level of neuromuscular fatigue and challenging a direct causative link between W' depletion and neuromuscular fatigue.
Collapse
Affiliation(s)
- Lisa U Schäfer
- Fatigue and Exercise Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Mark Hayes
- Fatigue and Exercise Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Jeanne Dekerle
- Fatigue and Exercise Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
19
|
Short term creatine loading without weight gain improves sprint, agility and leg strength performance in female futsal players. Sci Sports 2019. [DOI: 10.1016/j.scispo.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Creatine nanoliposome reverts the HPA-induced damage in complex II–III activity of the rats’ cerebral cortex. Mol Biol Rep 2019; 46:5897-5908. [DOI: 10.1007/s11033-019-05023-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
|
21
|
Detecting creatine excreted in the urine of swimming athletes by means of Raman spectroscopy. Lasers Med Sci 2019; 35:455-464. [DOI: 10.1007/s10103-019-02843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
|
22
|
de Poli RDAB, Roncada LH, Malta EDS, Artioli GG, Bertuzzi R, Zagatto AM. Creatine Supplementation Improves Phosphagen Energy Pathway During Supramaximal Effort, but Does Not Improve Anaerobic Capacity or Performance. Front Physiol 2019; 10:352. [PMID: 31024332 PMCID: PMC6468287 DOI: 10.3389/fphys.2019.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of short-duration creatine monohydrate supplementation on anaerobic capacity (AC), anaerobic energy pathways, and time-to-exhaustion during high-intensity running. Fourteen healthy men underwent a graded exercise test (GXT) followed by a O2max confirmation test, 5 submaximal efforts, and 4 supramaximal running bouts at 115% of V˙O2max intensity (the first two supramaximal sessions were applied as familiarization trials) to measure the AC using two procedures; the maximum accumulated oxygen deficit (MAOD) and non-oxidative pathways energetics sum (AC[La-]+EPOCfast). The investigation was conducted in a single-blind and placebo-controlled manner, with participants performing the efforts first after being supplemented with a placebo (dextrose 20 g⋅day-1 for 5 days), and then, after a 7 day “placebo” washout period, they started the same procedure under creatine supplementation (20 g⋅day-1 for 5 days. This order was chosen due to the prolonged washout of creatine. MAOD was not different between placebo (3.35 ± 0.65 L) and creatine conditions (3.39 ± 0.79 L; P = 0.58) and presented a negligible effect [effect size (ES) = 0.08], similar to, AC[La-]+EPOCfast (placebo condition (3.66 ± 0.79 Land under creatine ingestion 3.82 ± 0.85 L; P = 0.07) presenting a small effect (ES = 0.20). The energetics from the phosphagen pathway increased significantly after creatine supplementation (1.66 ± 0.40 L) compared to the placebo condition (1.55 ± 0.42 L; P = 0.03). However, the glycolytic and oxidative pathways were not different between conditions. Furthermore, time to exhaustion did not differ between placebo (160.79 ± 37.76 s) and creatine conditions (163.64 ± 38.72; P = 0.49). Therefore, we can conclude that creatine supplementation improves the phosphagen energy contribution, but with no statistical effect on AC or time to exhaustion in supramaximal running.
Collapse
Affiliation(s)
- Rodrigo de Araujo Bonetti de Poli
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Luan Henrique Roncada
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Department of Physical Education, School of Science, São Paulo State University (UNESP), Bauru, Brazil
| | - Elvis de Souza Malta
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group, University of São Paulo (USP), São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Rômulo Bertuzzi
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Sport Performance (LAFIDE), São Paulo State University (UNESP), Bauru, Brazil.,Post-Graduate Program in Movement Sciences, São Paulo State University (UNESP), Bauru, Brazil.,Department of Physical Education, School of Science, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
23
|
Hydrophilic interaction chromatography coupled to tandem mass spectrometry as a method for simultaneous determination of guanidinoacetate and creatine. Anal Chim Acta 2018; 1028:96-103. [PMID: 29884358 DOI: 10.1016/j.aca.2018.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022]
Abstract
The biosynthesis of creatine (Cr) is closely related to the bioavailability of guanidinoacetate (GAA). The lack of one or the other may compromise their role in the energy transport and cell signaling. A reliable estimate of their levels in biological samples is imperative since they are important markers of many metabolic disorders. Therefore, a new LC-MS/MS method for simultaneous determination and quantification of GAA and Cr by multiple reaction monitoring (MRM) mode was developed based on the hydrophilic interaction chromatography (HILIC) and response surface methodology (RSM) for the optimization of chromatographic parameters. The optimized parameters ensured good separation of these similar, very polar molecules (chromatographic resolution > 1.5) without prior derivatization step in a short analysis run (6 min). The developed method was validated to ensure accurate (R, 75.1-101.6%), precise (RSD < 20%) and low quantification (LOQ of 0.025 μg mL-1 for GAA and 0.006 μg mL-1 for Cr) of the tested analytes and the use of matrix-matched calibration eliminated variable effects of complex matrices such as human plasma and urine. Therefore, this method can be implemented in medical laboratories as a tool for the diagnostics of creatine deficiencies and monitoring of guanidinoacetate and creatine supplementation regimes in biological samples.
Collapse
|
24
|
Moreira LP, Silveira L, Pacheco MTT, da Silva AG, Rocco DDFM. Detecting urine metabolites related to training performance in swimming athletes by means of Raman spectroscopy and principal component analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:223-234. [DOI: 10.1016/j.jphotobiol.2018.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
|
25
|
Amorim S, Teixeira VH, Corredeira R, Cunha M, Maia B, Margalho P, Pires J. Creatine or vitamin D supplementation in individuals with a spinal cord injury undergoing resistance training: A double-blinded, randomized pilot trial. J Spinal Cord Med 2018; 41:471-478. [PMID: 28901216 PMCID: PMC6055973 DOI: 10.1080/10790268.2017.1372058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Determine whether creatine or vitamin D supplementation improves muscle strength in individuals with spinal cord injury undergoing resistance training. METHODS Thirteen male and one female with spinal cord injury, from two Portuguese rehabilitation centers, were randomized to creatine (3g daily), vitamin D (25000 IU each two weeks) or placebo group in a double-blind design. All participants performed progressive resistance training during eight weeks. The outcome measures, obtained at baseline and after intervention, included: Sum of four skinfolds; Corrected arm muscle area; Seated medicine ball throw; Handgrip strength with dynamometer; Manual wheelchair slalom test and one repetition maximum for Chest press, Triceps, Pec deck and Lat pulldown. Vitamin D levels were obtained in all participants before and after intervention. RESULTS 71.4% of participants had deficit values of vitamin D. The corrected arm muscle area improved significantly (p<0.05) in creatine group relatively to the control group. There was a significant correlation (p<0.05) between the one repetition maximum Pec deck and levels of vitamin D. CONCLUSIONS Supplementation with creatine may improve muscle strength parameters in individuals with spinal cord injury. Vitamin D deficiency is highly prevalent in this population. It is recommended an initial screening of vitamin D levels at the beginning of the physical rehabilitation process.
Collapse
Affiliation(s)
- Samuel Amorim
- Faculdade de Desporto da Universidade do Porto (Portugal),Correspondence to: Samuel Amorim, Rua Maria Feliciana, n°31, 1°B. 4465–280, São Mamede Infesta, Portugal.
| | - Vitor Hugo Teixeira
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto (Portugal),Centro de Investigação em Actividade Física, Saúde e Lazer - Faculdade de Desporto da Universidade do Porto (Portugal)
| | - Rui Corredeira
- Faculdade de Desporto da Universidade do Porto (Portugal)
| | - Maria Cunha
- Centro de Reabilitação do Norte - Dr. Ferreira Alves (Portugal)
| | - Bruno Maia
- Centro de Reabilitação do Norte - Dr. Ferreira Alves (Portugal)
| | - Paulo Margalho
- Centro de Medicina de Reabilitação da Região Centro - Rovisco Pais (Portugal)
| | - Joana Pires
- Centro de Medicina de Reabilitação da Região Centro - Rovisco Pais (Portugal)
| |
Collapse
|
26
|
Creatine Loading Does Not Preserve Muscle Mass or Strength During Leg Immobilization in Healthy, Young Males: A Randomized Controlled Trial. Sports Med 2018; 47:1661-1671. [PMID: 28054322 PMCID: PMC5507980 DOI: 10.1007/s40279-016-0670-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background A short period of leg immobilization leads to rapid loss of muscle mass and strength. Creatine supplementation has been shown to increase lean body mass in active individuals and can be used to augment gains in muscle mass and strength during prolonged resistance-type exercise training. Objective Our objective was to investigate whether creatine loading can attenuate the loss of muscle mass and strength during short-term leg immobilization. Methods Healthy young men (n = 30; aged 23 ± 1 years; body mass index [BMI] 23.3 ± 0.5 kg/m−2) were randomly assigned to either a creatine or a placebo group. Subjects received placebo or creatine supplements (20 g/d) for 5 days before one leg was immobilized by means of a full-leg cast for 7 days. Muscle biopsies were taken before creatine loading, prior to and immediately after leg immobilization, and after 7 days of subsequent recovery. Quadriceps cross-sectional area (CSA) (computed tomography [CT] scan) and leg muscle strength (one-repetition maximum [1-RM] knee extension) were assessed before and immediately after immobilization and after 1 week of recovery. Data were analyzed using repeated measures analysis of variance (ANOVA). Data are presented consistently as mean ± standard error of the mean (SEM). Results There was a significant overall increase in muscle total creatine content following the 5-day loading phase (p = 0.049), which appeared driven by an increase in the creatine group (from 90 ± 9 to 107 ± 4 mmol/kg−1 dry muscle) with no apparent change in the placebo group (from 88 ± 4 to 90 ± 3 mmol/kg−1; p = 0.066 for time × treatment interaction). Quadriceps muscle CSA had declined by 465 ± 59 and 425 ± 69 mm2 (p < 0.01) in the creatine and placebo group, respectively, with no differences between groups (p = 0.76). Leg muscle strength decreased from 56 ± 4 to 53 ± 4 kg in the creatine and from 59 ± 3 to 53 ± 3 kg in the placebo group, with no differences between groups (p = 0.20). Muscle fiber size did not change significantly over time in either group (p > 0.05). When non-responders to creatine loading were excluded (n = 6), responders (n = 8; total creatine content increasing from 70 to 106 mmol/kg−1) showed similar findings, with no signs of preservation of muscle mass or strength during immobilization. During the subsequent recovery phase, no differences in muscle mass or strength were found between the two groups (p > 0.05). Conclusion Creatine supplementation prior to and during leg immobilization does not prevent or attenuate the loss of muscle mass or strength during short-term muscle disuse. NIH Clinical Trial Registration Number: NCT01894737 (http://www.clinicaltrials.gov/).
Collapse
|
27
|
Crisafulli DL, Buddhadev HH, Brilla LR, Chalmers GR, Suprak DN, San Juan JG. Creatine-electrolyte supplementation improves repeated sprint cycling performance: A double blind randomized control study. J Int Soc Sports Nutr 2018; 15:21. [PMID: 29743825 PMCID: PMC5930494 DOI: 10.1186/s12970-018-0226-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Creatine supplementation is recommended as an ergogenic aid to improve repeated sprint cycling performance. Furthermore, creatine uptake is increased in the presence of electrolytes. Prior research examining the effect of a creatine-electrolyte (CE) supplement on repeated sprint cycling performance, however, did not show post-supplementation improvement. The purpose of this double blind randomized control study was to investigate the effect of a six-week CE supplementation intervention on overall and repeated peak and mean power output during repeated cycling sprints with recovery periods of 2 min between sprints. Methods Peak and mean power generated by 23 male recreational cyclists (CE group: n = 12; 24.0 ± 4.2 years; placebo (P) group: n = 11; 23.3 ± 3.1 years) were measured on a Velotron ergometer as they completed five 15-s cycling sprints, with 2 min of recovery between sprints, pre- and post-supplementation. Mixed-model ANOVAs were used for statistical analyses. Results A supplement-time interaction showed a 4% increase in overall peak power (pre: 734 ± 75 W; post: 765 ± 71 W; p = 0.040; ηp2 = 0.187) and a 5% increase in overall mean power (pre: 586 ± 72 W; post: 615 ± 74 W; p = 0.019; ηp2 = 0.234) from pre- to post-supplementation for the CE group. For the P group, no differences were observed in overall peak (pre: 768 ± 95 W; post: 772 ± 108 W; p = 0.735) and overall mean power (pre: 638 ± 77 W; post: 643 ± 92 W; p = 0.435) from pre- to post-testing. For repeated sprint analysis, peak (pre: 737 ± 88 W; post: 767 ± 92 W; p = 0.002; ηp2 = 0.380) and mean (pre: 650 ± 92 W; post: 694 ± 87 W; p < 0.001; ηp2 = 0.578) power output were significantly increased only in the first sprint effort in CE group from pre- to post-supplementation testing. For the P group, no differences were observed for repeated sprint performance. Conclusion A CE supplement improves overall and repeated short duration sprint cycling performance when sprints are interspersed with adequate recovery periods.
Collapse
Affiliation(s)
- Daniel L Crisafulli
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Harsh H Buddhadev
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Lorrie R Brilla
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Gordon R Chalmers
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - David N Suprak
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Jun G San Juan
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| |
Collapse
|
28
|
Machek SB, Bagley JR. Creatine Monohydrate Supplementation: Considerations for Cognitive Performance in Athletes. Strength Cond J 2018. [DOI: 10.1519/ssc.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. RECENT FINDINGS The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. SUMMARY Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.
Collapse
|
30
|
Xu W, Lin D, Huang C. NMR-based metabolomic analysis for the effects of creatine supplementation on mouse myoblast cell line C2C12. Acta Biochim Biophys Sin (Shanghai) 2017; 49:617-627. [PMID: 28475656 DOI: 10.1093/abbs/gmx043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/25/2022] Open
Abstract
Creatine (Cr) supplementation has drawn much attention from researchers owing to its widespread efficacy in sports, and more recently, in therapeutic fields. However, the underlying molecular mechanisms remain elusive. Here, we performed nuclear magnetic resonance-based metabolomic analysis to address the metabolic profile of aqueous extracts from the mouse myoblast cell line C2C12 exposed to 2 mM Cr for 24 h (the Cr-treated group). Results showed that Cr supplementation facilitated the proliferation of C2C12 myoblasts. Both pattern recognition and hierarchical cluster analyses demonstrated that the metabolic profiles of the Cr-treated and control groups were distinctly different. We identified 13 characteristic metabolites significantly responsible for the discrimination of metabolic profiles between the two groups, through orthogonal projection to latent structures discriminant analysis and independent samples t-test. We further verified the discrimination performances of these metabolites by conducting univariate receiver operating characteristic curve analysis. Compared with the control group, the Cr-treated group exhibited increased levels of Cr, phosphocreatine (PCr), glutathione (GSH), and glucose, but decreased levels of leucine, valine, isoleucine, phenylalanine, methionine, choline, O-phosphocholine, sn-glycero-3-phosphocholine, and glycerol. Our results demonstrated that Cr supplementation upregulated PCr and glucose, promoted trichloroacetic acid cycle anaplerotic flux and GSH-mediated antioxidant capacity, and stabilized lipid membranes through suppressing glycerophospholipid metabolism. Our work provides new clues to the molecular mechanisms underlying the pleiotropic effects of Cr in muscle cells.
Collapse
Affiliation(s)
- Wenqi Xu
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology, Xiamen 361024, China
- Exercise and Rehabilitation Laboratory, Fujian Medical University, Fuzhou 350104, China
| |
Collapse
|
31
|
|
32
|
Herriman M, Fletcher L, Tchaconas A, Adesman A, Milanaik R. Dietary Supplements and Young Teens: Misinformation and Access Provided by Retailers. Pediatrics 2017; 139:peds.2016-1257. [PMID: 28044048 DOI: 10.1542/peds.2016-1257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Despite the American Academy of Pediatrics' recommendations against pediatric use of creatine and testosterone boosters, research suggests that many young teenagers take these dietary supplements. Our objective was to determine to what extent health food stores would recommend and/or sell creatine and testosterone boosters to a 15-year-old boy customer. METHODS Research personnel posing as 15-year-old high school athletes seeking to increase muscle strength contacted 244 health food stores in the United States via telephone. Researchers asked the sales attendant what supplements he/she would recommend. If a sales attendant did not mention creatine or testosterone boosters initially, each of these supplements was then specifically asked about. Supplement recommendations were recorded. Sales attendants were also asked if a 15-year-old could purchase these products on his own in the store. RESULTS A total of 67.2% (164/244) of sales attendants recommended creatine: 38.5% (94/244) recommended creatine without prompting, and an additional 28.7% (70/244) recommended creatine after being asked specifically about it. A total of 9.8% (24/244) of sales attendants recommended a testosterone booster. Regarding availability for sale, 74.2% (181/244) of sales attendants stated a 15-year-old was allowed to purchase creatine, whereas 41.4% (101/244) stated one could purchase a testosterone booster. CONCLUSIONS Health food store employees frequently recommend creatine and testosterone boosters for boy high school athletes. In response to these findings, pediatricians should inform their teenage patients, especially athletes, about safe, healthy methods to improve athletic performance and discourage them from using creatine or testosterone boosters. Retailers and state legislatures should also consider banning the sale of these products to minors.
Collapse
Affiliation(s)
- Maguire Herriman
- Division of Developmental and Behavioral Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, North Shore-Long Island Jewish Health System, Lake Success, New York
| | - Laura Fletcher
- Division of Developmental and Behavioral Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, North Shore-Long Island Jewish Health System, Lake Success, New York
| | - Alexis Tchaconas
- Division of Developmental and Behavioral Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, North Shore-Long Island Jewish Health System, Lake Success, New York
| | - Andrew Adesman
- Division of Developmental and Behavioral Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, North Shore-Long Island Jewish Health System, Lake Success, New York
| | - Ruth Milanaik
- Division of Developmental and Behavioral Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, North Shore-Long Island Jewish Health System, Lake Success, New York
| |
Collapse
|
33
|
Parr MK, Schmidtsdorff S, Kollmeier AS. [Nutritional supplements in sports - sense, nonsense or hazard?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:314-322. [PMID: 28058459 DOI: 10.1007/s00103-016-2498-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The excessive sale of dietary supplements (DSs) has become a global multi-billion market as more and more people turn to DSs for a healthy lifestyle or for aesthetic reasons. DSs are also increasingly popular among athletes; 50-85% of recreational and 35-100% of competitive athletes report taking DSs, the latter more regularly. Unless pathological deficiencies are detected, the intake of DSs for recreational athletes is not recommended. While it may be advisable for competitive athletes to supplement their diet with certain macronutrients (proteins and carbohydrates), many micronutrients (vitamins, minerals) as well as allegedly performance enhancing DSs may only show minimal impact under specific conditions and for certain sports. However, most products lack proof of their effectiveness. In some cases, DSs may even have negative effects and reduce performance. Furthermore, competitive athletes should be aware of the fact that DSs may lead to positive doping tests, as they bear the risk of being contaminated with banned substances, or components may be banned substances themselves. Every single case of taking DSs should therefore be critically assessed and discussed with experts prior to use. DSs cannot replace a balanced diet and hard practice.
Collapse
Affiliation(s)
- Maria Kristina Parr
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, 14195, Berlin, Deutschland.
| | - Sebastian Schmidtsdorff
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, 14195, Berlin, Deutschland
| | - Annette Sophie Kollmeier
- Fachbereich Biologie, Chemie, Pharmazie, Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, 14195, Berlin, Deutschland
| |
Collapse
|
34
|
Fairman CM, Hyde PN, Focht BC. Resistance training interventions across the cancer control continuum: a systematic review of the implementation of resistance training principles. Br J Sports Med 2016; 51:677-685. [DOI: 10.1136/bjsports-2016-096537] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2016] [Indexed: 11/03/2022]
|
35
|
Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol 2016; 37:31-42. [PMID: 26778152 PMCID: PMC4915971 DOI: 10.1016/j.intimp.2015.12.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system.
Collapse
Affiliation(s)
- Lisa A Riesberg
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Stephanie A Weed
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Thomas L McDonald
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495, Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Joan M Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
36
|
Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 2016; 68:694-713. [PMID: 27377693 DOI: 10.1016/j.neubiorev.2016.06.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/05/2023]
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratory of Clinical and Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Andre F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health and The Centre for Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
37
|
Abstract
This article reviews adverse effects of and the difficulty of attributing toxic effects to selected drugs and dietary supplements that purportedly enhance athletic performance. On surveys estimating the extent of performance-enhancing drug use, 5% of high school students indicated anabolic-adrenergic steroid use, and approximately 28% of collegiate athletes and 5.6% of middle and high school athletes admitted creatine use. Many adverse health effects from the abuse of androgenic-anabolic steroids and androstenedione (a prodrug) are exaggerations of excessive testosterone on hepatic, cardiovascular, reproductive, and behavioral functions that can produce permanent changes. With creatine use, nausea, vomiting, diarrhea, elevated serum transaminase concentrations, hypertension, fluid retention, muscle cramping, and muscle strains have been reported. Ephedra stimulates adrenergic receptors, leading to tachycardia and hypertension, with central nervous system effects of anxiety, tremor, and hyperactivity. From 1997 to 1999, 10 people died and 13 suffered permanent disabilities due to ephedra. γ -Hydroxybutyrate and several prodrugs (γ -butyrolactone and 1,4-butanediol) can produce alternating agitation and coma, amnesia, hypotonia, ataxia, nystagmus, tremors, bradycardia, respiratory depression, and apnea. Although γ -hydroxybutyrate abuse began as a bodybuilding aid, most serious adverse effects are from acute overdoses. Adverse effects from performance-enhancing drugs do occur, but their extent and frequency are unknown.
Collapse
Affiliation(s)
- Peter A. Chyka
- Department of Pharmacy, and Executive Director, Southern Poison Center, The University of Tennessee Health Science Center, 875 Monroe Avenue, Suite 104, Memphis, TN 38163,
| |
Collapse
|
38
|
The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects. Amino Acids 2016; 48:1843-55. [PMID: 27085634 DOI: 10.1007/s00726-016-2237-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) is produced endogenously in the liver or obtained exogenously from foods, such as meat and fish. In the human body, 95 % of Cr is located in the cytoplasm of skeletal muscle either in a phosphorylated (PCr) or free form (Cr). PCr is essential for the immediate rephosphorylation of adenosine diphosphate to adenosine triphosphate. PCr is rapidly degraded at the onset of maximal exercise at a rate that results in muscle PCr reservoirs being substantially depleted. A well-established strategy followed to increase muscle total Cr content is to increase exogenous intake by supplementation with chemically pure synthetic Cr. Most Cr supplementation regimens typically follow a well-established loading protocol of 20 g day(-1) of Cr for approximately 5-7 days, followed by a maintenance dose at between 2 and 5 g day(-1) for the duration of interest, although more recent studies tend to utilize a 0.3-g kg(-1) day(-1) supplementation regimen. Some studies have also investigated long-term supplementation of up to 1 year. Uptake of Cr is enhanced when taken together with carbohydrate and protein and/or while undertaking exercise. Cr supplementation has been shown to augment muscle total Cr content and enhance anaerobic performance; however, there is also some evidence of indirect benefits to aerobic endurance exercise through enhanced thermoregulation. While there is an abundance of data supporting the ergogenic effects of Cr supplementation in a variety of different applications, some individuals do not respond, the efficacy of which is dependent on a number of factors, such as dose, age, muscle fiber type, and diet, although further work in this field is warranted. Cr is increasingly being used in the management of some clinical conditions to enhance muscle mass and strength. The application of Cr in studies of health and disease has widened recently with encouraging results in studies involving sleep deprivation and cognitive performance.
Collapse
|
39
|
|
40
|
Creatine in combination with resistance training and improvement in muscle strength: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Almeida FM, Oliveira-Junior MC, Souza RA, Petroni RC, Soto SF, Soriano FG, de Carvalho PTC, Albertini R, Damaceno-Rodrigues NR, Castro-Faria-Neto HC, Martins MA, Dolhnikoff M, Pazetti R, Vieira RP. Creatine supplementation attenuates pulmonary and systemic effects of lung ischemia and reperfusion injury. J Heart Lung Transplant 2016. [PMID: 26215332 DOI: 10.1016/j.healun.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
42
|
Pereira RTDS, Dörr FA, Pinto E, Solis MY, Artioli GG, Fernandes AL, Murai IH, Dantas WS, Seguro AC, Santinho MAR, Roschel H, Carpentier A, Poortmans JR, Gualano B. Can creatine supplementation form carcinogenic heterocyclic amines in humans? J Physiol 2015; 593:3959-71. [PMID: 26148133 DOI: 10.1113/jp270861] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/24/2015] [Indexed: 11/08/2022] Open
Abstract
There is a long-standing concern that creatine supplementation could be associated with cancer, possibly by facilitating the formation of carcinogenic heterocyclic amines (HCAs). This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, does not cause a significant increase in HCA formation. HCAs detection was unrelated to creatine supplementation. Diet was likely to be the main factor responsible for HCAs formation after either placebo (n = 6) or creatine supplementation (n = 3). These results directly challenge the recently suggested biological plausibility for the association between creatine use and risk of testicular germ cell cancer. Creatine supplementation has been associated with increased cancer risk. In fact, there is evidence indicating that creatine and/or creatinine are important precursors of carcinogenic heterocyclic amines (HCAs). The present study aimed to investigate the acute and chronic effects of low- and high-dose creatine supplementation on the production of HCAs in healthy humans (i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine (IFP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)). This was a non-counterbalanced single-blind crossover study divided into two phases, in which low- and high-dose creatine protocols were tested. After acute (1 day) and chronic supplementation (30 days), the HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx were assessed through a newly developed HPLC-MS/MS method. Dietary HCA intake and blood and urinary creatinine were also evaluated. Out of 576 assessments performed (from 149 urine samples), only nine (3 from creatine and 6 from placebo) showed quantifiable levels of HCAs (8-MeIQx: n = 3; 4,8-DiMeIQx: n = 2; PhIP: n = 4). Individual analyses revealed that diet rather than creatine supplementation was the main responsible factor for HCA formation in these cases. This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, did not cause increases in the carcinogenic HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx in healthy subjects. These findings challenge the long-existing notion that creatine supplementation could potentially increase the risk of cancer by stimulating the formation of these mutagens.
Collapse
Affiliation(s)
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ernani Pinto
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Yazigi Solis
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Alan Lins Fernandes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Igor Hisashi Murai
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Wagner Silva Dantas
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Hamilton Roschel
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil.,School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Alain Carpentier
- Faculty of Motor Sciences, Université of libre de Bruxelles, Belgium
| | | | - Bruno Gualano
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil.,School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
43
|
Havenetidis K. The use of creatine supplements in the military. J ROY ARMY MED CORPS 2015; 162:242-8. [DOI: 10.1136/jramc-2014-000400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/08/2015] [Indexed: 01/06/2023]
|
44
|
López-Samanes A, Ortega Fonseca JF, Fernández Elías VE, Borreani S, Maté-Muñoz JL, Kovacs MS. Nutritional Ergogenic Aids in Tennis. Strength Cond J 2015. [DOI: 10.1519/ssc.0000000000000141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Performance Enhancing Diets and the PRISE Protocol to Optimize Athletic Performance. J Nutr Metab 2015; 2015:715859. [PMID: 25949823 PMCID: PMC4408745 DOI: 10.1155/2015/715859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
The training regimens of modern-day athletes have evolved from the sole emphasis on a single fitness component (e.g., endurance athlete or resistance/strength athlete) to an integrative, multimode approach encompassing all four of the major fitness components: resistance (R), interval sprints (I), stretching (S), and endurance (E) training. Athletes rarely, if ever, focus their training on only one mode of exercise but instead routinely engage in a multimode training program. In addition, timed-daily protein (P) intake has become a hallmark for all athletes. Recent studies, including from our laboratory, have validated the effectiveness of this multimode paradigm (RISE) and protein-feeding regimen, which we have collectively termed PRISE. Unfortunately, sports nutrition recommendations and guidelines have lagged behind the PRISE integrative nutrition and training model and therefore limit an athletes' ability to succeed. Thus, it is the purpose of this review to provide a clearly defined roadmap linking specific performance enhancing diets (PEDs) with each PRISE component to facilitate optimal nourishment and ultimately optimal athletic performance.
Collapse
|
46
|
Effects of short term creatine supplementation and resistance exercises on resting hormonal and cardiovascular responses. Sci Sports 2015. [DOI: 10.1016/j.scispo.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Is long term creatine and glutamine supplementation effective in enhancing physical performance of military police officers? J Hum Kinet 2014; 43:131-8. [PMID: 25713653 PMCID: PMC4332172 DOI: 10.2478/hukin-2014-0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to analyze the effect of supplementation with creatine and glutamine on physical fitness of military police officers. Therefore, an experimental double blind study was developed, with the final sample composed by 32 men randomly distributed into three groups: a group supplemented with creatine (n=10), glutamine (n=10) and a placebo group (n=12) and evaluated in three distinct moments, in an interval of three months (T1, T2 and T3). The physical training had a weekly frequency of 5 sessions × 90 min, including strength exercises, local muscular resistance, flexibility and both aerobic and anaerobic capacity. After analyzing the effect of time, group and interaction (group × time) for measures that indicated the physical capabilities of the subjects, a significant effect of time for the entire variable was identified (p<0,05). However, these differences were not observed when the univaried intragroups and intergroups analysis was performed (p>0,05). In face of the results it was concluded that supplementation with creatine and glutamine showed no ergogenic effect on physical performance in military police officers.
Collapse
|
48
|
D'Antona G, Nabavi SM, Micheletti P, Di Lorenzo A, Aquilani R, Nisoli E, Rondanelli M, Daglia M. Creatine, L-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613890. [PMID: 25243159 PMCID: PMC4163371 DOI: 10.1155/2014/613890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine and Laboratory for Motor Activities in Rare Diseases (LUSAMMR), University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Piero Micheletti
- Department of Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Roberto Aquilani
- Maugeri Foundation IRCCS, Montescano Scientific Institute, Via Per Montescano 31, 27040 Montescano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Mariangela Rondanelli
- Human Nutrition Section, Health Sciences Department, University of Pavia, Azienda di Servizi alla Persona, Via Emilia 12, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
49
|
de Salles Painelli V, Alves VT, Ugrinowitsch C, Benatti FB, Artioli GG, Lancha AH, Gualano B, Roschel H. Creatine supplementation prevents acute strength loss induced by concurrent exercise. Eur J Appl Physiol 2014; 114:1749-55. [PMID: 24840857 DOI: 10.1007/s00421-014-2903-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the effect of creatine (CR) supplementation on the acute interference induced by aerobic exercise on subsequent maximum dynamic strength (1RM) and strength endurance (SE, total number of repetitions) performance. METHODS Thirty-two recreationally strength-trained men were submitted to a graded exercise test to determine maximal oxygen consumption (VO2max: 41.56 ± 5.24 ml kg(-1) min(-1)), anaerobic threshold velocity (ATv: 8.3 ± 1.18 km h(-1)), and baseline performance (control) on the 1RM and SE (4 × 80 % 1RM to failure) tests. After the control tests, participants were randomly assigned to either a CR (20 g day(-1) for 7 days followed by 5 g day(-1) throughout the study) or a placebo (PL-dextrose) group, and then completed 4 experimental sessions, consisting of a 5-km run on a treadmill either continuously (90 % ATv) or intermittently (1:1 min at vVO2max) followed by either a leg- or bench-press SE/1RM test. RESULTS CR was able to maintain the leg-press SE performance after the intermittent aerobic exercise when compared with C (p > 0.05). On the other hand, the PL group showed a significant decrease in leg-press SE (p ≤ 0.05). CR supplementation significantly increased bench-press SE after both aerobic exercise modes, while the bench-press SE was not affected by either mode of aerobic exercise in the PL group. Although small increases in 1RM were observed after either continuous (bench press and leg press) or intermittent (bench press) aerobic exercise in the CR group, they were within the range of variability of the measurement. The PL group only maintained their 1RM. CONCLUSIONS In conclusion, the acute interference effect on strength performance observed in concurrent exercise may be counteracted by CR supplementation.
Collapse
Affiliation(s)
- Vítor de Salles Painelli
- School of Physical Education and Sport, University of Sao Paulo, Av Prof. Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kolling J, Scherer EB, Siebert C, Marques EP, dos Santos TM, Wyse AT. Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats. Gene 2014; 545:72-9. [DOI: 10.1016/j.gene.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/14/2014] [Accepted: 05/01/2014] [Indexed: 12/13/2022]
|