1
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
|
3
|
Abstract
One of the problems limiting myoblast transplantation (MT) is the early death of the transplanted cells. Because complement can be fixed by myoblasts in vitro, and because it has the capacity to induce cell lysis, its possible role in the early death of transplanted myoblasts was investigated. CD1 mice and Macaca mulata monkeys were used as recipients for MT. In some mice, C3 was depleted before MT using Cobra Venom Factor. Mice were sacrificed during the first hour and up to 3 days after MT. Monkeys were biopsied 1 to 4 h after MT. Myoblast necrosis was assessed by the presence of intracellular calcium. Complement deposition was demonstrated by immunohistochemistry with anti-C3 and anti-C5b-9 neoantigen antibodies. In mice, C3 deposition was observed in damaged muscle fibers and in regions containing necrosed myoblasts. Complement depletion did not diminish the proportion of necrosed cells. In monkeys, only a small percentage of transplanted myoblasts showed C3 or C5b-9 deposition, mostly intracellular. Complement activation seems not to be implicated in directly damaging the transplanted cells, but seems secondary to cellular death. Taking into account its chemotactic functions, complement could be implicated in the migration of neutrophils and macrophages into the clusters of transplanted cells. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- D Skuk
- Unité de Recherche en Génétique Humaine, Centre Hospitalier de l'Université Laval, Ste-Foy, Québec, Canada
| | | |
Collapse
|
4
|
Bosio E, Lee-Pullen TF, Fragall CT, Beilharz MW, Bennett AL, Grounds MD, Hodgetts SI, Sammels LM. A Comparison between Real-Time Quantitative PCR and DNA Hybridization for Quantitation of Male DNA following Myoblast Transplantation. Cell Transplant 2017; 13:817-21. [PMID: 15690984 DOI: 10.3727/000000004783983369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transplantation of muscle precursor cells (myoblasts) is a potential therapy for Duchenne muscular dystrophy. A commonly used method to detect cell survival is quantitation of the Y chromosome following transplantation of male donor cells into female hosts. This article presents a direct comparison between real-time quantitative PCR (Q-PCR) and the DNA hybridization (slot-blot) technique for quantitation of Y chromosome DNA. Q-PCR has a significantly greater linear quantitation range and is up to 40-fold more sensitive at low concentrations of male DNA, detecting as little as 1 ng of male DNA in each female tibialis anterior (TA) muscle. At high male DNA concentrations, accurate quantitation by Q-PCR is 2.5 times higher than the maximum possible with slot-blot. In conclusion, Q-PCR has a higher dynamic range and is more efficient than slot-blot analysis for the detection of donor cell engraftment in a transsexual transplantation model.
Collapse
Affiliation(s)
- Erika Bosio
- Discipline of Microbiology, School of Biomedical and Chemical Sciences, The University of Western Australia, Perth, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Skuk D, Tremblay JP. Cell Therapy in Myology: Dynamics of Muscle Precursor Cell Death after Intramuscular Administration in Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:232-240. [PMID: 28573152 PMCID: PMC5447384 DOI: 10.1016/j.omtm.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/14/2023]
Abstract
Cell therapy could be useful for the treatment of myopathies. A problem observed in mice, with different results and interpretations, is a significant death among the transplanted cells. We analyzed this problem in non-human primates, the animal model more similar to humans. Autologous or allogeneic myoblasts (with or without a reporter gene) were proliferated in vitro, labeled with [14C]thymidine, and intramuscularly injected in macaques. Some monkeys were immunosuppressed for long-term follow-up. Cell-grafted regions were biopsied at different intervals and analyzed by radiolabel quantification and histology. Most radiolabel was lost during the first week after injection, regardless of whether the cells were allogeneic or autologous, the culture conditions, and the use or not of immunosuppression. There was no significant difference between 1 hr and 1 day post-transplantation, a significant decrease between days 1 and 3 (45% to 83%), a significant decrease between days 3 and 7 (80% to 92%), and no significant differences between 7 days and 3 weeks. Our results confirmed in non-human primates a progressive and significant death of the grafted myoblasts during the first week after administration, relatively similar to some observations in mice but with different kinetics.
Collapse
Affiliation(s)
- Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Québec, QC G1V 4G2, Canada
| |
Collapse
|
6
|
Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, La Sala GB, Bruzzesi G, Ferrari A, Huard J, De Pol A. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 2015; 6:156. [PMID: 26316011 PMCID: PMC4552417 DOI: 10.1186/s13287-015-0141-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/07/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD), caused by a lack of the functional structural protein dystrophin, leads to severe muscle degeneration where the patients are typically wheelchair-bound and die in their mid-twenties from cardiac or respiratory failure or both. The aim of this study was to investigate the potential of human dental pulp stem cells (hDPSCs) and human amniotic fluid stem cells (hAFSCs) to differentiate toward a skeletal myogenic lineage using several different protocols in order to determine the optimal conditions for achieving myogenic commitment and to subsequently evaluate their contribution in the improvement of the pathological features associated with dystrophic skeletal muscle when intramuscularly injected into mdx/SCID mice, an immune-compromised animal model of DMD. METHODS Human DPSCs and AFSCs were differentiated toward myogenic lineage in vitro through the direct co-culture with a myogenic cell line (C2C12 cells) and through a preliminary demethylation treatment with 5-Aza-2'-deoxycytidine (5-Aza), respectively. The commitment and differentiation of both hDPSCs and hAFSCs were evaluated by immunofluorescence and Western blot analysis. Subsequently, hDPSCs and hAFSCs, preliminarily demethylated and pre-differentiated toward a myogenic lineage for 2 weeks, were injected into the dystrophic gastrocnemius muscles of mdx/SCID mice. After 1, 2, and 4 weeks, the gastrocnemius muscles were taken for immunofluorescence and histological analyses. RESULTS Both populations of cells engrafted within the host muscle of mdx/SCID mice and through a paracrine effect promoted angiogenesis and reduced fibrosis, which eventually led to an improvement of the histopathology of the dystrophic muscle. CONCLUSION This study shows that hAFSCs and hDPSCs represent potential sources of stem cells for translational strategies to improve the histopathology and potentially alleviate the muscle weakness in patients with DMD.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Massimo Riccio
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Gianluca Carnevale
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Sara De Biasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Lara Gibellini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Giovanni B La Sala
- Department of Obstetrics and Gynecology, Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Giacomo Bruzzesi
- Oro-Maxillo-Facial Department, AUSL Baggiovara, via Giardini 1355, 41126, Modena, Baggiovara, Italy.
| | - Adriano Ferrari
- Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, Children Rehabilitation Special Unit, IRCCS Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Anto De Pol
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
7
|
Rapamycin represses myotube hypertrophy and preserves viability of C2C12 cells during myogenesis in vitro. Transplantation 2014; 98:139-47. [PMID: 24926828 DOI: 10.1097/tp.0000000000000175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapamycin (RAPA) has been successfully used for myoblast allotransplantation in X chromosome-linked muscular dystrophy mice. However, the mechanism of skeletal myogenesis, particularly in starved condition by RAPA, remains elusive. For this reason, we investigated the effect of RAPA on C2C12 myogenesis in serum-starved condition. METHODS Serum-free treated C2C12 cells were mimicked as skeletal myogenesis in nutrition shortage microenvironment. A methylthiazoletetrazolium (MTT) assay was used to investigate different RAPA concentrations on serum-free treated C2C12 cells and the following assays were used to detect the characteristic of C2C12 myogenesis by RAPA in vitro. RESULTS We found that 150 ng/mL of RAPA did not significantly suppress the viability of C2C12 differentiated cells by MTT assay. The RAPA concentration could protect myoblast serum-starved cells effectively from apoptosis through flow cytometry and retain myogenic regulatory factors through quantitative polymerase chain reaction analysis. However, RAPA significantly suppressed cell migration in wound healing assay (P<0.05). Morphological analyses indicated that RAPA also significantly suppressed myotube hypertrophy in serum-starved C2C12 cells. Western blot analysis revealed that the ratio of phosphate extracellular signal-regulated kinase/extracellular signal-regulated kinase and the protein level of p-Akt decreased in the proliferation medium and in the differentiation medium, respectively. CONCLUSION These findings suggest that myoblast cells are sensitive to RAPA under a serum-starved microenvironment. As an immunosuppressive agent, RAPA shall be used as a considering dosage and as a safe strategy for future myoblast allotransplantation.
Collapse
|
8
|
Stem cell transplantation for muscular dystrophy: the challenge of immune response. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964010. [PMID: 25054157 PMCID: PMC4098613 DOI: 10.1155/2014/964010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023]
Abstract
Treating muscle disorders poses several challenges to the rapidly evolving field of regenerative medicine. Considerable progress has been made in isolating, characterizing, and expanding myogenic stem cells and, although we are now envisaging strategies to generate very large numbers of transplantable cells (e.g., by differentiating induced pluripotent stem cells), limitations directly linked to the interaction between transplanted cells and the host will continue to hamper a successful outcome. Among these limitations, host inflammatory and immune responses challenge the critical phases after cell delivery, including engraftment, migration, and differentiation. Therefore, it is key to study the mechanisms and dynamics that impair the efficacy of cell transplants in order to develop strategies that can ultimately improve the outcome of allogeneic and autologous stem cell therapies, in particular for severe disease such as muscular dystrophies. In this review we provide an overview of the main players and issues involved in this process and discuss potential approaches that might be beneficial for future regenerative therapies of skeletal muscle.
Collapse
|
9
|
S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:167-75. [PMID: 22750505 DOI: 10.1016/j.bbalip.2012.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 01/12/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid whose actions are essential for many physiological processes including angiogenesis, lymphocyte trafficking and development. In addition, S1P serves as a muscle trophic factor that enables efficient muscle regeneration. This is due in part to S1P's ability to activate quiescent muscle stem cells called satellite cells (SCs) that are needed for muscle repair. However, the molecular mechanism by which S1P activates SCs has not been well understood. Further, strategies for harnessing S1P signaling to recruit SCs for therapeutic benefit have been lacking. S1P is irreversibly catabolized by S1P lyase (SPL), a highly conserved enzyme that catalyzes the cleavage of S1P at carbon bond C(2-3), resulting in formation of hexadecenal and ethanolamine-phosphate. SPL enhances apoptosis through substrate- and product-dependent events, thereby regulating cellular responses to chemotherapy, radiation and ischemia. SPL is undetectable in resting murine skeletal muscle. However, we recently found that SPL is dynamically upregulated in skeletal muscle after injury. SPL upregulation occurred in the context of a tightly orchestrated genetic program that resulted in a transient S1P signal in response to muscle injury. S1P activated quiescent SCs via a sphingosine-1-phosphate receptor 2 (S1P2)/signal transducer and activator of transcription 3 (STAT3)-dependent pathway, thereby facilitating skeletal muscle regeneration. Mdx mice, which serve as a model for muscular dystrophy (MD), exhibited skeletal muscle SPL upregulation and S1P deficiency. Pharmacological SPL inhibition raised skeletal muscle S1P levels, enhanced SC recruitment and improved mdx skeletal muscle regeneration. These findings reveal how S1P can activate SCs and indicate that SPL suppression may provide a therapeutic strategy for myopathies. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
10
|
Gerard C, Forest MA, Beauregard G, Skuk D, Tremblay JP. Fibrin Gel Improves the Survival of Transplanted Myoblasts. Cell Transplant 2012; 21:127-37. [DOI: 10.3727/096368911x576018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most frequent muscular dystrophy in children and young adults. Currently, there is no cure for the disease. The transplantation of healthy myoblasts is an experimental therapeutic strategy, since it could restore the expression of dystrophin in DMD muscles. Nevertheless, this cellular therapy is limited by immune reaction, low migration of the implanted cells, and high early cell death that could be at least partially due to anoikis. To avoid the lack of attachment of the cells to an extracellular matrix after the transplantation, which is the cause of anoikis, we tested the use of a fibrin gel for myoblast transplantation. In vitro, three concentrations of fibrinogen were compared (3, 20, and 50 mg/ml) to form a fibrin gel. A stiffer fibrin gel leads to less degradability and less proliferation of the cells. A concentration of 3 mg/ml fibrin gel enhanced the differentiation of the myoblasts earlier as a culture in monolayer. Human myoblasts were also transplanted in muscles of Rag/mdx mice in a fibrin gel or in a saline solution (control). The use of 3 mg/ml fibrin gel for cell transplantation increased not only the survival of the cells as measured after 5 days but also the number of fibers expressing dystrophin after 21 days, compared to the control. Moreover, the fibrin gel was also compared to a prosurvival cocktail. The survival of the myoblasts at 5 days was increased in both conditions compared to the control but the efficacy of the prosurvival cocktail was not significantly higher than the fibrin gel.
Collapse
Affiliation(s)
- Catherine Gerard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Marie Anne Forest
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Genevieve Beauregard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Daniel Skuk
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Jacques P. Tremblay
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| |
Collapse
|
11
|
Rouger K, Larcher T, Dubreil L, Deschamps JY, Le Guiner C, Jouvion G, Delorme B, Lieubeau B, Carlus M, Fornasari B, Theret M, Orlando P, Ledevin M, Zuber C, Leroux I, Deleau S, Guigand L, Testault I, Le Rumeur E, Fiszman M, Chérel Y. Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in duchenne muscular dystrophy dogs. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2501-18. [PMID: 21924229 DOI: 10.1016/j.ajpath.2011.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. Adult stem cell populations have given new impetus to cell-based therapy of neuromuscular diseases. One of them, muscle-derived stem cells, isolated based on delayed adhesion properties, contributes to injured muscle repair. However, these data were collected in dystrophic mice that exhibit a relatively mild tissue phenotype and clinical features of DMD patients. Here, we characterized canine delayed adherent stem cells and investigated the efficacy of their systemic delivery in the clinically relevant DMD animal model to assess potential therapeutic application in humans. Delayed adherent stem cells, named MuStem cells (muscle stem cells), were isolated from healthy dog muscle using a preplating technique. In vitro, MuStem cells displayed a large expansion capacity, an ability to proliferate in suspension, and a multilineage differentiation potential. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in immunosuppressed dystrophic dogs, they contributed to myofiber regeneration, satellite cell replenishment, and dystrophin expression. Importantly, their systemic delivery resulted in long-term dystrophin expression, muscle damage course limitation with an increased regeneration activity and an interstitial expansion restriction, and persisting stabilization of the dog's clinical status. These results demonstrate that MuStem cells could provide an attractive therapeutic avenue for DMD patients.
Collapse
Affiliation(s)
- Karl Rouger
- INRA, UMR 703 Développement et Pathologie du Tissu Musculaire, Nantes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Boonen KJ, Post MJ. The Muscle Stem Cell Niche: Regulation of Satellite Cells During Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:419-31. [DOI: 10.1089/ten.teb.2008.0045] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kristel J.M. Boonen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mark J. Post
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Physiology, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Hirt-Burri N, de Buys Roessingh AS, Scaletta C, Gerber S, Pioletti DP, Applegate LA, Hohlfeld J. Human muscular fetal cells: a potential cell source for muscular therapies. Pediatr Surg Int 2008; 24:37-47. [PMID: 17962961 DOI: 10.1007/s00383-007-2040-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Myoblast transfer therapy has been extensively studied for a wide range of clinical applications, such as tissue engineering for muscular loss, cardiac surgery or Duchenne Muscular Dystrophy treatment. However, this approach has been hindered by numerous limitations, including early myoblast death after injection and specific immune response after transplantation with allogenic cells. Different cell sources have been analyzed to overcome some of these limitations. The object of our study was to investigate the growth potential, characterization and integration in vivo of human primary fetal skeletal muscle cells. These data together show the potential for the creation of a cell bank to be used as a cell source for muscle cell therapy and tissue engineering. For this purpose, we developed primary muscular cell cultures from biopsies of human male thigh muscle from a 16-week-old fetus and from donors of 13 and 30 years old. We show that fetal myogenic cells can be successfully isolated and expanded in vitro from human fetal muscle biopsies, and that fetal cells have higher growth capacities when compared to young and adult cells. We confirm lineage specificity by comparing fetal muscle cells to fetal skin and bone cells in vitro by immunohistochemistry with desmin and 5.1 H11 antibodies. For the feasibility of the cell bank, we ensured that fetal muscle cells retained intrinsic characteristics after 5 years cryopreservation. Finally, human fetal muscle cells marked with PKH26 were injected in normal C57BL/6 mice and were found to be present up to 4 days. In conclusion we estimate that a human fetal skeletal muscle cell bank can be created for potential muscle cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Nathalie Hirt-Burri
- Pediatric Surgery Laboratory, University Hospital Lausanne, CHUV, CI/02/60, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Shefer G, Ben-Dov N, Halevy O, Oron U. Primary myogenic cells see the light: Improved survival of transplanted myogenic cells following low energy laser irradiation. Lasers Surg Med 2008; 40:38-45. [DOI: 10.1002/lsm.20588] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Guo C, Haider HK, Shim WSN, Tan RS, Ye L, Jiang S, Law PK, Wong P, Sim EKW. Myoblast-based cardiac repair: xenomyoblast versus allomyoblast transplantation. J Thorac Cardiovasc Surg 2007; 134:1332-9. [PMID: 17976470 DOI: 10.1016/j.jtcvs.2007.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/09/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE We sought to investigate immune cell kinetics in relation to skeletal myoblast survival and heart function improvement after nonautologous skeletal myoblast transplantation in a rat model of myocardial infarction. METHODS One week after myocardial infarction, 208 Wistar rats were grouped into group 1 (n = 24, receiving 150 muL of medium only), group 2 (n = 24, receiving 150 muL of medium and cyclosporine [INN: ciclosporin]), group 3 (n = 40, human skeletal myoblast transplantation), group 4 (n = 40, human skeletal myoblast transplantation with cyclosporine treatment), group 5 (n = 40, rat skeletal myoblast transplantation), and group 6 (n = 40, rat skeletal myoblast transplantation with cyclosporine treatment). The hearts were harvested at 10 minutes and 1, 4, 7, and 28 days after cell transplantation. Skeletal myoblast survival was confirmed by means of immunohistochemical studies and quantified by using real-time polymerase chain reaction. Host immune responses were assessed by immunostaining for macrophages and CD4+ and CD8+ lymphocytes. Heart function was evaluated by means of echocardiographic analysis. RESULTS The majority of macrophages and lymphocytes infiltrated in the acute phase (from day 1 to day 7) and then subsided by day 28. The donor skeletal myoblasts survived and differentiated well in all skeletal myoblast transplantation groups. Allogeneic skeletal myoblasts showed a superior survival rate than xenogeneic skeletal myoblasts (P < .01). Cyclosporine inhibited the infiltration of the immunocytes, enhanced skeletal myoblast survival, and improved heart performance compared with that seen in the groups not receiving cyclosporine treatment (P < .05). CONCLUSIONS Allomyoblasts survive better than do xenomyoblasts after transplantation into infarcted myocardium. After inhibition of immunocyte infiltration by means of immunosuppressive treatment, skeletal myoblast survival is enhanced, with improved heart performance. These findings suggest the feasibility of nonautologous myoblast transplantation with immunosuppressive treatment.
Collapse
Affiliation(s)
- Changfa Guo
- Department of Surgery, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Davis BH, Schroeder T, Yarmolenko PS, Guilak F, Dewhirst MW, Taylor DA. An in vitro system to evaluate the effects of ischemia on survival of cells used for cell therapy. Ann Biomed Eng 2007; 35:1414-24. [PMID: 17417737 DOI: 10.1007/s10439-007-9301-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 03/23/2007] [Indexed: 02/01/2023]
Abstract
Maintaining cell viability is a major challenge associated with transplanting cells into ischemic myocardium to restore function. A likely contributor to significant cell death during cardiac cell therapy is hypoxia/anoxia. We developed a system that enabled quantification and association of cell survival with oxygen and nutrient values within in vitro constructs. Myoblasts were suspended in 2% collagen gels in 1 cm diameter x 1 cm deep constructs. At 48 +/- 3 h post-seeding, oxygen levels were measured using microelectrodes and gels were snap-frozen. Bioluminescence metabolite imaging and TUNEL staining were performed on cryosections. Oxygen and glucose consumption and lactate production rates were calculated by fitting data to Fick's second law of diffusion with Michaelis-Menten kinetics. Oxygen levels dropped to 0 mmHg and glucose levels dropped from 4.28 to 3.18 mM within the first 2000 mum of construct depth. Cell viability dropped to approximately 40% over that same distance and continued to drop further into the construct. We believe this system provides a reproducible and controllable test bed to compare survival, proliferation, and phenotype of various cell inputs (e.g., myoblasts, mesenchymal stem cells, and cardiac stem cells) and the impact of different treatment regimens on the likelihood of survival of transplanted cells.
Collapse
Affiliation(s)
- Bryce H Davis
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
17
|
Maurel A, Azarnoush K, Sabbah L, Vignier N, Le Lorc'h M, Mandet C, Bissery A, Garcin I, Carrion C, Fiszman M, Bruneval P, Hagege A, Carpentier A, Vilquin JT, Menasché P. Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation 2005; 80:660-5. [PMID: 16177642 DOI: 10.1097/01.tp.0000172178.35488.31] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cell death remains a major limitation of skeletal myoblast (SM) transplantation but the patterns of cell survival and proliferation in heart and their potential modulation by thermic stresses like heat shock (HS) and cryopreservation (Cryo) are still incompletely characterized. METHODS To track SMs in situ, we developed a dual-marker system based on the semiconservative expression of the foreign soluble protein, beta-Galactosidase (beta-Gal) and the constitutive expression of the Y chromosome in a myocardial infarction model. Control medium or Lewis male rat SMs (fresh or subjected to Cryo or HS) were injected in Lewis female rats. RESULTS There was a massive cell loss early after transplantation in the fresh group, which was only partially compensated for by a subsequent proliferation. Conversely, both Cryo and HS significantly improved early cell survival but blunted subsequent proliferation so that, at 15 days posttransplantation, the total number of engrafted donor-derived Y-positive cells did not differ significantly between the three groups. Most of them expressed a skeletal muscle phenotype. CONCLUSIONS These data confirm the high death rate of in-scar transplanted myoblasts, demonstrate the ability of those that survive to proliferate and differentiate along the myogenic pathway but do not support the efficacy of either Cryo or HS for increasing the ultimate magnitude of myoblast engraftment.
Collapse
Affiliation(s)
- Agnès Maurel
- 1 INSERM U633, Laboratoire d'Etude des Greffes et Prothèses Cardiaques, Hôpital Broussais, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ott HC, Davis BH, Taylor DA. Cell Therapy for Heart Failure—Muscle, Bone Marrow, Blood, and Cardiac-Derived Stem Cells. Semin Thorac Cardiovasc Surg 2005; 17:348-60. [PMID: 16428043 DOI: 10.1053/j.semtcvs.2005.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2005] [Indexed: 12/23/2022]
Abstract
Heart failure (HF) affects a rapidly growing population of patients. Despite improvements in the understanding and therapy of many stages of cardiovascular disease, there has been little progress in treating HF. In the late-stage disease, current options are cardiac transplantation and mechanical support--options that are limited to a small patient collective. The ischemically injured failing heart lacks contractile myocardium, functional vasculature, and electrical integrity, which has made treatment of the underlying injury untenable in the past. Restoring all of these components seems an overwhelming challenge. Yet, the concept of cell therapy--tissue repair by transplantation of stem and progenitor cells--has opened new potential options for patients with heart failure. Skeletal myoblasts, bone marrow, and blood-derived stem cells have all shown considerable myogenic and angiogenic potential in vitro and have rapidly moved from bench to bedside. A number of nonrandomized, non-placebo-controlled safety and feasibility studies have been reported and now double-blinded randomized controlled trials are underway. Despite this rapid clinical pace, the exact mechanisms underlying the functional benefits of different cell types are not well understood. Instead, multiple similar mechanism have been ascribed to virtually every cell type. Thus, while the field is exciting and offers unheralded promise to treat patients with CVD, we must proceed with due diligence and caution. Only a deep understanding of the benefits versus the risks, and the mechanisms involved in cell-mediated cardiac repair, will allow us to design clinically valuable tools and fulfill the potential of this exciting 21st century approach to treating cardiovascular disease.
Collapse
Affiliation(s)
- Harald C Ott
- Center for Cardiovascular Repair, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
19
|
Abstract
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Inserm U.582, Institut de Myologie, Groupe hospitalier Pitié-Salpêtrière, Bâtiment Babinski, 75651 Paris Cedex 13, France.
| | | |
Collapse
|
20
|
Suzuki K, Murtuza B, Beauchamp JR, Brand NJ, Barton PJR, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH. Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation 2005; 110:II219-24. [PMID: 15364866 DOI: 10.1161/01.cir.0000138388.55416.06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Poor survival of grafted cells is a major factor hindering the therapeutic effect of cell transplantation; however, the causes of cell death remain unclear. We hypothesized that interleukin-1beta (IL-1beta) might play a role in the acute inflammatory response and graft death after cell transplantation and that inhibition of IL-1beta might improve graft survival. METHODS AND RESULTS 14C-labeled male skeletal muscle precursor cells were implanted into female mouse hearts by direct intramuscular injection. The amount of 14C-label provides an estimate of the surviving cell number, whereas the amount of male-specific Smcy gene measured by polymerase chain reaction indicates the total (surviving+proliferated) number of donor-derived cells. At 10 minutes after implantation, 44.8+/-2.4% of the grafted cells survived and this steadily decreased to 14.6+/-1.1% by 24 hours, and to 7.9+/-0.6% by 72 hours (n=6 in each point). Proliferation of the surviving cells, which began after 24 hours, resulted in an increase in the total cell number from 15.5+/-0.8% at 24 hours to 24.4+/-1.6% at 72 hours. Acute inflammation was prominent at 24 hours and was reduced by 72 hours, in parallel with IL-1beta expression. Administration of anti-IL-1beta antibody improved graft survival at both 24 (25.6+/-1.6%) and 72 hours (14.8+/-1.1%) and resulted in a 2-fold increase in the total cell number at 72 hours (45.8+/-2.4%). The effects of IL-1beta inhibition corresponded with a reduced inflammatory response. CONCLUSIONS IL-1beta is involved in acute inflammation and graft death after direct intramyocardial cell transplantation. Targeted inhibition of IL-1beta may be a useful strategy to improve graft survival.
Collapse
Affiliation(s)
- Ken Suzuki
- Cell and Gene Therapy Group, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield, Middlesex, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA. Transcatheter Transplantation of Autologous Skeletal Myoblasts in Postinfarction Patients With Severe Left Ventricular Dysfunction. J Endovasc Ther 2004; 11:695-704. [PMID: 15615560 DOI: 10.1583/04-1386r.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To report a case-controlled safety and feasibility study of transcatheter transplantation of autologous skeletal myoblasts as a stand-alone procedure in patients with ischemic heart failure. METHODS Six men (mean age 66.2+/-7.2 years) were eligible for transcatheter transplantation of autologous skeletal myoblasts cultured from quadriceps muscle biopsies. Six other men (mean age 65.7+/-6.3 years) were selected as matched controls (no muscle biopsies). A specially designed injection catheter was advanced through a femoral sheath into the left ventricle cavity, where myoblasts in solution (0.2 mL/injection) were injected into the myocardium via a 25-G needle. At baseline and in follow-up, both groups underwent Holter monitoring, a 6-minute walk test, New York Heart Association (NYHA) class determination, and echocardiography with dobutamine challenge. RESULTS Skeletal myoblast transplantation was technically successful in all 6 patients with no complications; 19+/-10 injections were performed per patient (210 x 10(6)+/-150 x 10(6) cells implanted per patient). Left ventricular ejection fraction (LVEF) rose from 24.3%+/-6.7% at baseline to 32.2%+/-10.2% at 12 months after myoblast implantation (p=0.02 versus baseline and p<0.05 versus controls); in matched controls, LVEF decreased from 24.7%+/-4.6% to 21.0%+/-4.0% (p=NS). Walking distance and NYHA functional class were significantly improved at 1 year (p=0.02 and p=0.001 versus baseline, respectively), whereas matched controls were unchanged. CONCLUSIONS Transcatheter transplantation of autologous skeletal myoblasts for severe left ventricular dysfunction in postinfarction patients is feasible, safe, and promising. Scrutiny with randomized, double-blinded, multicenter trials appears warranted.
Collapse
Affiliation(s)
- Hüseyin Ince
- Division of Cardiology/Angiology and Department of Internal Medicine at the University Hospital Rostock, Germany
| | | | | | | | | |
Collapse
|
22
|
Cousins JC, Woodward KJ, Gross JG, Partridge TA, Morgan JE. Regeneration of skeletal muscle from transplanted immortalised myoblasts is oligoclonal. J Cell Sci 2004; 117:3259-69. [PMID: 15199096 DOI: 10.1242/jcs.01161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myoblasts transplanted into muscles of recipient mice mostly die, only a minor stem cell-like subpopulation surviving and participating in muscle regeneration. To investigate this phenomenon further, we used a retrovirus expressing beta-galactosidase to provide a unique marker for satellite-cell-derived muscle precursor cells, before transplanting them into myopathic mdx nu/nu mouse muscle. We employed inverse polymerase chain reaction to identify viral integrations, to follow the fate of clones present within the injected cells. Mass-infected cultures contained many marked clones, some of which contributed disproportionately to muscle regeneration. Although no particular clones showed overall predominance, some were present in more than one injected muscle, an eventuality unlikely to arise by chance. Conversely, in grafts of muscle precursor cells that had either been labelled as sparse satellite-cell derived cultures, or had been cloned, all clones were shown to be able to survive and form muscle in vivo. Moreover, all clones contributed to further generations of new-formed muscle fibres following a series of injuries administered to injected muscles, demonstrating that some cells of each clone had been retained as stem-cell-like muscle precursors. Furthermore, retrovirally marked satellite-cell-derived clones were derived from muscles that had been injected with marked muscle precursor cells. These cells formed muscle following their transplantation into a new host mouse, confirming their stem cell properties.
Collapse
Affiliation(s)
- Joanne C Cousins
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio 78229, USA
| | | | | | | | | |
Collapse
|
23
|
Suzuki K, Murtuza B, Beauchamp JR, Smolenski RT, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH. Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 2004; 18:1153-5. [PMID: 15155562 DOI: 10.1096/fj.03-1308fje] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival and proliferation of skeletal myoblasts within the cardiac environment are crucial to the therapeutic efficacy of myoblast transplantation to the heart. We have analyzed the early dynamics of myoblasts implanted into the myocardium and investigated the mechanisms underlying graft attrition. At 10 min after implantation of [14C]thymidine-labeled male myoblasts into female mice hearts, 14C measurement showed that 39.2 +/- 3.0% of the grafted cells survived, and this steadily decreased to 16.0 +/- 1.7% by 24 h and to 7.4 +/- 0.9% by 72 h. PCR of male-specific Smcy gene calculated that the total (surviving plus proliferated) number of donor-derived cells was 18.3 +/- 1.6 and 23.3 +/- 1.3% at 24 and 72 h, respectively, indicating that proliferation of the surviving cells began after 24 h. Acute inflammation became prominent by 24 h and was reduced by 72 h as indicated by myeloperoxidase activity and histological findings. Multiplex RT-PCR revealed corresponding changes in IL-1beta, TGF-beta, IL-6, and TNF-alpha expression. Treatment with CuZn-superoxide dismutase attenuated the initial rapid death and resulted in enhanced cell numbers afterward, giving a twofold increased total number at 72 h compared with the nontreatment. This effect was associated with reduced inflammatory response, suggesting a causative role for superoxide in the initial rapid graft death and subsequent inflammation. These data describe the early dynamics of myoblasts implanted into the myocardium and suggest that initial oxidative stress and following inflammatory response may be important mechanisms contributing to acute graft attrition, both of which could be potential therapeutic targets to improve the efficiency of cell transplantation to the heart.
Collapse
Affiliation(s)
- Ken Suzuki
- Harefield Heart Science Centre, National Heart and Lung Institute, Harefield, Middlesex, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Garrido Colino C. [Current concepts in stem cell research]. An Pediatr (Barc) 2003; 59:552-8. [PMID: 14636520 DOI: 10.1016/s1695-4033(03)78779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In the last few years, advances in stem cell research have opened up new horizons in the treatment of human diseases and in regenerative medicine. It is not unusual to find news on stem cell research in newspapers and other media. This review describes some basic concepts in research needed to understand the medical literature on stem cells and to provide the information and bibliography necessary to be up to date in one of the subjects that has generated the greatest number of publications in the last few years.
Collapse
Affiliation(s)
- C Garrido Colino
- Pediatra EAP. Panaderas II. Area IX. Fuenlabrada. Madrid. España.
| |
Collapse
|
25
|
Skuk D, Caron NJ, Goulet M, Roy B, Tremblay JP. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. J Neuropathol Exp Neurol 2003; 62:951-67. [PMID: 14533784 DOI: 10.1093/jnen/62.9.951] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We conducted a study in mice to reevaluate and clarify many aspects of the early survival of muscle cells following transplantation. Male mouse muscle cells (primary-cultures and T-antigen-immortalized clones) labeled with [14C]thymidine and beta-galactosidase were injected into female muscles. Each label was detected in the muscles after different time periods. TUNEL, alizarin red, and immunodetection of active caspase-3 were done in muscle sections. The donor cell labels disappeared from the muscles following donor cell death, but this was not instantaneous and even if the donor cells were killed before transplantation, the first 6 hours were not enough to clear [14C]thymidine and Y chromosome. Using the cell pellet before injection as the 100% baseline for cells injected to evaluate cell death can lead to misinterpretations: the Y-chromosome band was 5-fold stronger than that of a muscle injected with cells, irrespective of whether the cells were previously killed or not. There was no evidence of an immediate massive donor cell death. Necrosis (detected by alizarin red) and apoptosis (detected by active caspase-3) were present among the donor myoblasts following transplantation. Necrosis seemed to be the most important mechanism during the first hours. T-antigen immortalized cells died earlier and more massively than primary-cultured cells, but the surviving cells proliferated more. Indeed, they seemed to exhibit more apoptosis and they triggered a more rapid CD8+ cell infiltration. As a result of our findings, many concepts concerning the early donor cell death following myoblast transplantation must be reconsidered.
Collapse
Affiliation(s)
- Daniel Skuk
- Unité de recherche en Génétique humaine, Centre de Recherche du Centre Hospitalier de l'Université Laval, CHUL du CHUQ, Ste-Foy, Québec, Canada.
| | | | | | | | | |
Collapse
|
26
|
Hodgetts SI, Grounds MD. Irradiation of dystrophic host tissue prior to myoblast transfer therapy enhances initial (but not long-term) survival of donor myoblasts. J Cell Sci 2003; 116:4131-46. [PMID: 12972504 DOI: 10.1242/jcs.00721] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
There is a massive and rapid death of donor myoblasts (<20% surviving) within hours after intramuscular injection in myoblast transfer therapy (MTT), due to host immune cells, especially natural killer (NK) cells. To investigate the role of host immune cells in the dramatic death of donor myoblasts, MTT experiments were performed in irradiated host mice. Cultured normal C57BL/10ScSn male donor myoblasts were injected into muscles of female C57BL/10ScSn-Dmdmdx host mice after one of three treatments: whole body irradiation (WBI) to eliminate all circulating leukocytes, WBI and bone marrow reconstitution (BMR), or local irradiation (or protection) of one limb. Similar experiments were performed in host mice after antibody depletion of NK cells. Numbers of male donor myoblasts were quantified using a Y-chromosome-specific (male) probe following total DNA extraction of injected muscles. WBI prior to MTT resulted in dramatically enhanced survival (approximately 80%) of donor myoblasts at 1 hour after MTT, supporting a central role for host inflammatory cells in the initial death of donor myoblasts seen in untreated host mice. BMR restored the massive and rapid loss (approximately 25% surviving) of donor myoblasts at 1 hour after MTT. Local pre-irradiation also resulted in increased donor myoblast numbers (approximately 35-40%) compared with untreated controls (approximately 10%) at 3 weeks after MTT. Preirradiation of host muscle with 10 Gy did not significantly stimulate proliferation of the injected donor myoblasts. Serum protein levels of TNFalpha, IL-1beta, IL-6 and IL-12 fluctuated following irradiation treatments. These combined results strongly reinforce a major role for host immune cells in the rapid death of injected cultured donor myoblasts.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.
| | | |
Collapse
|
27
|
Skuk D, Caron N, Goulet M, Roy B, Espinosa F, Tremblay JP. Dynamics of the early immune cellular reactions after myogenic cell transplantation. Cell Transplant 2003; 11:671-81. [PMID: 12518894 DOI: 10.3727/000000002783985378] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of immune cells in the early donor cell death/survival following myoblast transplantation is confusing, one of the reasons being the lack of data about the immune reactions following cell transplantation. We used outbred mice as hosts for transplantation of primary cultured muscle cells and T-antigen-immortalized myoblasts. The host muscles were analyzed 1 h to 7 days after cell injection. No net loss of the donor primary cultured cell population was observed in this period. The immune cellular reaction in this case was: 1) a brief (<48 h) neutrophil invasion; 2) macrophage infiltration from days 1 to 7; 3) a specific response involving CTL and few NK cells (days 6 and 7), preceded by a low CD4+ cell infiltration starting at day 3. In contrast, donor-immortalized myoblasts completely disappeared during the 7-day follow-up. In this case, an intense infiltration of CTL and macrophages, with moderate CD4+ infiltration and lower amounts of NK cells, was observed starting at day 2. The nonspecific immune response at days 0 and 1 was similar for both types of donor cells. The present observations set a basis to interpret the role of immune cells on the early death/survival of donor cells following myoblast transplantation.
Collapse
Affiliation(s)
- Daniel Skuk
- Unité de recherche en Génétique humaine, Centre de Recherche du Centre Hospitalier de l'Université Laval, CHUL du CHUQ, Quebec, Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
28
|
Menasché P, Hagège AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003; 41:1078-83. [PMID: 12679204 DOI: 10.1016/s0735-1097(03)00092-5] [Citation(s) in RCA: 708] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES This phase I trial was designed to assess the feasibility and safety of autologous skeletal myoblast transplantation in patients with severe ischemic cardiomyopathy. BACKGROUND Experimentally, myoblast grafting into postinfarction myocardial scars improves left ventricular function. METHODS Ten patients were included on the basis of the following criteria: 1) severe left ventricular dysfunction (ejection fraction < or = 35%); 2) the presence of a postinfarction akinetic and nonviable scar, as assessed by dobutamine echocardiography and 18-fluorodeoxyglucose positron emission tomography; and 3) an indication of coronary bypass in remote areas. Skeletal myoblasts were grown from a biopsy taken at the thigh. RESULTS An average of 871 x 10(6) cells (86% of myoblasts) were obtained after a mean period of 16 days and implanted uneventfully across the scar at the time of bypass. Except for one patient whose early death was unrelated to the cell transplantation, all patients had an uncomplicated postoperative course. Four patients showed delayed episodes of sustained ventricular tachycardia and were implanted with an internal defibrillator. At an average follow-up of 10.9 months, the mean New York Heart Association functional class improved from 2.7 +/- 0.2 preoperatively to 1.6 +/- 0.1 postoperatively (p < 0.0001), and the ejection fraction increased from 24 +/- 1% to 32 +/- 1% (p < 0.02). A blinded echocardiographic analysis showed that 63% of the cell-implanted scars (14 of 22) demonstrated improved systolic thickening. One noncardiac death occurred 17.5 months after transplantation. CONCLUSIONS These preliminary data suggest the feasibility and safety of autologous skeletal myoblast transplantation in severe ischemic cardiomyopathy, with the caveat of an arrhythmogenic potential. New-onset contraction of akinetic and nonviable segments suggests a functional efficacy that requires confirmation by randomized studies.
Collapse
Affiliation(s)
- Philippe Menasché
- Assistance Publique-Hôpitaux de Paris, Department of Cardiovascular Surgery B, Hôpital Bichat, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
El Fahime E, Bouchentouf M, Benabdallah BF, Skuk D, Lafreniere JF, Chang YT, Tremblay JP. Tubulyzine, a novel tri-substituted triazine, prevents the early cell death of transplanted myogenic cells and improves transplantation success. Biochem Cell Biol 2003; 81:81-90. [PMID: 12870872 DOI: 10.1139/o03-054] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myoblast transplantation (MT) is a potential therapeutic approach for several muscular dystrophies. A major limiting factor is that only a low percentage of the transplanted myoblasts survives the procedure. Recent advances regarding how and when the myoblasts die indicate that events preceding actual tissue implantation and during the first days after the transplantation are crucial. Myoseverin, a recently identified tri-substituted purine, was shown to induce in vitro the fission of multinucleated myotubes and affect the expression of a variety of growth factors, and immunomodulation, extracellular matrix-remodeling, and stress response genes. Since the effects of myoseverin are consistent with the activation of pathways involved in wound healing and tissue regeneration, we have investigated whether pretreatment and co-injection of myoblasts with Tubulyzine (microtubule lysing triazine), an optimized myoseverin-like molecule recently identified from a triazine library, could reduce myoblast cell death following their transplantation and consequently improves the success of myoblast transplantation. In vitro, using annexin-V labeling, we showed that Tubulyzine (5 microM) prevents normal myoblasts from apoptosis induced by staurosporine (1 microM). In vivo, the pretreatment and co-injection of immortal and normal myoblasts with Tubulyzine reduced significantly cell death (assessed by the radio-labeled thymidine of donor DNA) and increased survival of myoblasts transplanted in Tibialis anterior (TA) muscles of mdx mice, thus giving rise to more hybrid myofibers compared to transplanted untreated cells. Our results suggest that Tubulyzine can be used as an in vivo survival factor to improve the myoblast-mediated gene transfer approach.
Collapse
Affiliation(s)
- E El Fahime
- Human Genetic, CHUQ-CHUL, Laval University, 2705, boul. Laurier, RC-9300, Ste-Foy, QC GIV 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Hodgetts SI, Spencer MJ, Grounds MD. A role for natural killer cells in the rapid death of cultured donor myoblasts after transplantation. Transplantation 2003; 75:863-71. [PMID: 12660516 DOI: 10.1097/01.tp.0000053754.33317.4b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The rapid and massive death of cultured donor myoblasts after injection in vivo is a major problem for clinical myoblast transfer therapy (MTT). This study shows blood-borne factors are responsible and that ablating the host natural killer (NK) cell response greatly enhances the survival of such donor myoblasts. METHODS Cultured male donor myoblasts were injected into muscles of female host mice and surviving donor male DNA (myoblasts) quantified using a Y-chromosome specific (Y1) probe. Survival of donor myoblasts transfected with m144, a murine major histocompatibility complex (MHC) class I homologue that protects against NK attack, was quantified. In addition, donor myoblast survival was investigated in host mice following initial (before MTT) and sustained (repeatedly for 3 weeks after MTT) depletion of host NK1.1+ and CD4+/CD8+ cells using specific monoclonal antibodies (either alone or in combination) for up to 3 weeks after MTT, as well as in beige (deficient in NK activity) and in perforin-deficient mdx host mice. RESULTS A major role for blood-borne factors (especially cells) was confirmed by MTT experiments in irradiated and perfused host mice. Substantially enhanced myoblast survival was seen with donor myoblasts modified by transfection with the m144 molecule or following antibody depletion of host NK1.1+ cells and in beige host mice. Other studies support some role for CD8+ but not CD4+ cells. CONCLUSIONS These combined data support a central role for host NK cells in the rapid initial death of donor myoblasts. The demonstrated role of NK cells provides strategies to enhance the efficacy of clinical myoblast transplantation.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Western Australia.
| | | | | |
Collapse
|
31
|
Abstract
Since its discovery four decades ago, the satellite cell of skeletal muscle has been implicated as the major source of myogenic cells involved in growth and repair of muscle fibres. This review not only looks at the role of the satellite cell in these processes but discusses how cells derived from other sources and tissues have recently been implicated in muscle formation and regeneration. Muscle itself also yields cells that contribute to other cell lineages although it is currently debated as to whether these cells originate within muscle or have migrated there from other tissues. The reality of using cells from muscle or other tissues to repair diseased muscle fibres is also addressed.
Collapse
Affiliation(s)
- Kirstin Goldring
- Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Campus, St Dunstan's Road, London W6 8RP, UK
| | | | | |
Collapse
|
32
|
Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O. Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 2002; 115:1461-9. [PMID: 11896194 DOI: 10.1242/jcs.115.7.1461] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Low energy laser irradiation (LELI) has been shown to promote skeletal muscle cell activation and proliferation in primary cultures of satellite cells as well as in myogenic cell lines. Here, we have extended these studies to isolated myofibers. These constitute the minimum viable functional unit of the skeletal muscle, thus providing a close model of in vivo regeneration of muscle tissue. We show that LELI stimulates cell cycle entry and the accumulation of satellite cells around isolated single fibers grown under serum-free conditions and that these effects act synergistically with the addition of serum. Moreover, for the first time we show that LELI promotes the survival of fibers and their adjacent cells, as well as cultured myogenic cells, under serum-free conditions that normally lead to apoptosis. In both systems, expression of the anti-apoptotic protein Bcl-2 was markedly increased, whereas expression of the pro-apoptotic protein BAX was reduced. In culture, these changes were accompanied by a reduction in the expression of p53 and the cyclin-dependent kinase inhibitor p21, reflecting the small decrease in viable cells 24 hours after irradiation. These findings implicate regulation of these factors as part of the protective role of LELI against apoptosis. Taken together, our findings are of critical importance in attempts to improve muscle regeneration following injury.
Collapse
Affiliation(s)
- Gavriella Shefer
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Since the identification in 1987 of the gene for Duchenne muscular dystrophy (DMD), research on the molecular pathogenesis of muscular dystrophy has progressed extensively. In particular, discovery of the DMD gene product, dystrophin, led to the identification of dystrophin-associated proteins and, subsequently, the recognition of other types of muscular dystrophy caused by the defects in each of the sarcoglycan genes. On the other hand, effective therapy for DMD has not yet been established. Some of the viral vectors, such as adeno-associated virus vectors or lentiviral vector, have been proven to enable the long-term expression of the exogenous gene without overt host immune reactions. However, dystrophin cDNAs are too large (14kb) to be accommodated in these viral vectors. To solve this problem, we and other research groups succeeded in truncating full-length dystrophin cDNA to small dystrophin cDNA (4 to 5kb), the products of which protect dystrophin-deficient mdx muscle from contraction-induced membrane damage when introduced by viral vectors or as a transgene into mdx mice. The usefulness of these truncated dystrophin cDNAs should be confirmed using other animal models such as dystrophic dogs. To develop successful treatment of DMD, the authors believe that several different approaches should be used, such as cell transfer therapy, drug design to up-regulate utrophin, or a strategy to repair the mutation in vivo.
Collapse
Affiliation(s)
- S Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. takeda@
| | | |
Collapse
|
34
|
Hodgetts SI, Grounds MD. Complement and myoblast transfer therapy: donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5. Immunol Cell Biol 2001; 79:231-9. [PMID: 11380675 DOI: 10.1046/j.1440-1711.2001.01006.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myoblast transfer therapy (MTT) is a potential cell therapy for myopathies such as Duchenne Muscular Dystrophy and involves the injection of cultured muscle precursor cells ('myoblasts') isolated from normal donor skeletal muscles into dystrophic host muscle. The failure of donor myoblast survival following MTT is widely accepted as being due to the immune response of the host. The role of complement as one possible mechanism for the initial, very rapid death of myoblasts following MTT was investigated. Donor male myoblasts were injected into the tibialis anterior (TA) muscles of female host mice that were: (i) untreated; (ii) depleted of C3 complement (24 h prior to MTT) using cobra venom factor (CVF); and/or (iii) deficient in C5 complement. Quantification of surviving male donor myoblast DNA was performed using the Y-chromosome specific (Y1) probe on slot blots for samples taken at 0 h, 1 h, 24 h, 1 week and 3 weeks after MTT. Peripheral depletion of C3 was confirmed using double immunodiffusion, and local depletion of C3 in host TA muscles was confirmed by immunostaining of muscle samples. Cobra venom factor treatment significantly increased the initial survival of donor myoblasts, but there was a marked decline in myoblast numbers after 1 h and little long-term benefit by 3 weeks. Strain specific variation in the immediate survival of donor male myoblasts following MTT in untreated C57BL/10Sn, DBA-1 and DBA-2 (C5-deficient) female hosts was observed. Cobra venom factor depletion of C3 increased initial donor male myoblast survival (approximately twofold at 0 h) in C57BL/10Sn and DBA-1 host mice and approximately threefold in DBA-2 hosts at 0 h and 1 h after MTT. The rapid and extensive number (approximately 90%) of donor male myoblasts in untreated DBA-2 mice (that lack C5) indicates that activation of the membrane attack complex (MAC) plays no role in this massive initial cell death. The observation that myoblast survival was increased in all mice treated with CVF suggests that CVF may indirectly enhance donor myoblast survival by a mechanism possibly involving activated C3 fragments.
Collapse
Affiliation(s)
- S I Hodgetts
- Department of Anatomy and Human Biology, University of Western Australia, Crawley, Western Australia, Australia.
| | | |
Collapse
|
35
|
Cao B, Pruchnic R, Ikezawa M, Xiao X, Li J, Wickham TJ, Kovesdi I, Rudert WA, Huard J. The role of receptors in the maturation-dependent adenoviral transduction of myofibers. Gene Ther 2001; 8:627-37. [PMID: 11320409 DOI: 10.1038/sj.gt.3301425] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Accepted: 01/15/2001] [Indexed: 11/09/2022]
Abstract
One of the major hurdles facing the application of adenoviral gene transfer to skeletal muscle is the maturation-dependent transduction of muscle myofibers. It was recently proposed that the viral receptors (Coxsackie and adenovirus receptor (CAR) and the integrins alphavbeta3/beta5) play a major role in the poor adenoviral transduction of mature myofibers. Here we report the findings of morphological studies designed to determine experimentally the role of receptors in the adenoviral transduction of mature myofibers. First, we observed that the expression of both attachment and internalization receptors did not change significantly during muscle development. Second, when an extended tropism adenoviral vector (AdPK) that attaches to heparan sulfate proteoglycan (HSP) is used, a significant reduction of adenoviral transduction still occurs in mature myofibers despite HSP's high expression in mature skeletal muscle fibers. Third, when the adeno-associated virus (AAV) is used, which also utilizes HSP as a viral receptor, muscle fibers at different maturities can be highly transduced. Fourth, the pre-irradiation of the skeletal muscle of newborn mice to inactivate myoblasts dramatically decreased the transduction level of Ad and AdPK, but had no effect on AAV-mediated viral transduction of immature myofibers. These results taken together suggest that the viral receptor(s) is not a major determinant in maturation-dependent adenoviral transduction of myofibers.
Collapse
Affiliation(s)
- B Cao
- Growth and Development Laboratory, Department of Orthopaedic Surgery, Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Duchenne muscular dystrophy is a severe X-linked neuromuscular disease that affects approximately 1/3500 live male births in every human population, and is caused by a mutation in the gene that encodes the muscle protein dystrophin. The characterization and cloning of the dystrophin gene in 1987 was a major breakthrough and it was considered that simple replacement of the dystrophin gene would ameliorate the severe and progressive skeletal muscle wasting characteristic of Duchenne muscular dystrophy. After 20 years, attempts at replacing the dystrophin gene either experimentally or clinically have met with little success, but there have been many significant advances in understanding the factors that limit the delivery of a normal dystrophin gene into dystrophic host muscle. This review addresses the host immune response and donor myoblast changes underlying some of the major problems associated with myoblast-mediated dystrophin replacement, presents potential solutions, and outlines other novel therapeutic approaches.
Collapse
Affiliation(s)
- G M Smythe
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94304-5235, USA.
| | | | | |
Collapse
|
37
|
Hodgetts SI, Beilharz MW, Scalzo AA, Grounds MD. Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplant 2000; 9:489-502. [PMID: 11038066 DOI: 10.1177/096368970000900406] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Overcoming the massive and rapid death of injected donor myoblasts is the primary hurdle for successful myoblast transfer therapy (MTT), designed as a treatment for the lethal childhood myopathy Duchenne muscular dystrophy. The injection of male myoblasts into female host mice and quantification of surviving male DNA using the Y-chromosome-specific (Y1) probe allows the speed and extent of death of donor myoblasts to be determined. Cultured normal C57BL/10Sn male donor myoblasts were injected into untreated normal C57BL/10Sn and dystrophic mdx female host mice and analyzed by slot blots using a 32P-labeled Y1 probe. The amount of male DNA from donor myoblasts showed a remarkable decrease within minutes and by 1 h represented only about 10-18% of the 2.5 x 10(5) cells originally injected (designated 100%). This declined further over 1 week to approximately 1-4%. The host environment (normal or dystrophic) as well as the extent of passaging in tissue culture (early "P3" or late "P15-20" passage) made no difference to this result. Modulation of the host response by CD4+/CD8+ -depleting antibodies administered prior to injection of the cultured myoblasts dramatically enhanced donor myoblast survival in dystrophic mdx hosts (15-fold relative to untreated hosts after 1 week). NK1.1 depletion also dramatically enhanced donor myoblast survival in dystrophic mdx hosts (21-fold after 1 week) compared to untreated hosts. These results provide a strategic approach to enhance donor myoblast survival in clinical trials of MTT.
Collapse
Affiliation(s)
- S I Hodgetts
- Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Perth.
| | | | | | | |
Collapse
|
38
|
Moisset PA, Bonham L, Skuk D, Koeberl D, Brussee V, Goulet M, Roy B, Asselin I, Miller AD, Tremblay JP. Systemic production of human granulocyte colony-stimulating factor in nonhuman primates by transplantation of genetically modified myoblasts. Hum Gene Ther 2000; 11:1277-88. [PMID: 10890738 DOI: 10.1089/10430340050032384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical use of human granulocyte-colony stimulating factor (hG-CSF) to treat various diseases involving neutropenia has been previously shown to (1) successfully increase circulating neutrophils, (2) reduce condition-related infections, and (3) cause few side effects in patients. To alleviate the symptoms of neutropenia, the patient must receive frequent injections of recombinant hG-CSF. Permanent ways to deliver stable levels of the molecule to the patient are being investigated. Among them, the transplantation of hG-CSF-secreting cells has been proposed and performed successfully in rodents, using fibroblast cell lines and primary muscle cells. We thus investigated whether similar results could be obtained by intramuscular myoblast transplantation in a large animal model. When 1-3 x 10(8) myoblasts were injected into three Macaca mulatta, hG-CSF was detected at high levels (300-900 pg/ml), which in turn led to a four- to fivefold increase in circulating neutrophils. However, both the concentrations of hG-CSF and neutrophil levels were found to decrease over time. Nonetheless, neutrophils were found at higher levels from the fourth week until the end the experiment (up to 29 weeks) in G-CSF monkeys compared with control animals. These results show that transplantation of hG-CSF-secreting myoblasts may indeed be a therapeutic option for the treatment of neutropenic patients.
Collapse
Affiliation(s)
- P A Moisset
- Unité de Recherche en Génétique Humaine, CHUL, Université Laval, Ste.-Foy, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Seigneurin-Venin S, Bernard V, Moisset PA, Ouellette MM, Mouly V, Di Donna S, Wright WE, Tremblay JP. Transplantation of normal and DMD myoblasts expressing the telomerase gene in SCID mice. Biochem Biophys Res Commun 2000; 272:362-9. [PMID: 10833419 DOI: 10.1006/bbrc.2000.2735] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The limited proliferative capacity of dystrophic human myoblasts severely limits their ability to be genetically modified and used for myoblast transplantation. The forced expression of the catalytic subunit of telomerase can prevent telomere erosion and can immortalize different cell types. We thus tested the ability of telomerase to immortalize myoblasts and analyzed the effect of telomerase expression on the success of myoblast transplantation. Telomerase expression did not significantly extend the human myoblast life span. The telomerase expressing myoblasts were nonetheless competent to participate in myofiber formation after infection with the retroviral vector. Although the new fibers obtained are less numerous than after the transplantation of normal myoblasts, these results demonstrate that the forced expression of telomerase does not block the ability of normal or dystrophic myoblasts to differentiate in vivo. It will be now necessary to determine the factors that prevent telomerase from extending the life span of human myoblasts before the potential of this intervention can be fully examined.
Collapse
Affiliation(s)
- S Seigneurin-Venin
- Laboratoire de Génétique Humaine, Université Laval and CHUQ Pavillon CHUL, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cossu G, Mavilio F. Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 2000; 105:1669-74. [PMID: 10862780 PMCID: PMC378519 DOI: 10.1172/jci10376] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- G Cossu
- Stem Cell Research Institute and. Gene Therapy Program, Istituto Scientifico H. San Raffaele, Milano, Italy.
| | | |
Collapse
|
41
|
Smythe GM, Grounds MD. Exposure to tissue culture conditions can adversely affect myoblast behavior in vivo in whole muscle grafts: implications for myoblast transfer therapy. Cell Transplant 2000; 9:379-93. [PMID: 10972337 DOI: 10.1177/096368970000900309] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effects of tissue culture conditions on the viability of myoblasts in whole muscles transplanted in vivo were investigated. Whole male (SJL/J) donor muscles were exposed to various tissue culture reagents and proteolytic enzymes, and allografted into female (SJL/J) host mice. Desmin immunohistochemistry was used to assess the numbers of myogenic cells (as an index of myoblast viability and the extent of regeneration) in tissue sections of whole-muscle grafts sampled on days 7 and 14. DNA quantitation with a Y-chromosome-specific probe was used to determine the total Y-1 sequence DNA (as an index of myoblast survival and proliferation) in whole-muscle grafts sampled on days 1, 3, and 7. In grafts exposed to serum-free medium, there was a delay in myoblast fusion at 7 days that was recovered by 14 days, but exposure to serum (10% or 20%) had a prolonged adverse effect on myotube formation at 14 days. DNA quantitation demonstrated that either serum-free culture medium or 10% serum enhanced the number of male cells within whole-muscle grafts at 7 days. Proteolytic digestion (even for 5 min) of whole muscles prior to grafting was extremely detrimental to myoblast survival and viability at 7 and 14 days. The unexpected finding of adverse effects of tissue culture conditions on the regeneration of whole-muscle grafts in vivo appears to parallel the major problem of the rapid death of isolated cultured donor myoblasts after injection in myoblast transfer therapy. The use of whole-muscle grafts provides an alternative and sensitive model to analyze the crucial effects of various tissue culture components on the subsequent survival and proliferation of myogenic cells in vivo.
Collapse
Affiliation(s)
- G M Smythe
- Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Australia.
| | | |
Collapse
|
42
|
Abstract
Myoblast transfer therapy (MTT) is a cell-mediated gene transfer method aimed at the restoration of normal dystrophin expression in Duchenne muscular dystrophy (DMD). Initial clinical MTT trials were conducted amid much controversy, as they were based on very few animal studies. Unfortunately, the trials were of little therapeutic benefit. As a result, there has been a renaissance of interest in experimental studies in animal models. In MTT, myoblasts are obtained by muscle biopsy from normal, i.e., dystrophin-positive, donors, expanded in culture, and injected directly into the muscles of dystrophic recipients. The major requirement for successful MTT is the survival of injected donor myoblasts in the host environment. However, a vast majority of donor cells fail to survive for more than 1 h after injection, and very few last beyond the first week. This review on the immunological aspects of MTT focuses in particular on the roles of specific components of the host immune response, the effects of tissue culture on donor cells, and strategies under development to circumvent the problem of donor myoblast death after injection in vivo.
Collapse
Affiliation(s)
- G M Smythe
- Department of Anatomy and Human Biology, University of Western Australia, Perth, Australia.
| | | | | |
Collapse
|
43
|
Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999; 144:1113-22. [PMID: 10087257 PMCID: PMC2150577 DOI: 10.1083/jcb.144.6.1113] [Citation(s) in RCA: 407] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myoblasts, the precursors of skeletal muscle fibers, can be induced to withdraw from the cell cycle and differentiate in vitro. Recent studies have also identified undifferentiated subpopulations that can self-renew and generate myogenic cells (Baroffio, A., M. Hamann, L. Bernheim, M.-L. Bochaton-Pillat, G. Gabbiani, and C.R. Bader. 1996. Differentiation. 60:47-57; Yoshida, N., S. Yoshida, K. Koishi, K. Masuda, and Y. Nabeshima. 1998. J. Cell Sci. 111:769-779). Cultured myoblasts can also differentiate and contribute to repair and new muscle formation in vivo, a capacity exploited in attempts to develop myoblast transplantation (MT) for genetic modification of adult muscle. Our studies of the dynamics of MT demonstrate that cultures of myoblasts contain distinct subpopulations defined by their behavior in vitro and divergent responses to grafting. By comparing a genomic and a semiconserved marker, we have followed the fate of myoblasts transplanted into muscles of dystrophic mice, finding that the majority of the grafted cells quickly die and only a minority are responsible for new muscle formation. This minority is behaviorally distinct, slowly dividing in tissue culture, but rapidly proliferative after grafting, suggesting a subpopulation with stem cell-like characteristics.
Collapse
Affiliation(s)
- J R Beauchamp
- Muscle Cell Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 0NN, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Abstract
Skeletal muscle development requires the formation of myoblasts that can fuse with each other to form multinucleate myofibers. Distinct primary and secondary, slow and fast, populations of myofibers form by the time of birth. At embryonic, fetal, and perinatal stages of development, temporally distinct lineages of myogenic cells arise and contribute to the formation of these multiple types of myofibers. In addition, spatially distinct lineages of myogenic cells arise and form the anterior head muscles, limb (hypaxial) muscles, and dorsal (epaxial) muscles. There is strong evidence that myoblasts are produced from muscle stem cells, which are self-renewing cells that do not themselves terminally differentiate but produce progeny that are capable of becoming myoblasts and myofibers. Muscle stem cells, which may be multipotent, appear to be distinguishable from myoblasts by a number of indirect and direct criteria. Muscle stem cells arise either in unsegmented paraxial mesoderm (anterior head muscle progenitors) or in segmented mesoderm of the somites (epaxial and hypaxial muscle progenitors). These initial stages of myogenesis are regulated by positive and negative signals, including Wnt, BMP, and Shh family members, from nearby notochord, neural tube, ectoderm, and lateral mesoderm tissues. The formation of skeletal muscles, therefore, depends on the generation of spatially and temporally distinct lineages of myogenic cells. Myogenic cell lineages begin with muscle stem cells which produce the myoblasts that fuse to form myofibers.
Collapse
Affiliation(s)
- J B Miller
- Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | |
Collapse
|
45
|
Skuk D, Roy B, Goulet M, Tremblay JP. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Exp Neurol 1999; 155:22-30. [PMID: 9918701 DOI: 10.1006/exnr.1998.6973] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myoblast transplantation (MT) may be a potential treatment for severe recessive hereditary myopathies. The limited results of MT in clinical trials led us to improve this technique in monkeys, an animal model phylogenetically similar to humans. Three Macaca mulata monkeys were used as donors and six as receivers for MT. Myoblasts were grown in culture from muscle biopsies of adult monkeys and infected with a retroviral vector encoding the LacZ gene. Different numbers of cells (i.e., 4 x 10(6), 8 x 10(6), and 24 x 10(6) cells) were transplanted into different muscles and 8 x 10(6) cells (resuspended in a notexin solution) were injected in one muscle of four monkeys. For these transplantations, the cell suspension (in a volume of about 100 microl) was injected at 35 sites less than 1 mm apart. Two other monkeys received 100 x 10(6) myoblasts resuspended in 1 ml of HBSS or 1 ml of notexin. For these two monkeys, the myoblasts were injected at 200-250 sites within a small portion of the muscle. All monkeys were immunosuppressed with daily injections of FK506. Four weeks after MT, the transplanted muscle portions were biopsied and the presence of beta-galactosidase-positive (beta-Gal+) muscle fibers was investigated. The number of beta-Gal+ fibers was 822 +/- 150 (site grafted with 4 x 10(6) cells), 1253 +/- 515 (8 x 10(6) cells), 1084 +/- 278 (24 x 10(6)), and 2852 +/- 1211 (notexin). In the monkeys grafted with 100 x 10(6) myoblasts, the number of beta-Gal+ fibers was 4850 (site without notexin) and 9600 (site with notexin). We demonstrated that a precise mechanical distribution of myoblasts into the tissue improves substantially MT in primates. The presence of notexin with the transplanted cells further increased the success of their transplantation. These are the best results obtained either with MT or gene therapy in primates and they encourage the possibility to human MT trials.
Collapse
Affiliation(s)
- D Skuk
- Unité de Recherche en Génétique Humaine, Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
46
|
Moisset PA, Skuk D, Asselin I, Goulet M, Roy B, Karpati G, Tremblay JP. Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene. Biochem Biophys Res Commun 1998; 247:94-9. [PMID: 9636661 DOI: 10.1006/bbrc.1998.8739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myoblast transplantation and gene therapy are two promising therapeutical approaches for the treatment of Duchenne Muscular Dystrophy (DMD). So far, both strategies have met many hurdles, mainly because of immune reactions. In this study, we investigated a third and novel strategy based on the combination of these two basic ones, i.e., transplantation of genetically modified myoblasts. We first derived a primary culture from a muscle biopsy of a young DMD patient (3 years old). Adenoviral-mediated dystrophin gene transfer into these DMD cultures and expression of the dystrophin transgene were achieved in vitro. The transduced cultures were then transplanted the same day in immunodeficient SCID mouse muscles. Three weeks following the graft, many human dystrophin-positive fibers were observed throughout sections of the injected muscles. However, many fibers expressed human MHC antigens without expressing human dystrophin due to the low percentage of infected primary muscle cells in vitro (even when a high MOI [400] was used) and to a reduction and even to a complete loss of transgene copy number during myoblast replication. From our results, we conclude that, although not at a high proportion, (1) DMD primary myoblast cultures are infectable by adenoviruses; (2) they can be efficiently transplanted back in a muscle, leading to normal fusion of infected myoblasts with the host fibers; and (3) they can correct the dystrophin deficiency in the host fibers by the expression of a mini-dystrophin transgene.
Collapse
Affiliation(s)
- P A Moisset
- Laboratorie de Génétique Humaine, Université Laval, CHUL, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|