1
|
Nava S, Lisini D, Pogliani S, Dossena M, Bersano A, Pellegatta S, Parati E, Finocchiaro G, Frigerio S. Safe and Reproducible Preparation of Functional Dendritic Cells for Immunotherapy in Glioblastoma Patients. Stem Cells Transl Med 2015; 4:1164-72. [PMID: 26273063 DOI: 10.5966/sctm.2015-0091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/06/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Cell therapy based on dendritic cells (DCs) pulsed with tumor lysate is a promising approach in addition to conventional therapy for the treatment of patients with glioblastoma (GB). The success of this approach strongly depends on the ability to generate high-quality, functionally mature DCs (mDCs), with a high level of standardization and in compliance with Good Manufacturing Practices. In the cell factory of the Carlo Besta Foundation, two phase I clinical trials on immunotherapy with tumor lysate-loaded DCs as treatment for GB are ongoing. From 2010 to 2014, 54 patients were enrolled in the studies and 54 batches of DCs were prepared. We retrospectively analyzed the results of the quality control tests carried out on each produced batch, evaluating yield of mDCs and their quality in terms of microbiological safety and immunological efficacy. The number of mDCs obtained allowed the treatment of all the enrolled patients. All 54 batches were sterile, conformed to acceptable endotoxin levels, and were free of Mycoplasma species and adventitious viruses. During culture, cells maintained a high percentage of viability (87%-98%), and all batches showed high viability after thawing (mean±SD: 94.6%±2.9%). Phenotype evaluation of mDCs showed an evident upregulation of markers typical of DC maturation; mixed lymphocyte reaction tests for the functional evaluation of DCs demonstrated that all batches were able to induce lymphocyte responses. These results demonstrated that our protocol for DC preparation is highly reproducible and permits generation of large numbers of safe and functional DCs for in vivo use in immunotherapy approaches. SIGNIFICANCE Cell therapy based on antigen-pulsed dendritic cells (DCs) is a promising approach for the treatment of glioblastoma patients. The success of this approach strongly depends on the ability to generate high-quality, functional DCs with a high level of standardization, ensuring reproducibility, efficacy, and safety of the final product. This article summarizes the results of the quality controls on 54 batches, to demonstrate the feasibility of producing a therapeutic cell-based vaccine via a well-controlled Good Manufacturing Practices (GMP)-compliant production process. The findings may be of scientific interest to those working in the field of preparation of GMP-compliant products for cell-therapy applications.
Collapse
Affiliation(s)
- Sara Nava
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Pogliani
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marta Dossena
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Bersano
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Serena Pellegatta
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eugenio Parati
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gaetano Finocchiaro
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Laboratory of Cellular Neurobiology, Cerebrovascular Unit, and Unit of Molecular Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
2
|
Rhun EL, Taillibert S, Chamberlain MC. The future of high-grade glioma: Where we are and where are we going. Surg Neurol Int 2015; 6:S9-S44. [PMID: 25722939 PMCID: PMC4338495 DOI: 10.4103/2152-7806.151331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/15/2014] [Indexed: 01/12/2023] Open
Abstract
High-grade glioma (HGG) are optimally treated with maximum safe surgery, followed by radiotherapy (RT) and/or systemic chemotherapy (CT). Recently, the treatment of newly diagnosed anaplastic glioma (AG) has changed, particularly in patients with 1p19q codeleted tumors. Results of trials currenlty ongoing are likely to determine the best standard of care for patients with noncodeleted AG tumors. Trials in AG illustrate the importance of molecular characterization, which are germane to both prognosis and treatment. In contrast, efforts to improve the current standard of care of newly diagnosed glioblastoma (GB) with, for example, the addition of bevacizumab (BEV), have been largely disappointing and furthermore molecular characterization has not changed therapy except in elderly patients. Novel approaches, such as vaccine-based immunotherapy, for newly diagnosed GB are currently being pursued in multiple clinical trials. Recurrent disease, an event inevitable in nearly all patients with HGG, continues to be a challenge. Both recurrent GB and AG are managed in similar manner and when feasible re-resection is often suggested notwithstanding limited data to suggest benefit from repeat surgery. Occassional patients may be candidates for re-irradiation but again there is a paucity of data to commend this therapy and only a minority of selected patients are eligible for this approach. Consequently systemic therapy continues to be the most often utilized treatment in recurrent HGG. Choice of therapy, however, varies and revolves around re-challenge with temozolomide (TMZ), use of a nitrosourea (most often lomustine; CCNU) or BEV, the most frequently used angiogenic inhibitor. Nevertheless, no clear standard recommendation regarding the prefered agent or combination of agents is avaliable. Prognosis after progression of a HGG remains poor, with an unmet need to improve therapy.
Collapse
Affiliation(s)
- Emilie Le Rhun
- Department of Neuro-oncology, Roger Salengro Hospital, University Hospital, Lille, and Neurology, Department of Medical Oncology, Oscar Lambret Center, Lille, France, Inserm U-1192, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Lille 1 University, Villeneuve D’Ascq, France
| | - Sophie Taillibert
- Neurology, Mazarin and Radiation Oncology, Pitié Salpétrière Hospital, University Pierre et Marie Curie, Paris VI, Paris, France
| | - Marc C. Chamberlain
- Department of Neurology and Neurological Surgery, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
3
|
Calinescu AA, Kamran N, Baker G, Mineharu Y, Lowenstein PR, Castro MG. Overview of current immunotherapeutic strategies for glioma. Immunotherapy 2015; 7:1073-104. [PMID: 26598957 PMCID: PMC4681396 DOI: 10.2217/imt.15.75] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints.
Collapse
Affiliation(s)
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gregory Baker
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death Dis 2014; 5:e1223. [PMID: 24810059 PMCID: PMC4047898 DOI: 10.1038/cddis.2014.188] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the most common and deadly adult brain tumor. Despite aggressive surgery, radiation, and chemotherapy, the life expectancy of patients diagnosed with GBM is ∼14 months. The extremely aggressive nature of GBM results from glioblastoma stem-like cells (GSCs) that sustain GBM growth, survive intensive chemotherapy, and give rise to tumor recurrence. There is accumulating evidence revealing that GSC resilience is because of concomitant activation of multiple survival pathways. In order to decode the signal transduction networks responsible for the malignant properties of GSCs, we analyzed a collection of GSC lines using a dual, but complementary, experimental approach, that is, reverse-phase protein microarrays (RPPMs) and kinase inhibitor library screening. We treated GSCs in vitro with clinically relevant concentrations of temozolomide (TMZ) and performed RPPM to detect changes in phosphorylation patterns that could be associated with resistance. In addition, we screened GSCs in vitro with a library of protein and lipid kinase inhibitors to identify specific targets involved in GSC survival and proliferation. We show that GSCs are relatively insensitive to TMZ treatment in terms of pathway activation and, although displaying heterogeneous individual phospho-proteomic profiles, most GSCs are resistant to specific inhibition of the major signaling pathways involved in cell survival and proliferation. However, simultaneous multipathway inhibition by the staurosporin derivative UCN-01 results in remarkable inhibition of GSC growth in vitro. The activity of UCN-01 on GSCs was confirmed in two in vivo models of GBM growth. Finally, we used RPPM to study the molecular and functional effects of UCN-01 and demonstrated that the sensitivity to UCN-01 correlates with activation of survival signals mediated by PDK1 and the DNA damage response initiated by CHK1. Taken together, our results suggest that a combined inhibition of PDK1 and CHK1 represents a potentially effective therapeutic approach to reduce the growth of human GBM.
Collapse
|
5
|
Reardon DA, Wucherpfennig KW, Freeman G, Wu CJ, Chiocca EA, Wen PY, Curry WT, Mitchell DA, Fecci PE, Sampson JH, Dranoff G. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013; 12:597-615. [PMID: 23750791 DOI: 10.1586/erv.13.41] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Outcome for glioblastoma (GBM), the most common primary CNS malignancy, remains poor. The overall survival benefit recently achieved with immunotherapeutics for melanoma and prostate cancer support evaluation of immunotherapies for other challenging cancers, including GBM. Much historical dogma depicting the CNS as immunoprivileged has been replaced by data demonstrating CNS immunocompetence and active interaction with the peripheral immune system. Several glioma antigens have been identified for potential immunotherapeutic exploitation. Active immunotherapy studies for GBM, supported by preclinical data, have focused on tumor lysate and synthetic antigen vaccination strategies. Results to date confirm consistent safety, including a lack of autoimmune reactivity; however, modest efficacy and variable immunogenicity have been observed. These findings underscore the need to optimize vaccination variables and to address challenges posed by systemic and local immunosuppression inherent to GBM tumors. Additional immunotherapy strategies are also in development for GBM. Future studies may consider combinatorial immunotherapy strategies with complimentary actions.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Immunotherapy of brain cancers: the past, the present, and future directions. Clin Dev Immunol 2011; 2010:296453. [PMID: 21437175 PMCID: PMC3061456 DOI: 10.1155/2010/296453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
Treatment of brain cancers, especially high grade gliomas (WHO stage III and IV) is slowly making progress, but not as fast as medical researchers and the patients would like. Immunotherapy offers the opportunity to allow the patient's own immune system a chance to help eliminate the cancer. Immunotherapy's strength is that it efficiently treats relatively small tumors in experimental animal models. For some patients, immunotherapy has worked for them while not showing long-term toxicity. In this paper, we will trace the history of immunotherapy for brain cancers. We will also highlight some of the possible directions that this field may be taking in the immediate future for improving this therapeutic option.
Collapse
|
7
|
Graf MR, Sauer JT, Merchant RE. Tumor infiltration by myeloid suppressor cells in response to T cell activation in rat gliomas. J Neurooncol 2005; 73:29-36. [PMID: 15933813 DOI: 10.1007/s11060-007-9442-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have recently reported that activation of tumor-specific T cells by subcutaneous vaccination with irradiated T9 glioma cells of syngeneic rats with a pre-existing, intracranial (i.c.) T9 glioma (T9+vaccination) promotes the mobilization of myeloid suppressor cells (MSC) which inhibit T cell function resulting in unregulated tumor progression. The current study investigated if this immunological paradigm could be recapitulated in T cell deficient rats, in other rat glioma models or using a dendritic cell (DC) vaccine. When nude rats were used in the T9+vaccination model, the level of MSC tumor infiltration remained low in vaccinated and control groups and there was no significant difference in tumor size between the groups. Increased tumor infiltration by MSC after vaccination with respective irradiated tumor cells was observed in the 9L, F98 and D74 gliomas. RT-2 tumors were markedly infiltrated with MSC regardless of vaccination. Enhanced tumor progression in response to immunization and T cell activation was observed in rats bearing F98 and D74 gliomas, although less pronounced than in the T9 model, and there was a trend for increased tumor size in the 9L glioma model. Increased MSC infiltrate and augmented T9 glioma growth were observed when DC pulsed with T9 cell lysate was used as a vaccine. These results suggest that MSC infiltration and unregulated tumor growth in response to vaccination is T cell-dependent; is not unique to the T9 glioma; and can be recapitulated with an alternate immunization approach.
Collapse
Affiliation(s)
- Martin R Graf
- Department of Neurosurgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, 23298-0631, USA.
| | | | | |
Collapse
|
8
|
Jeffes EWB, Zhang JG, Hoa N, Petkar A, Delgado C, Chong S, Obenaus A, Sanchez R, Khalaghizadeh S, Khomenko T, Knight BA, Alipanah R, Nguyen TV, Shah C, Vohra S, Zhuang JL, Liu J, Wepsic HT, Jadus MR. Antiangiogenic Drugs Synergize with a Membrane Macrophage Colony-Stimulating Factor-Based Tumor Vaccine to Therapeutically Treat Rats with an Established Malignant Intracranial Glioma. THE JOURNAL OF IMMUNOLOGY 2005; 174:2533-43. [PMID: 15728459 DOI: 10.4049/jimmunol.174.5.2533] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combining a T9/9L glioma vaccine, expressing the membrane form of M-CSF, with a systemic antiangiogenic drug-based therapy theoretically targeted toward growth factor receptors within the tumor's vasculature successfully treated >90% of the rats bearing 7-day-old intracranial T9/9L gliomas. The antiangiogenic drugs included (Z)-3-[4-(dimethylamino)benzylidenyl]indolin-2-one (a platelet-derived growth factor receptor beta and a fibroblast growth factor receptor 1 kinase inhibitor) and oxindole (a vascular endothelial growth factor receptor 2 kinase inhibitor). A total of 20-40% of the animals treated with the antiangiogenic drugs alone survived, while all nontreated controls and tumor vaccine-treated rats died within 40 days. In vitro, these drugs inhibited endothelial cells from proliferating in response to the angiogenic factors produced by T9/9L glioma cells and prevented endothelial cell tubulogenesis. FITC-labeled tomato lectin staining demonstrated fewer and constricted blood vessels within the intracranial tumor after drug therapy. Magnetic resonance imaging demonstrated that the intracranial T9 glioma grew much slower in the presence of these antiangiogenic drugs. These drugs did not affect in vitro glioma cell growth nor T cell mitogenesis. Histological analysis revealed that the tumor destruction occurred at the margins of the tumor, where there was a heavy lymphocytic infiltrate. Real-time PCR showed more IL-2-specific mRNA was present within the gliomas in the vaccinated rats treated with the drugs. Animals that rejected the established T9/9L glioma by the combination therapy proved immune against an intracranial rechallenge by T9/9L glioma, but showed no resistance to an unrelated MADB106 breast cancer.
Collapse
Affiliation(s)
- Edward W B Jeffes
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
De Vleeschouwer S, Van Gool SW, Van Calenbergh F. Immunotherapy for malignant gliomas: emphasis on strategies of active specific immunotherapy using autologous dendritic cells. Childs Nerv Syst 2005; 21:7-18. [PMID: 15452731 DOI: 10.1007/s00381-004-0994-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Indexed: 12/25/2022]
Abstract
REVIEW In this review, we discuss immunotherapy for malignant gliomas. EMPHASIS The emphasis is on the novel strategy of active specific immunotherapy using dendritic cells as antigen-presenting cells, especially its theoretical concepts and advantages, specific requirements, critical issues, pre-clinical and early clinical experience. Dendritic cell vaccination is situated in the diversity of other immunotherapeutical approaches. FURTHER DISCUSSION Future directions, challenges, and drawbacks will be discussed.
Collapse
Affiliation(s)
- Steven De Vleeschouwer
- Department of Neurosurgery, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | | | |
Collapse
|
10
|
Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T, Narita M, Takahashi M, Tanaka R. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 2003; 89:1172-9. [PMID: 14520441 PMCID: PMC2394324 DOI: 10.1038/sj.bjc.6601268] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 07/10/2003] [Accepted: 07/15/2003] [Indexed: 01/27/2023] Open
Abstract
In this Phase I/II trial, the patient's peripheral blood dendritic cells were pulsed with an autologous tumour lysate of the glioma. Seven patients with glioblastoma and three patients with anaplastic glioma, ranging in age from 20 to 69 years, participated in this study. The mean numbers of vaccinations of tumour lysate-pulsed dendritic cells were 3.7 times intradermally close to a cervical lymph node, and 3.2 times intratumorally via an Ommaya reservoir. The percentage of CD56-positive cells in the peripheral blood lymphocytes increased after immunisation. There were two minor responses and four no-change cases evaluated by radiological findings. Dendritic cell vaccination elicited T-cell-mediated antitumour activity, as evaluated by the ELISPOT assay after vaccination in two of five tested patients. Three patients showed delayed-type hypersensitivity reactivity to the autologous tumour lysate, two of these had a minor clinical response, and two had an increased ELISPOT result. Intratumoral CD4+ and CD8+ T-cell infiltration was detected in two patients who underwent reoperation after vaccination. This study demonstrated the safety and antitumour effects of autologous tumour lysate-pulsed dendritic cell therapy for patients with malignant glioma.
Collapse
Affiliation(s)
- R Yamanaka
- Department of Neurosurgery, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata City, 951-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sloan AE, Parajuli P. Human autologous dendritic cell-glioma fusions: feasibility and capacity to stimulate T cells with proliferative and cytolytic activity. J Neurooncol 2003; 64:177-83. [PMID: 12952298 DOI: 10.1007/bf02700032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Gliomas are the most common primary neoplasm of the central nervous system. The failure of conventional treatment modalities to improve outcome over the last two decades has led to interest in alternative treatment modalities. Dendritic cell (DC)-based immunotherapy has utilized DC pulsed with tumor lysate or peptide to induce an antitumor immune response mediated largely by CD8 T cells. While this has been effective in preclinical studies, clinical efficacy remains unproven. Recently, hybrid cells produced by fusions of tumor and autologous DC have demonstrated remarkable efficacy for stimulating an anti-tumor immune response in both preclinical and clinical studies of extra-cranial neoplasms. The advantage of generating such hybrid cells is that the entire cellular material of the tumor is processed and presented in both endogenous and exogenous pathways. This leads to activation of both MHC class I restricted CD8 cells as well as MHC class II restricted CD4 T cells. Here, we examined in vitro T cell stimulatory capacity of autologous human DC-glioma fusion in comparison to DC loaded with apoptotic glioma. DC fused with autologous tumor or loaded with apoptotic tumor cells (DC/apo) were first used to stimulate autologous non-adherent peripheral blood mononuclear cells (PBMC), in vitro. The PBMC were then examined for phenotype (CD3, CD4, CD8) and intracellular IFN-gamma using flow cytometry. Lymphocyte proliferation and cytolytic responses were also assessed. Lymphocytes stimulated in vitro with fusion or DC/apo cells showed significantly enhanced cytotoxicity and proliferation against autologous tumor cells compared with PBMC stimulated with tumor cells or DC alone. Both strategies had similar efficacy. Tumor-cytolytic responses were enhanced by the addition of CD40 ligand (CD40L), and partially blocked by anti-MHC class I antibody. Flow cytometric analysis detected CD3+ CD8+ T cells, which also stained positive for intracellular IFN-gamma. The study suggests that DC/glioma fusion and DC/apo have comparable efficacy for stimulation of CTL with cytolytic and proliferative activity against human malignant gliomas. These findings may have implications for future studies of DC-based immunotherapy in malignant gliomas.
Collapse
Affiliation(s)
- Andrew E Sloan
- Department of Neurosurgery, Wayne State University & Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA.
| | | |
Collapse
|
12
|
Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, Frelinger JA, Robinson BWS. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4905-13. [PMID: 12734333 DOI: 10.4049/jimmunol.170.10.4905] [Citation(s) in RCA: 349] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cross-presentation of cell-bound Ags from established, solid tumors to CD8 cells is efficient and likely to have a role in determining host response to tumor. A number of investigators have predicted that when tumor Ags are derived from apoptotic cells either no response, due to Ag "sequestration," or CD8 cross-tolerance would ensue. Because the crucial issue of whether this happens in vivo has never been addressed, we induced apoptosis of established hemagglutinin (HA)-transfected AB1 tumors in BALB/c mice using the apoptosis-inducing reagent gemcitabine. This shrank the tumor by approximately 80%. This induction of apoptosis increased cross-presentation of HA to CD8 cells yet neither gross deletion nor functional tolerance of HA-specific CD8 cells were observed, based on tetramer analysis, proliferation of specific CD8 T cells, and in vivo CTL activity. Interestingly, apoptosis primed the host for a strong antitumor response to a second, virus-generated HA-specific signal in that administration of an HA-expressing virus after gemcitabine administration markedly decreased tumor growth compared with viral administration without gemcitabine. Thus tumor cell apoptosis in vivo neither sequesters tumor Ags nor cross-tolerizes tumor-specific CD8 cells. This observation has fundamental consequences for the development of tumor immunotherapy protocols and for understanding T cell reactivity to tumors and the in vivo immune responses to apoptotic cells.
Collapse
MESH Headings
- Animals
- Antigen Presentation/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Apoptosis/drug effects
- Apoptosis/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clonal Anergy/drug effects
- Clonal Anergy/immunology
- Clonal Deletion/drug effects
- Clonal Deletion/immunology
- Cytotoxicity, Immunologic/drug effects
- Deoxycytidine/administration & dosage
- Deoxycytidine/analogs & derivatives
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Growth Inhibitors/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Immunization
- Injections, Intraperitoneal
- Mesothelioma/drug therapy
- Mesothelioma/immunology
- Mesothelioma/pathology
- Mesothelioma/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Tumor Cells, Cultured
- Up-Regulation/drug effects
- Up-Regulation/immunology
- Gemcitabine
Collapse
Affiliation(s)
- Anna K Nowak
- Tumor Immunology Group, Department of Medicine, University of Western Australia and Western Australian Institute of Medical Research, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|