1
|
Product review on the IMD serogroup B vaccine Bexsero®. Hum Vaccin Immunother 2022; 18:2020043. [PMID: 35192786 PMCID: PMC8986181 DOI: 10.1080/21645515.2021.2020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bexsero® is a multicomponent vaccine composed of four major proteins of Neisseria meningitidis: the fHbp, NHBA, NadA and PorA. This vaccine was licensed against invasive meningococcal disease (IMD) due to serogroup B isolates. When administered alone, Bexsero® showed a safety profile similar to other childhood vaccines. It provides an excellent immunogenicity but that requires booster doses in infants and young children. Although the vaccine does not seem to impact on acquisition of carriage of serogroup B isolates, it confers protection against isolates of serogroup B harboring distinct but cross-reactive variants of fHbp, NadA and NHBA. Primary vaccination schemes in infancy underwent a rapid increase after a toddler booster suggesting an anamnestic response and the establishment of a memory response. As Bexsero® targets sub-capsular proteins that can be conserved regardless the capsule, the vaccine can be effective against non-B isolates such as isolates of serogroups W and X.
Collapse
|
2
|
Findlow J, Lucidarme J, Taha MK, Burman C, Balmer P. Correlates of protection for meningococcal surface protein vaccines: lessons from the past. Expert Rev Vaccines 2021; 21:739-751. [PMID: 34287103 DOI: 10.1080/14760584.2021.1940144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Recombinant surface protein meningococcal serogroup B (MenB) vaccines are available but with different antigen compositions, leading to differences between vaccines in their immunogenicity and likely breadth of coverage. The serology and breadth of coverage assessment for MenB vaccines are multifaceted areas, and a comprehensive understanding of these complexities is required to appropriately compare licensed vaccines and those under development. AREAS COVERED In the first of two companion papers that comprehensively review the serology and breadth of coverage assessment for MenB vaccines, the history of early meningococcal vaccines is considered in this narrative review to identify transferable lessons applicable to the currently licensed MenB vaccines and those under development, as well as their serology. EXPERT OPINION Understanding correlates of protection and the breadth of coverage assessment for meningococcal surface protein vaccines is significantly more complex than that for capsular polysaccharide vaccines. Determination and understanding of the breadth of coverage of surface protein vaccines are clinically important and unique to each vaccine formulation. It is essential to estimate the proportion of MenB cases that are preventable by a specific vaccine to assess its overall potential impact and to compare the benefits and limitations of different vaccines in preventing invasive meningococcal disease.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | | | - Cynthia Burman
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
3
|
Masignani V, Pizza M, Moxon ER. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Front Immunol 2019; 10:751. [PMID: 31040844 PMCID: PMC6477034 DOI: 10.3389/fimmu.2019.00751] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/04/2022] Open
Abstract
The discovery of vaccine antigens through whole genome sequencing (WGS) contrasts with the classical hypothesis-driven laboratory-based analysis of microbes to identify components to elicit protective immunity. This radical change in scientific direction and action in vaccine research is captured in the term reverse vaccinology. The complete genome sequence of an isolate of Neisseria meningitidis serogroup B (MenB) was systematically analyzed to identify proteins predicted to be secreted or exported to the outer membrane. This identified hundreds of genes coding for potential surface-exposed antigens. These were amplified, cloned in expression vectors and used to immunize mice. Antisera against 350 recombinant antigens were obtained and analyzed in a panel of immunological assays from which 28 were selected as potentially protective based on the -antibody dependent, complement mediated- serum bactericidal activity assay. Testing of these candidate vaccine antigens, using a large globally representative strain collection of Neisseria species isolated from cases of disease and carriage, indicated that no single component would be sufficient to induce broad coverage and that a “universal” vaccine should contain multiple antigens. The final choice of antigens to be included was based on cross-protective ability, assayed by serum bactericidal activity and maximum coverage of the extensive antigenic variability of MenB strains. The resulting multivalent vaccine formulation selected consisted of three recombinant antigens (Neisserial Heparin Binding Antigen or NHBA, Factor H binding protein or fHbp and Neisseria Adhesin A or NadA). To improve immunogenicity and potential strain coverage, an outer membrane vesicle component obtained from the epidemic New Zealand strain (OMVNz) was added to the formulation to create a four component vaccine, called 4CMenB. A series of phase 2 and 3 clinical trials were conducted to evaluate safety and tolerability and to estimate the vaccine effectiveness of human immune responses at different ages and how these were affected by various factors including concomitant vaccine use and lot-to-lot consistency. 4CMenB was approved in Europe in 2013 and introduced in the National Immunization Program in the UK starting from September 2015 when the vaccine was offered to all newborns using a 2, 4, and 12 months schedule., The effectiveness against invasive MenB disease measured at 11 months after the study start and 5 months after the second vaccination was 83% and there have been no safety concerns.
Collapse
Affiliation(s)
| | | | - E Richard Moxon
- Department of Pediatrics, Oxford University, Oxford, United Kingdom
| |
Collapse
|
4
|
Acevedo R, Bai X, Borrow R, Caugant DA, Carlos J, Ceyhan M, Christensen H, Climent Y, De Wals P, Dinleyici EC, Echaniz-Aviles G, Hakawi A, Kamiya H, Karachaliou A, Lucidarme J, Meiring S, Mironov K, Sáfadi MAP, Shao Z, Smith V, Steffen R, Stenmark B, Taha MK, Trotter C, Vázquez JA, Zhu B. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines 2018; 18:15-30. [PMID: 30526162 DOI: 10.1080/14760584.2019.1557520] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The 2018 Global Meningococcal Initiative (GMI) meeting focused on evolving invasive meningococcal disease (IMD) epidemiology, surveillance, and protection strategies worldwide, with emphasis on emerging antibiotic resistance and protection of high-risk populations. The GMI is comprised of a multidisciplinary group of scientists and clinicians representing institutions from several continents. AREAS COVERED Given that the incidence and prevalence of IMD continually varies both geographically and temporally, and surveillance systems differ worldwide, the true burden of IMD remains unknown. Genomic alterations may increase the epidemic potential of meningococcal strains. Vaccination and (to a lesser extent) antimicrobial prophylaxis are the mainstays of IMD prevention. Experiences from across the globe advocate the use of conjugate vaccines, with promising evidence growing for protein vaccines. Multivalent vaccines can broaden protection against IMD. Application of protection strategies to high-risk groups, including individuals with asplenia, complement deficiencies and human immunodeficiency virus, laboratory workers, persons receiving eculizumab, and men who have sex with men, as well as attendees at mass gatherings, may prevent outbreaks. There was, however, evidence that reduced susceptibility to antibiotics was increasing worldwide. EXPERT COMMENTARY The current GMI global recommendations were reinforced, with several other global initiatives underway to support IMD protection and prevention.
Collapse
Affiliation(s)
- Reinaldo Acevedo
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Xilian Bai
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Ray Borrow
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Dominique A Caugant
- c Division of Infection Control and Environmental Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Josefina Carlos
- d Department of Pediatrics, College of Medicine , University of the East - Ramon Magsaysay Memorial Medical Center , Quezon City , Philippines
| | - Mehmet Ceyhan
- e Faculty of Medicine, Department of Pediatric Infectious Diseases , Hacettepe University , Ankara , Turkey
| | - Hannah Christensen
- f Population Health Sciences, Bristol Medical School , University of Bristol , Bristol , UK
| | - Yanet Climent
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Philippe De Wals
- g Department of Social and Preventive Medicine , Laval University , Quebec City , QC , Canada
| | - Ener Cagri Dinleyici
- h Department of Paediatrics , Eskisehir Osmangazi University Faculty of Medicine , Eskisehir , Turkey
| | - Gabriela Echaniz-Aviles
- i Center for Research on Infectious Diseases , Instituto Nacional de Salud Pública , Cuernavaca , México
| | - Ahmed Hakawi
- j Infectious Diseases Control , Ministry of Health , Riyadh , Saudi Arabia
| | - Hajime Kamiya
- k Infectious Disease Surveillance Center , National Institute of Infectious Diseases , Tokyo , Japan
| | | | - Jay Lucidarme
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Susan Meiring
- m Division of Public Health Surveillance and Response , National Institute for Communicable Diseases , Johannesburg , South Africa
| | - Konstantin Mironov
- n Central Research Institute of Epidemiology , Moscow , Russian Federation
| | - Marco A P Sáfadi
- o Department of Pediatrics , FCM Santa Casa de São Paulo School of Medical Sciences , São Paulo , Brazil
| | - Zhujun Shao
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| | - Vinny Smith
- q Meningitis Research Foundation , Bristol , UK
| | - Robert Steffen
- r Department of Epidemiology and Prevention of Infectious Diseases , WHO Collaborating Centre for Travellers' Health, University of Zurich , Zurich , Switzerland
| | - Bianca Stenmark
- s Department of Laboratory Medicine , Örebro University Hospital , Örebro , Sweden
| | - Muhamed-Kheir Taha
- t Institut Pasteur , National Reference Centre for Meningococci , Paris , France
| | - Caroline Trotter
- l Department of Veterinary Medicine , University of Cambridge , Cambridge , UK
| | - Julio A Vázquez
- u National Centre of Microbiology , Institute of Health Carlos III , Madrid , Spain
| | - Bingqing Zhu
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| |
Collapse
|
5
|
Abstract
I would like to comment on the article “Commentary: Impact of meningococcal group B OMV vaccines, beyond their brief”, DOI: 10.1080/21645515.2017.1381810. The author states that meningococcal group B OMVs vaccines –such as VA-MENGOC-BC®– may induce moderate protection against Neisseria gonorrhoeae. I agree. However, the author states that “there was no evidence of effectiveness in the younger children.” The effectiveness of VA-MENGOC-BC® in heterologous contexts has been higher than 80% in individuals older than 4 years old, but the effectiveness in younger children should not be undervalued; it has usually been higher than 60%, and results markedly higher when evaluated based on mortality rates. There is strong evidence that VA-MENGOC-BC® may induce cross-protection against heterologous N. meningitidis strains and N. gonorrhoeae.
Collapse
Affiliation(s)
- Rolando Felipe Ochoa-Azze
- a Department of Immunology , Institute of Basic and Preclinical Sciences, University of Medical Sciences, Senior Researcher at the Finlay Institute of Vaccines , Havana , Cuba
| |
Collapse
|
6
|
Predicted vs observed effectiveness of outer membrane vesicle (OMV) vaccines against meningococcal serogroup B disease: Systematic review. J Infect 2017; 75:81-94. [DOI: 10.1016/j.jinf.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 03/27/2017] [Accepted: 05/03/2017] [Indexed: 11/18/2022]
|
7
|
A versatile assay to determine bacterial and host factors contributing to opsonophagocytotic killing in hirudin-anticoagulated whole blood. Sci Rep 2017; 7:42137. [PMID: 28176849 PMCID: PMC5296863 DOI: 10.1038/srep42137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
Abstract
Most bacteria entering the bloodstream will be eliminated through complement activation on the bacterial surface and opsonophagocytosis. However, when these protective innate immune systems do not work optimally, or when bacteria are equipped with immune evasion mechanisms that prevent killing, this can lead to serious infections such as bacteremia and meningitis, which is associated with high morbidity and mortality. In order to study the complement evasion mechanisms of bacteria and the capacity of human blood to opsonize and kill bacteria, we developed a versatile whole blood killing assay wherein both phagocyte function and complement activity can easily be monitored and modulated. In this assay we use a selective thrombin inhibitor hirudin to fully preserve complement activity of whole blood. This assay allows controlled analysis of the requirements for active complement by replacing or heat-inactivating plasma, phagocyte function and bacterial immune evasion mechanisms that contribute to survival in human blood.
Collapse
|
8
|
|
9
|
Davie S, Glennie L, Rowland K. Towards a meningitis free world--can we eliminate meningococcal meningitis?: contribution of the meningitis patient groups. Vaccine 2012; 30 Suppl 2:B98-B105. [PMID: 22607905 DOI: 10.1016/j.vaccine.2011.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 10/28/2022]
Abstract
Patient groups play a critical part in the fight against meningitis in all its forms. The UK has the world's three largest meningitis patient groups, which over the past 3 decades have worked tirelessly in the fight against meningitis. Within the UK, where the patient groups work to prevent or alleviate the suffering caused by meningitis and septicaemia, their work is in three areas: continued research; demonstrating burden; and awareness-raising and advocacy. The research relates to developing and improving vaccines, and to improving outcomes for forms of meningitis that are not vaccine preventable. Demonstrating burden - showing the real impact of meningitis from a human perspective - highlights the need for vaccines to prevent the disease. Lives are saved by raising awareness of signs and symptoms and of the need for fast action, whilst advocacy can bring about change to improve the quality of life of those affected by meningitis. Awareness raising and advocacy also have the wider benefit of creating a climate in which people recognise the need for vaccines to prevent this dreadful disease. In addition, the patient groups seek to influence the early introduction and uptake of vaccines as they are licensed and approved by the expert bodies, the UK body being the Joint Committee for Vaccination and Immunisation (JCVI). Each area of activity is explored, and examples given from each of the patient groups of work they have done or are doing in that area.
Collapse
Affiliation(s)
- Sue Davie
- Meningitis Trust, Fern House, Bath Road, Stroud, Gloucestershire GL5 3TJ, UK.
| | | | | |
Collapse
|
10
|
Romeu B, Gonzalez E, Lastre M, Pérez O. Can mucosal adjuvants contribute to the induction of immunological memory induced via unconjugated T-cell-independent antigens? J Drug Target 2012; 20:502-8. [PMID: 22632258 DOI: 10.3109/1061186x.2012.693497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccination remains the most cost-effective method for preventing infectious diseases. Key to vaccine design is the development of immunological memory, which is an essential property of the adaptive immune system. Bacterial polysaccharide conjugate vaccines are the gold standard currently used to confer protection of the host by inducing humoral immune responses against T-cell-independent antigens. Conjugate vaccines are effective, but we propose that local mucosal immune responses are likely to also play an important role in inducing immunity, and they have been less explored than systemic and adaptive immune responses. Adjuvants have been used to improve the immune response to vaccine antigens, however, no mucosal adjuvant has been licensed for human use. Here we describe the recent progress in the use of mucosal adjuvants to achieve significant immune responses against T-cell-independent antigens. We also introduce the idea that studying the mechanisms that induce cell sub-populations with strong immunological memory may facilitate the design of novel vaccine formulations, in particular in cases of B-cell unresponsiveness to thymus-independent stimuli.
Collapse
Affiliation(s)
- Belkis Romeu
- Immunology Department, Research and Development, Finlay Institute, Havana, Cuba
| | | | | | | |
Collapse
|
11
|
Deasy A, Read RC. Challenges for development of meningococcal vaccines in infants and children. Expert Rev Vaccines 2011; 10:335-43. [PMID: 21434801 DOI: 10.1586/erv.11.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neisseria meningitidis causes significant disease in the form of severe sepsis syndrome or meningococcal meningitis. Owing to the susceptibility of the immune system in early life, the risk of disease after infection is significantly higher in infants. Thus far, vaccines targeted against meningococcal serogroups have struggled to provide lasting protection in young children. Even conjugate vaccines that are now routinely used in the immunization of infants require multiple dosing and the duration of protection has been shown to wane over time and require repeated booster doses. After briefly summarizing the current epidemiology according to age and serogroup, this article will consider the reasons for poor immunogenicity of vaccines in infants and will discuss the relative efficacy of the different vaccine types in this age group. It will then go on to consider strategies for optimizing the protection of infants against meningococcal disease.
Collapse
Affiliation(s)
- Alice Deasy
- Infection and Immunity Department, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | | |
Collapse
|
12
|
The genetic structure of Neisseria meningitidis populations in Cuba before and after the introduction of a serogroup BC vaccine. INFECTION GENETICS AND EVOLUTION 2010; 10:546-54. [DOI: 10.1016/j.meegid.2010.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/20/2022]
|
13
|
Clonal distribution of disease-associated and healthy carrier isolates of Neisseria meningitidis between 1983 and 2005 in Cuba. J Clin Microbiol 2009; 48:802-10. [PMID: 20042619 DOI: 10.1128/jcm.01653-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to epidemic levels of serogroup B meningococcal disease in Cuba during the 1980s, the VA-MENGOC-BC vaccine was developed and introduced into the National Infant Immunization Program in 1991. Since then the incidence of meningococcal disease in Cuba has returned to the low levels recorded before the epidemic. A total of 420 Neisseria meningitidis strains collected between 1983 and 2005 in Cuba were analyzed by multilocus sequence typing (MLST). The set of strains comprised 167 isolated from disease cases and 253 obtained from healthy carriers. By MLST analysis, 63 sequence types (STs) were identified, and 32 of these were reported to be a new ST. The Cuban isolates were associated with 12 clonal complexes; and the most common were ST-32 (246 isolates), ST-53 (86 isolates), and ST-41/44 (36 isolates). This study also showed that the application of VA-MENGOC-BC, the Cuban serogroup B and C vaccine, reduced the frequency and diversity of hypervirulent clonal complexes ST-32 (vaccine serogroup B type-strain) and ST-41/44 and also affected other lineages. Lineages ST-8 and ST-11 were no longer found during the postvaccination period. The vaccine also affected the genetic composition of the carrier-associated meningococcal isolates. The number of carrier isolates belonging to hypervirulent lineages decreased significantly after vaccination, and ST-53, a sequence type common in carriers, became the predominant ST.
Collapse
|
14
|
Lewis S, Sadarangani M, Hoe JC, Pollard AJ. Challenges and progress in the development of a serogroup B meningococcal vaccine. Expert Rev Vaccines 2009; 8:729-45. [PMID: 19485754 DOI: 10.1586/erv.09.30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serogroup B meningococci cause the majority of the meningococcal disease burden in developed countries. Production of an effective and safe vaccine for serogroup B organisms has been hampered by the poor immunogenicity of the capsular polysaccharide that defines this group of bacteria. Previous efforts have focused on outer membrane vesicle vaccines, which have been implemented successfully during clonal outbreaks. However, the search for a universal vaccine against endemic polyclonal serogroup B meningococcal disease continues. In this review, we have highlighted recent development of outer membrane vesicle vaccines and progress in the evaluation of recombinant outer membrane protein vaccines.
Collapse
Affiliation(s)
- Susan Lewis
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| | | | | | | |
Collapse
|
15
|
Ex vivo model of meningococcal bacteremia using human blood for measuring vaccine-induced serum passive protective activity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:785-91. [PMID: 19339487 DOI: 10.1128/cvi.00007-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The binding of complement factor H (fH) to meningococci was recently found to be specific for human fH. Therefore, passive protective antibody activity measured in animal models of meningococcal bacteremia may overestimate protection in humans, since in the absence of bound fH, complement activation is not downregulated. We developed an ex vivo model of meningococcal bacteremia using nonimmune human blood to measure the passive protective activity of stored sera from 36 adults who had been immunized with an investigational meningococcal multicomponent recombinant protein vaccine. Before immunization, human complement-mediated serum bactericidal activity (SBA) titers of > or = 1:4 against group B strains H44/76, NZ98/254, and S3032 were present in 19, 11, and 8% of subjects, respectively; these proportions increased to 97, 22, and 36%, respectively, 1 month after dose 3 (P < 0.01 for H44/76 and S3032). Against the two SBA-resistant strains, NZ98/254 and S3032, passive protective titers of > or = 1:4 were present in 11 and 42% of sera before immunization, respectively, and these proportions increased to 61 and 94% after immunization (P < 0.001 for each strain). Most of the sera with SBA titers of <1:4 and passive protective activity showed a level of killing in the whole-blood assay (>1 to 2 log(10) decreases in CFU/ml during a 90-min incubation) similar to that of sera with SBA titers of > or = 1:4. In conclusion, passive protective activity was 2.6- to 2.8-fold more frequent than SBA after immunization. The ability of SBA-negative sera to kill Neisseria meningitidis in human blood where fH is bound to the bacteria provides further evidence that SBA titers of > or = 1:4 measured with human complement may underestimate meningococcal immunity.
Collapse
|
16
|
Pace D, Cuschieri P, Galea Debono A, Attard-Montalto S. Epidemiology of pathogenic Neisseria meningitidis serogroup B serosubtypes in Malta: Implications for introducing PorA based vaccines. Vaccine 2008; 26:5952-6. [DOI: 10.1016/j.vaccine.2008.08.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 07/29/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
|
17
|
A cross-reactive neisserial antigen encoded by the NMB0035 locus shows high sequence conservation but variable surface accessibility. J Med Microbiol 2008; 57:80-87. [DOI: 10.1099/jmm.0.47172-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Welsch JA, Granoff D. Immunity to Neisseria meningitidis group B in adults despite lack of serum bactericidal antibody. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1596-602. [PMID: 17913865 PMCID: PMC2168381 DOI: 10.1128/cvi.00341-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serum-complement-mediated bactericidal antibody (SBA) remains the serologic hallmark of protection against meningococcal disease, despite experimental and epidemiologic data that SBA may underestimate immunity. We measured bactericidal activity against three strains of Neisseria meningitidis group B in sera from 48 healthy adults and in whole blood from 15 subjects. Blood was anticoagulated with lepirudin, a specific thrombin inhibitor not known to activate complement. Depending on the test strain, protective SBA titers of >/=1:4 were present in only 8 to 15% of the subjects, whereas bactericidal activity was present in 40 to 87% of subjects according to the blood assay. Among SBA-negative subjects, blood from 23 to 42% gave a decrease of >/=2 log(10) CFU/ml after 1 h of incubation, and blood from 36 to 83% gave a decrease of >/=1 log(10) after 2 h. For most blood samples, bactericidal antibodies primarily were directed against noncapsular antigens, since activity was not inhibited by group B polysaccharide. For some SBA-negative subjects, white cells were not needed, since similar respective bactericidal activities were observed in blood and plasma. Bactericidal activity by whole blood of SBA-negative subjects can be rapid (<1 h) and effective (>/=2 log(10)) and, among all subjects, was four- to sixfold more prevalent than a positive SBA. Thus, while an SBA titer of >/=1:4 predicts protection against meningococcal disease, a titer of <1:4 is poorly predictive of susceptibility. More sensitive assays than SBA are needed to assess protective meningococcal immunity, or we risk underestimating the extent of immunity in the population and the effectiveness of new meningococcal vaccines.
Collapse
Affiliation(s)
- Jo Anne Welsch
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | |
Collapse
|
19
|
Beernink PT, Welsch JA, Harrison LH, Leipus A, Kaplan SL, Granoff DM. Prevalence of factor H-binding protein variants and NadA among meningococcal group B isolates from the United States: implications for the development of a multicomponent group B vaccine. J Infect Dis 2007; 195:1472-9. [PMID: 17436227 PMCID: PMC2245893 DOI: 10.1086/514821] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 12/09/2006] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Two promising recombinant meningococcal protein vaccines are in development. One contains factor H-binding protein (fHBP) variants (v.) 1 and 2, whereas the other contains v.1 and 4 other antigens discovered by genome mining (5 component [5C]). Antibodies against fHBP are bactericidal against strains within a variant group. There are limited data on the prevalence of strains expressing different fHBP variants in the United States. METHODS A total of 143 group B isolates from patients hospitalized in the United States were tested for fHBP variant by quantitative polymerase chain reaction, for reactivity with 6 anti-fHBP monoclonal antibodies (MAb) by dot immunoblotting, and for susceptibility to bactericidal activity of mouse antisera. RESULTS fHBP v.1 isolates predominated in California (83%), whereas isolates expressing v.1 (53%) or v.2 (42%) were common in 9 other states. Isolates representative of 5 anti-fHBP MAb-binding phenotypes (70% of isolates) were highly susceptible to anti-fHBP v.1 or v.2 bactericidal activity, whereas 3 phenotypes were approximately 50% susceptible. Collectively, antibodies against the fHBP v.1 and v.2 vaccine and the 5C vaccine killed 76% and 83% of isolates, respectively. CONCLUSIONS Susceptibility to bactericidal activity can be predicted, in part, on the basis of fHBP phenotypes. Both vaccines have the potential to prevent most group B disease in the United States.
Collapse
Affiliation(s)
- Peter T. Beernink
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Jo Anne Welsch
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Lee H. Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Arunas Leipus
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California
| | - Sheldon L. Kaplan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Dan M. Granoff
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|
20
|
Silva Junior FC, Gioia CAC, Oliveira JM, Cruz SC, Frasch CE, Milagres LG. Differential capacities of outer membrane proteins from Neisseria meningitidis B to prime the murine immune system after vaccination. Scand J Immunol 2007; 65:1-7. [PMID: 17212760 DOI: 10.1111/j.1365-3083.2006.01829.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the specificity of antibody response to Neisseria meningitidis serogroup B (Men B) is a key requirement for the development of an effective vaccine. This study was designed to investigate the antigen specificity of murine IgG1 and IgG2b antibodies induced by different primary immunization schedules and the booster dose with the Cuban Men B vaccine. Immunoblotting analyses were performed using outer membrane vesicles (OMV) from the vaccine strain (B:4,7:P1.19,15). IgG subclasses binding to PorA, PorB and RmpM were determined by digital scanning of the immunoreactive bands. Bactericidal antibody response after vaccination was also evaluated. The results indicated that IgG2b anti-PorA was the main antibody response induced by two doses of the vaccine. A primary series of three doses was found important for increasing IgG2b as well as IgG1 to PorB and RmpM. The fourth dose favoured the recognition of RmpM as detected by the increase of specific IgG1 and IgG2b. IgG subclasses anti-PorA did not change significantly if animals received two, three or four doses of the vaccine during the primary immunization or after the booster dose for all vaccine groups. The booster response to PorB and RmpM of groups BC2 and BC3 showed a significant increase in IgG2b levels compared with the primary response. However, the recall and the primary response of group BC4 were similar, suggesting a saturated dose-effect response after four doses of vaccine. The same was seen for bactericidal antibody response when human complement source was used in the assay.
Collapse
Affiliation(s)
- F C Silva Junior
- Disciplina de Microbiologia e Imunologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Domínguez F, Menéndez J, Ochoa R. An effective serogroup B meningococcal vaccine. Vaccine 2006; 24:7025-6. [PMID: 16879900 DOI: 10.1016/j.vaccine.2006.06.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 06/26/2006] [Indexed: 11/23/2022]
|
22
|
Amir-Kroll H, Riveron L, Sarmiento ME, Sierra G, Acosta A, Cohen IR. A conjugate vaccine composed of a heat shock protein 60 T-cell epitope peptide (p458) and Neisseria meningitidis type B capsular polysaccharide. Vaccine 2006; 24:6555-63. [PMID: 16843573 DOI: 10.1016/j.vaccine.2006.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 06/12/2006] [Accepted: 06/14/2006] [Indexed: 11/26/2022]
Abstract
Neisseria meningitidis type B is a major world-health problem. The Meningococcus type B capsular polysaccharide (MnB) is very poorly immunogenic and no vaccine to the antigen exists. Here, we conjugated the MnB to a T-cell carrier peptide (p458) derived from the self-60kDa heat shock protein molecule. The conjugate vaccine was effective in inducing long-lasting IgG antibodies to the MnB antigen in mice. The vaccine was also immunogenic when injected in PBS. Thus, the p458 carrier peptide can induce T-cell help for the switch to IgG Ab to the MnB antigen.
Collapse
Affiliation(s)
- Hila Amir-Kroll
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Findlow J, Taylor S, Aase A, Horton R, Heyderman R, Southern J, Andrews N, Barchha R, Harrison E, Lowe A, Boxer E, Heaton C, Balmer P, Kaczmarski E, Oster P, Gorringe A, Borrow R, Miller E. Comparison and correlation of neisseria meningitidis serogroup B immunologic assay results and human antibody responses following three doses of the Norwegian meningococcal outer membrane vesicle vaccine MenBvac. Infect Immun 2006; 74:4557-65. [PMID: 16861642 PMCID: PMC1539571 DOI: 10.1128/iai.00466-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prediction of efficacy of Neisseria meningitidis serogroup B (MenB) vaccines is currently hindered due to the lack of an appropriate correlate of protection. For outer membrane vesicle (OMV) vaccines, immunogenicity has primarily been determined by the serum bactericidal antibody (SBA) assay and OMV enzyme-linked immunosorbent assay (ELISA). However, the opsonophagocytic assay (OPA), surface labeling assay, whole blood assay (WBA), and salivary antibody ELISA have been developed although correlation with protection is presently undetermined. Therefore, the aim of the study was to investigate further the usefulness of, and relationships between, MenB immunologic assays. A phase II trial of the OMV vaccine, MenBvac, with proven efficacy was initiated to compare immunologic assays incorporating the vaccine and six heterologous strains. Correlations were achieved between the SBA assay, OMV ELISA, and OPA using human polymorphonuclear leukocytes and human complement but not between an OPA using HL60 phagocytic cells and baby rabbit complement. Correlations between the surface labeling assay, the SBA assay, and the OMV ELISA were promising, although target strain dependent. Correlations between the salivary antibody ELISA and other assays were poor. Correlations to the WBA were prevented since many samples had results greater than the range of the assay. The study confirmed the immunogenicity and benefit of a third dose of MenBvac against the homologous vaccine strain using a variety of immunologic assays. These results emphasize the need for standardized methodologies that would allow a more robust comparison of assays between laboratories and promote their further evaluation as correlates of protection against MenB disease.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Evaluation Unit, Health Protection Agency North West, Manchester Laboratory, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Uli L, Castellanos-Serra L, Betancourt L, Domínguez F, Barberá R, Sotolongo F, Guillén G, Pajón Feyt R. Outer membrane vesicles of the VA-MENGOC-BC vaccine against serogroup B of Neisseria meningitidis: Analysis of protein components by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2006; 6:3389-99. [PMID: 16673438 DOI: 10.1002/pmic.200500502] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neisseria meningitidis is a Gram-negative bacterium responsible for significant mortality worldwide. While effective polysaccharides-based vaccines exist against serogroups A, C, W135, and Y, no similar vaccine is suitable for children under 4 years against disease caused by serogroup B strains. Therefore, major vaccine efforts against this serogroup are based on outer membrane vesicles (OMVs), containing major outer membrane proteins. The OMV-based vaccine produced by the Finlay Institute in Cuba (VA-MENGOC-BC) contributed to the rapid decline of the epidemic in this Caribbean island. While the content of major proteins in this vaccine has been discussed, no detailed work of an outer membrane proteomic map of this, or any other, commercially available OMV-derived product has been published so far. Since OMVs exhibit a large bias toward a few major proteins and usually contain a high content of lipids, establishing the adequate conditions for high resolution, 2-DE of this kind of preparation was definitely a technical challenge. In this work, 2-DE and MS have been used to generate a proteomic map of this product, detailing the presence of 31 different proteins, and it allows the identification of new putative protective protein components it contains.
Collapse
Affiliation(s)
- Liliam Uli
- Finlay Institute, Serum and Vaccines Production Center, Habana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chadee DD, Lee R, Ferdinand A, Prabhakar P, Clarke D, Jacob B. MENINGOCOCCAL MENINGITIS OUTBREAK IN TRINIDAD, 1998. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2006. [DOI: 10.29333/ejgm/82377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Toropainen M, Saarinen L, Wedege E, Bolstad K, Mäkelä PH, Käyhty H. Passive protection in the infant rat protection assay by sera taken before and after vaccination of teenagers with serogroup B meningococcal outer membrane vesicle vaccines. Vaccine 2006; 23:4821-33. [PMID: 15970361 DOI: 10.1016/j.vaccine.2005.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
From a previous published clinical trial among teenagers in Iceland [Perkins BA, Jonsdottir K, Briem H, Griffiths E, Plikaytis BD, Høiby EA, et al. J Infect Dis 1998;177:683--91], we evaluated a 25% stratified subset of sera, collected before vaccination and 6 weeks after the second vaccination with either the Norwegian (n=37) or the Cuban (n=35) serogroup B meningococcal outer membrane vesicle (OMV) vaccine or the control serogroup A/C capsular polysaccharide vaccine (n=20), for protective activity in an infant rat protection assay (IRPA). Protection was assessed with both the Norwegian (44/76-SL, B:15:P1.7,16:L3,7) and the Cuban (Cu 385, B:4:P1.19,15:L3,7) vaccine strain, and the results compared with serum bactericidal assay (SBA) titres and anti-OMV IgG antibody concentrations. An IRPA response was defined as a >or=10-fold rise in protective activity compared to pre-vaccination level. Forty-six percent (42/92) of the pre-vaccination sera showed protection with strain 44/76-SL compared to only 12% (11/92) with strain Cu 385. After the second dose, 22% (8/37) of those given the Norwegian vaccine showed IRPA responses with the homologous strain compared to 65% (24/37) in SBA. The corresponding numbers with the homologous strain for the Cuban vaccinees were 14% (5/35) and 29% (10/35), respectively. Among the controls, 15% (3/20) showed IRPA responses to 44/76-SL but none to Cu 385. Correlation between IRPA activity and SBA titres or anti-OMV IgG was low, especially for pre-vaccination sera against strain 44/76-SL. We conclude that the sensitivity of IRPA described herein may not be sufficient to evaluate serogroup B OMV vaccine responses from clinical samples.
Collapse
Affiliation(s)
- Maija Toropainen
- Department of Vaccines, National Public Health Institute (KTL), Mannerheimintie 166, FIN-00300 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
27
|
Ferrari G, Garaguso I, Adu-Bobie J, Doro F, Taddei AR, Biolchi A, Brunelli B, Giuliani MM, Pizza M, Norais N, Grandi G. Outer membrane vesicles from group BNeisseria meningitidis Δgna33 mutant: Proteomic and immunological comparison with detergent-derived outer membrane vesicles. Proteomics 2006; 6:1856-66. [PMID: 16456881 DOI: 10.1002/pmic.200500164] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We compared the proteome of detergent-derived group B Neisseria meningitidis (MenB) outer membrane vesicles (DOMVs) with the proteome of outer membrane vesicles (m-OMVs) spontaneously released into culture supernatant by MenB delta gna33, a mutant in which the gene coding for a lytic transglycosylase homologous to the E. coli MltA was deleted. In total, 138 proteins were identified in DOMVs by 1- and 2-DE coupled with MS; 64% of these proteins belonged to the inner membrane and cytoplasmic compartments. By contrast, most of the 60 proteins of m-OMVs were classified by PSORT as outer membrane proteins. When tested for their capacity to elicit bactericidal antibodies, m-OMVs elicited a broad protective activity against a large panel of MenB strains. Therefore, the identification of mutations capable of conferring an OMV-releasing phenotype in bacteria may represent an attractive approach to study bacterial membrane composition and organization, and to design new efficacious vaccine formulations.
Collapse
Affiliation(s)
- Germano Ferrari
- Biochemistry and Molecular Biology Unit, Chiron Vaccines, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Meningococcal disease, presenting primarily as septicaemia and meningitis, continues to be a devastating problem around the world. Over the last century, vaccine development has been undertaken in earnest for the prevention of this disease. Polysaccharide vaccines have been available for almost 40 years, yet they are poorly immunogenic in young children who are at the highest risk. Since their introduction into some routine immunisation schedules in 1999, polysaccharide-protein conjugate vaccines for the prevention of serogroup C meningococcal infection have proven efficacious. A quadrivalent polysaccharide-protein conjugate vaccine against serogroups A, C, W135 and Y, which is being introduced in the US this year, is hoped to control disease caused by these serogroups. To date, however, the development of a universally safe, immunogenic and effective serogroup B Neisseria meningitidis vaccine has remained a challenge. This review details the many conventional vaccine strategies and the more recent genome-derived technological approaches being used in serogroup B vaccine development. The future prevention of serogroup B disease will rely on both outer membrane vesicle vaccines being used for serosubtype-specific outbreaks and new vaccines containing multiple other antigens. Investment by the pharmaceutical industry in preclinical research and development provides hope that an efficacious serogroup B meningococcal vaccine can be developed.
Collapse
Affiliation(s)
- Kirsten P Perrett
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| | | |
Collapse
|
29
|
Toropainen M, Saarinen L, Wedege E, Bolstad K, Michaelsen TE, Aase A, Käyhty H. Protection by natural human immunoglobulin M antibody to meningococcal serogroup B capsular polysaccharide in the infant rat protection assay is independent of complement-mediated bacterial lysis. Infect Immun 2005; 73:4694-703. [PMID: 16040982 PMCID: PMC1201264 DOI: 10.1128/iai.73.8.4694-4703.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, an important cause of bacterial meningitis and septicemia worldwide, is associated with high mortality and serious sequelae. Natural immunity against meningococcal disease develops with age, but the specificity and functional activity of natural antibodies associated with protection are poorly understood. We addressed this question by using a selected subset of prevaccination sera (n = 26) with convergent or discrepant serum bactericidal activity (SBA) and infant rat protective activity (IRPA) against the serogroup B meningococcal strain 44/76-SL (B:15:P1.7,16) from Icelandic teenagers. The sera were analyzed by opsonophagocytic activity (OPA) assay, immunoblotting, immunoglobulin G (IgG) quantitation against live meningococcal cells by flow cytometry, and enzyme immunosorbent assay (EIA). High levels of SBA and OPA were reflected in distinct IgG binding to major outer membrane proteins and/or lipopolysaccharide in immunoblots. However, we could not detect any specific antibody patterns on blots that could explain IRPA. Only IgM antibody to group B capsular polysaccharide (B-PS), measured by EIA, correlated positively (r = 0.76, P < 0.001) with IRPA. Normal human sera (NHS; n = 20) from healthy Finnish children of different ages (7, 14, and 24 months and 10 years) supported this finding and showed an age-related increase in IRPA that coincided with the acquisition of B-PS specific IgM antibody. The protection was independent of complement-mediated bacterial lysis, as detected by the inability of NHS to augment SBA in the presence of human or infant rat complement and the equal protective activity of NHS in rat strains with fully functional or C6-deficient complement.
Collapse
Affiliation(s)
- Maija Toropainen
- Vaccine Immunology Laboratory, Department of Vaccines, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
30
|
O'dwyer CA, Reddin K, Martin D, Taylor SC, Gorringe AR, Hudson MJ, Brodeur BR, Langford PR, Kroll JS. Expression of heterologous antigens in commensal Neisseria spp.: preservation of conformational epitopes with vaccine potential. Infect Immun 2004; 72:6511-8. [PMID: 15501782 PMCID: PMC523026 DOI: 10.1128/iai.72.11.6511-6518.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Commensal neisseriae share with Neisseria meningitidis (meningococcus) a tendency towards overproduction of the bacterial outer envelope, leading to the formation and release during growth of outer membrane vesicles (OMVs). OMVs from both meningococci and commensal neisseriae have shown promise as vaccines to protect against meningococcal disease. We report here the successful expression at high levels of heterologous proteins in commensal neisseriae and the display, in its native conformation, of one meningococcal outer membrane protein vaccine candidate, NspA, in OMVs prepared from such a recombinant Neisseria flavescens strain. These NspA-containing OMVs conferred protection against otherwise lethal intraperitoneal challenge of mice with N. meningitidis serogroup B, and sera raised against them mediated opsonophagocytosis of meningococcal strains expressing this antigen. This development promises to facilitate the design of novel vaccines containing membrane protein antigens that are otherwise difficult to present in native conformation that provide cross-protective efficacy in the prevention of meningococcal disease.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/metabolism
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Cell Line
- Conjugation, Genetic
- Cytoplasmic Vesicles
- Epitopes/chemistry
- Epitopes/immunology
- Flow Cytometry
- Humans
- Immunization, Passive
- Meningococcal Infections/immunology
- Meningococcal Infections/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Mice
- Neisseria/genetics
- Neisseria/immunology
- Neisseria/metabolism
- Neisseria meningitidis, Serogroup B/immunology
- Opsonin Proteins
- Phagocytosis
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Clíona A O'dwyer
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis in the US, Europe and in many other parts of the world, including parts of sub-Saharan Africa (known as the African 'meningitis belt'). There are > 500000 cases of meningococcal disease annually with an estimated death toll of 135000 worldwide. Approximately 10 - 15 % of survivors experience significant morbidity in the form of neurological sequelae, including hearing loss, speech disorders, loss of limbs, mental retardation and paralysis. Disease is usually caused by N. meningitidis serogroups A, B, C, Y or W-135. Prevention of meningococcal disease includes isolation, chemoprophylaxis and vaccination with available polysaccharide vaccines. However, the polysaccharide meningococcal vaccines (i.e., A and C; A, C and W-135; or A, C, Y and W-135) initially developed in the 1970s are generally poorly immunogenic in children or require repeated doses and do not produce long-lasting immunity. Conjugate vaccine technology has been very successfully used in childhood vaccines for the prevention of other bacterial meningitis pathogens, including vaccines against Haemophilus influenzae serotype b (Hib) and more recently, the seven- and nine-valent conjugate pneumococcal vaccines. Newly released meningococcal conjugate vaccines against N. meningitidis serogroup C have been highly efficacious in young children and adolescents, with minimal side effects. Conjugate vaccines targeting other important meningococcal serogroups (e.g., N. meningitidis serogroup A, responsible for the large pandemic outbreaks and the majority of disease in sub-Saharan Africa and serogroups Y and W-135) are under development and together with the serogroup C conjugates, have the potential to significantly impact worldwide sporadic and epidemic meningococcal disease. The search for an effective serogroup B meningococcal vaccine remains elusive. This manuscript reviews the conjugate meningococcal vaccines and their potential for meningococcal disease prevention.
Collapse
Affiliation(s)
- Shanta M Zimmer
- Department of Medicine, Emory University School of Medicine, Emory University Hospital, Atlanta, GA 30322, USA
| | | |
Collapse
|
32
|
González de Aledo A, Viloria L. Serosubtipos de meningococo B causantes de enfermedad invasiva en Cantabria y concordancia con la cepa de la vacuna cubana. GACETA SANITARIA 2004; 18:45-9. [PMID: 14980172 DOI: 10.1016/s0213-9111(04)71998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine the serosubtypes of meningococcus B causing invasive disease in Cantabria and the percentage of agreement with the Cuban vaccine strain, VA-MENGOC-BC. METHODS We performed a retrospective review of all cases of invasive disease due to meningococcus B declared through the Diseases of Mandatory Reporting System between 1st January 1998 and 28th February 2003. The bacteriological isolates of the "Marqués de Valdecilla" University Hospital, and the serosubtyping performed in the Majadahonda reference laboratory (Madrid, Spain) were also analyzed. RESULTS Of the 117 declared cases, serosubtype was identified in 79 (67.5%). The agreement with the Cuban vaccine strain was 67%, 71% and 76% in the age groups of newborn to 19 years, 18 months to 19 years, and 4 to 19 years, respectively. When strains with cross-protection were included, these percentages increased to 83%, 83% and 84%, respectively, in the same age groups. CONCLUSIONS The percentage of agreement between the Cuban vaccine strain and heterologous strains with cross-protection was high. Therefore, this vaccine could be useful in Cantabria.
Collapse
|
33
|
Ison CA, Anwar N, Cole MJ, Pollard AJ, Morley SL, Fidler K, Sandiford C, Banks J, Kroll SJ, Levin M. Age dependence of in vitro survival of meningococci in whole blood during childhood. Pediatr Infect Dis J 2003; 22:868-73. [PMID: 14551486 DOI: 10.1097/01.inf.0000091283.10199.dc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine the association between the ability of a different strains of meningococci to survive in whole blood and the age of the donor. METHODS A panel of serogroup B and a serogroup C strain of Neisseria meningitidis was tested in an ex vivo whole blood model. Blood from 81 healthy children and 20 adults and from children during convalescence from serogroup B (55 patients) or serogroup C (43 patients) meningococcal infection was assessed. RESULTS Age-dependent acquisition of whole blood killing of serogroup B and C bacterial isolates was demonstrated in healthy children with an inverse relationship to the reported incidence of disease. After infection with serogroup B or C meningococci, evidence of whole blood killing of the bacteria was found even in blood from children <2 years of age, the survival of a serogroup B strain, MC58, being reduced compared with that in healthy children (median, 64% compared with 194.5% survival at 90 min). In both affected children and controls, there was a significant correlation between whole blood killing of strain MC58 and of other serogroup B and C meningococci. CONCLUSIONS The whole blood model measures both humoral and cellular mechanisms responsible for the bactericidal activity of blood. The model was first described 80 years ago, but this is the first description of its age dependency. Acquisition of bactericidal activity was more rapid in children infected and is directed at various strains of meningococci, indicating the presence of a cross-reactive antigen(s).
Collapse
Affiliation(s)
- Catherine A Ison
- Department of Infectious Diseases and Microbiology, Faculty of Medicine, Imperial College London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vermont CL, van Dijken HH, Kuipers AJ, van Limpt CJP, Keijzers WCM, van der Ende A, de Groot R, van Alphen L, van den Dobbelsteen GPJM. Cross-reactivity of antibodies against PorA after vaccination with a meningococcal B outer membrane vesicle vaccine. Infect Immun 2003; 71:1650-5. [PMID: 12654777 PMCID: PMC152051 DOI: 10.1128/iai.71.4.1650-1655.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Revised: 09/24/2002] [Accepted: 12/19/2002] [Indexed: 11/20/2022] Open
Abstract
The cross-reactivity of PorA-specific antibodies induced by a monovalent P1.7-2,4 (MonoMen) and/or a hexavalent (HexaMen) meningococcal B outer membrane vesicle vaccine (OMV) in toddlers and school children was studied by serum bactericidal assays (SBA). First, isogenic vaccine strains and PorA-identical patient isolates were compared as a target in SBA, to ensure that the vaccine strains are representative for patient isolates. Geometric mean titers (GMTs) in SBA against patient isolates with subtypes P1.5-2,10 and P1.5-1,2-2 after vaccination with HexaMen were generally lower than those against vaccine strains with the same subtype, although the percentage of vaccine responders (> or =4-fold increase in SBA after vaccination) was not affected. Using various P1.7-2,4 patient isolates, GMTs as well as the number of vaccine responders were higher than for the P1.7-2,4 vaccine strain, indicating that the use of the P1.7-2,4 vaccine strain may have underestimated the immunogenicity of this subtype in HexaMen. Secondly, the cross-reactivity of antibodies induced by MonoMen and HexaMen was studied using several patient isolates that differed from the vaccine subtypes by having minor antigenic variants of one variable region (VR), by having a completely different VR or by having a different combination of VRs. MonoMen induced P1.4-specific antibodies that were cross-reactive with P1.4 variants P1.4-1 and P1.4-3. HexaMen induced a broader cross-reactive antibody response against various patient isolates with one VR identical to a vaccine subtype or a combination of VRs included in HexaMen. Cross-reactivity, measured by a fourfold increase in SBA after vaccination, against these strains ranged from 23 to 92% depending on the subtype of the tested strain and was directed against both VR1 and VR2. The extended cross-reactivity of vaccinee sera induced by HexaMen against antigenic variants has important favorable implications for meningococcal B OMV vaccine coverage.
Collapse
Affiliation(s)
- C L Vermont
- Laboratory for Vaccine Research, Netherlands Vaccine Institute (NVI), PO Box 457, 3720 AL Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Navarro-Alonso JA. La inmunización activa frente a Neisseria meningitidis serogrupo B. Enferm Infecc Microbiol Clin 2003; 21:513-9. [PMID: 14572386 DOI: 10.1016/s0213-005x(03)72998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serogroup B Neisseria meningitidis causes high morbidity and mortality rates over the world. This article reviews the current vaccination strategies against this microorganism, including vaccines already tested on a large scale, particularly those based on class 1 outer membrane proteins, and vaccines in different stages of development. The latter involve several approaches, such as modification of the polysaccharide capsule composition or conjugation with proteins, and the use of recombinant DNA techniques to obtain vaccines that express the prevalent sero-subtypes in a particular geographical area. The challenges that have emerged with the sequencing of the meningococcus B genome are also addressed.
Collapse
MESH Headings
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/immunology
- Antigens, Bacterial/immunology
- Bacterial Capsules
- Bacterial Outer Membrane Proteins/immunology
- Clinical Trials as Topic
- Cross Reactions
- Humans
- Immunoglobulin M/biosynthesis
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/microbiology
- Meningitis, Meningococcal/prevention & control
- Meningococcal Vaccines/immunology
- Neisseria meningitidis, Serogroup B/immunology
- Polysaccharides, Bacterial/immunology
- Species Specificity
- Vaccination
- Vaccines, Conjugate/immunology
- Vaccines, Synthetic/immunology
Collapse
|
36
|
Moe GR, Zuno-Mitchell P, Hammond SN, Granoff DM. Sequential immunization with vesicles prepared from heterologous Neisseria meningitidis strains elicits broadly protective serum antibodies to group B strains. Infect Immun 2002; 70:6021-31. [PMID: 12379678 PMCID: PMC130404 DOI: 10.1128/iai.70.11.6021-6031.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 07/12/2002] [Accepted: 07/31/2002] [Indexed: 11/20/2022] Open
Abstract
The capsular polysaccharide of Neisseria meningitidis group B is an autoantigen, whereas noncapsular antigens are highly variable. These factors present formidable challenges for development of a broadly protective and safe group B vaccine. Mice and guinea pigs were sequentially immunized with three doses of micovesicles or outer membrane vesicles prepared from three meningococcal strains that were each antigenically heterologous with respect to the two major porin proteins, PorA and PorB, and the group capsular polysaccharide. The resulting antisera conferred passive protection against meningococcal group B bacteremia in infant rats and elicited complement-mediated bactericidal activity against genetically diverse group B strains that were either homologous or heterologous with respect to PorA of the strains used to prepare the vaccine. By using knockout strains, a portion of the bactericidal antibody was directed against the highly conserved protein, neisserial surface protein A (NspA). Further, an anti-NspA monoclonal antibody elicited by the sequential immunization was highly bactericidal against strains that were previously shown to be resistant to bacteriolysis by anti-NspA antibodies produced by immunization with recombinant NspA. Sequential immunization with heterologous vesicle preparations offers a novel approach to eliciting broadly protective immunity against N. meningitidis strains. An NspA-based vaccine prepared from protein expressed by Neisseria also may be more effective than the corresponding recombinant protein made in Escherichia coli.
Collapse
Affiliation(s)
- Gregory R Moe
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673, USA
| | | | | | | |
Collapse
|
37
|
Vermont C, van den Dobbelsteen G. Neisseria meningitidis serogroup B: laboratory correlates of protection. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 34:89-96. [PMID: 12381458 DOI: 10.1111/j.1574-695x.2002.tb00608.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meningococcal disease in the Western countries is frequently caused by Neisseria meningitidis serogroup B. Major efforts have been made to develop a safe and efficacious vaccine against this serogroup which is suitable for use in infants and young children. To assess the quality of the immune response after vaccination with candidate vaccines, laboratory correlates of protection are needed. For serogroups A and C, serum bactericidal activity (SBA) is a well established predictor for protection, but for serogroup B other mechanisms besides SBA may also be involved in conferring protection from disease. Several laboratory methods for identification and evaluation of the immunogenicity of possible vaccine antigens are described in this review.
Collapse
Affiliation(s)
- Clementien Vermont
- Department of Pediatrics, Sophia Children's Hospital/University Hospital, Rotterdam, The Netherlands
| | | |
Collapse
|