1
|
Hall BM, Hall RM, Tran GT, Robinson CM, Wilcox PL, Rakesh PK, Wang C, Sharland AF, Verma ND, Hodgkinson SJ. Interleukin-5 (IL-5) Therapy Prevents Allograft Rejection by Promoting CD4 +CD25 + Ts2 Regulatory Cells That Are Antigen-Specific and Express IL-5 Receptor. Front Immunol 2021; 12:714838. [PMID: 34912327 PMCID: PMC8667344 DOI: 10.3389/fimmu.2021.714838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
Abstract
CD4+CD25+Foxp3+T cell population is heterogenous and contains three major sub-groups. First, thymus derived T regulatory cells (tTreg) that are naïve/resting. Second, activated/memory Treg that are produced by activation of tTreg by antigen and cytokines. Third, effector lineage CD4+CD25+T cells generated from CD4+CD25- T cells' activation by antigen to transiently express CD25 and Foxp3. We have shown that freshly isolated CD4+CD25+T cells are activated by specific alloantigen and IL-4, not IL-2, to Ts2 cells that express the IL-5 receptor alpha. Ts2 cells are more potent than naïve/resting tTreg in suppressing specific alloimmunity. Here, we showed rIL-5 promoted further activation of Ts2 cells to Th2-like Treg, that expressed foxp3, irf4, gata3 and il5. In vivo, we studied the effects of rIL-5 treatment on Lewis heart allograft survival in F344 rats. Host CD4+CD25+T cells were assessed by FACS, in mixed lymphocyte culture and by RT-PCR to examine mRNA of Ts2 or Th2-like Treg markers. rIL-5 treatment given 7 days after transplantation reduced the severity of rejection and all grafts survived ≥60d whereas sham treated rats fully rejected by day 31 (p<0.01). Treatment with anti-CD25 or anti-IL-4 monoclonal antibody abolished the benefits of treatment with rIL-5 and accelerated rejection. After 10d treatment with rIL-5, hosts' CD4+CD25+ cells expressed more Il5ra and responded to specific donor Lewis but not self. Enriched CD4+CD25+ cells from rIL-5 treated rats with allografts surviving >60 days proliferated to specific donor only when rIL-5 was present and did not proliferate to self or third party. These cells had more mRNA for molecules expressed by Th2-like Treg including Irf4, gata3 and Il5. These findings were consistent with IL-5 treatment preventing rejection by activation of Ts2 cells and Th2-like Treg.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Rachael M Hall
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Catherine M Robinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Paul L Wilcox
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Prateek K Rakesh
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Chuanmin Wang
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra F Sharland
- Transplantation Immunobiology Group, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Laboratory, South West Clinical School, University of New South Wales (UNSW) Sydney, Liverpool, NSW, Australia.,Ingham Institute of Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
2
|
Wu J, Hou J, Zhang M, Zou Y, Yu B. Protosappanin A, an Immunosuppressive Constituent From a Chinese Herb, Prolongs Graft Survival and Attenuates Acute Rejection in Rat Heart Allografts. Transplant Proc 2008; 40:3719-22. [DOI: 10.1016/j.transproceed.2008.06.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/14/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
|
3
|
Spicer ST, Tran GT, Killingsworth MC, Carter N, Power DA, Paizis K, Boyd R, Hodgkinson SJ, Hall BM. Induction of passive Heymann nephritis in complement component 6-deficient PVG rats. THE JOURNAL OF IMMUNOLOGY 2007; 179:172-8. [PMID: 17579035 DOI: 10.4049/jimmunol.179.1.172] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Passive Heymann nephritis (PHN), a model of human membranous nephritis, is induced in susceptible rat strains by injection of heterologous antisera to rat renal tubular Ag extract. PHN is currently considered the archetypal complement-dependent form of nephritis, with the proteinuria resulting from sublytic glomerular epithelial cell injury induced by the complement membrane attack complex (MAC) of C5b-9. This study examined whether C6 and MAC are essential to the development of proteinuria in PHN by comparing the effect of injection of anti-Fx1A antisera into PVG rats deficient in C6 (PVG/C6(-)) and normal PVG rats (PVG/c). PVG/c and PVG/C6(-) rats developed similar levels of proteinuria at 3, 7, 14, and 28 days following injection of antisera. Isolated whole glomeruli showed similar deposition of rat Ig and C3 staining in PVG/c and PVG/C6(-) rats. C9 deposition was abundant in PVG/c but was not detected in PVG/C6(-) glomeruli, indicating C5b-9/MAC had not formed in PVG/C6(-) rats. There was also no difference in the glomerular cellular infiltrate of T cells and macrophages nor the size of glomerular basement membrane deposits measured on electron micrographs. To examine whether T cells effect injury, rats were depleted of CD8+ T cells which did not affect proteinuria in the early heterologous phase but prevented the increase in proteinuria associated with the later autologous phase. These studies showed proteinuria in PHN occurs without MAC and that other mechanisms, such as immune complex size, early complement components, CD4+ and CD8+ T cells, disrupt glomerular integrity and lead to proteinuria.
Collapse
Affiliation(s)
- S Timothy Spicer
- Department of Medicine, University of New South Wales and Liverpool Hospital, Liverpool BC 1871, New South Wales, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hall BM, Plain KM, Verma ND, Tran GT, Boyd R, Robinson CM, Nicolls MR, Berger ME, Nomura M, Hodgkinson SJ. Transfer of Allograft Specific Tolerance Requires CD4+CD25+T Cells but Not Interleukin-4 or Transforming Growth Factor–β and Cannot Induce Tolerance to Linked Antigens. Transplantation 2007; 83:1075-84. [PMID: 17452898 DOI: 10.1097/01.tp.0000259553.66185.2f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The mechanisms by which CD4+T cells, especially CD4+ CD25+T cells, transfer allograft specific tolerance are poorly defined. The role of cytokines and the effect on antigen-presenting cells is not resolved. METHODS Anti-CD3 monoclonal antibody (mAb) therapy induced tolerance to PVG heterotopic cardiac transplantation in DA rats. Peripheral CD4+T cells or CD4+ CD25+ and CD4+ CD25-T cell subsets were adoptively transferred to irradiated DA hosts grafted with PVG heart grafts. For specificity studies, tolerant CD4+T cells were transferred to hosts with Lewis or (PVGxLewis)F1 heart grafts. Cytokine mRNA induction and the requirement for interleukin (IL)-4 and transforming growth factor (TGF)-beta in the transfer of tolerance was assessed. RESULTS CD4+T cells transferred specific tolerance and suppressed naïve CD4+T cells capacity to effect rejection of PVG but not Lewis grafts. (PVGxLewis)F1 grafts had a major rejection episode but recovered. Later these hosts accepted PVG but not Lewis skin grafts. Adoptive hosts restored with tolerant or naïve cells had similar levels of mRNA expression for all Th1 and Th2 cytokines and effector molecules assayed. Transfer of tolerance by CD4+T cells was not blocked by mAb to IL-4 or TGF-beta. CD4+ CD25-T cells from either naïve or tolerant hosts effected rejection. In contrast neither tolerant nor naïve CD4+ CD25+T cells restored rejection. CONCLUSIONS Specific tolerance transfer required CD4+ containing CD4+ CD25+T cells. An inflammatory response with induction of mRNA for Th1 and Th2 cytokines plus cytotoxic effector molecules occurred, but IL-4 and TGF-beta were not essential. Inhibition of antigen presenting cells was not the sole mechanism as there was no linked tolerance.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, University of New South Wales, Australian Technology Park, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Davidson C, Verma ND, Robinson CM, Plain KM, Tran GT, Hodgkinson SJ, Hall BM. IL-13 prolongs allograft survival: Association with inhibition of macrophage cytokine activation. Transpl Immunol 2007; 17:178-86. [PMID: 17331844 DOI: 10.1016/j.trim.2006.09.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/15/2006] [Accepted: 09/25/2006] [Indexed: 11/20/2022]
Abstract
Th2 cytokines, especially IL-4 and IL-10, may facilitate transplant tolerance induction but the role of IL-13, another Th2 cytokine, is not known. This study examined the effects of rat recombinant IL-13 (rIL-13) on alloimmune responses. In vitro effects of rIL-13 were compared in mixed lymphocyte cultures (MLC) on rat lymphocytes cultured with PVG stimulator cells. DA rats grafted with fully allogeneic PVG neonatal heart grafts were treated with 40,000 units of rIL-13 for 10 days and graft survival monitored by ECG. Cytokine mRNA expression in the graft and lymphoid tissues was studied by RT-PCR and alloantibody levels assayed. rIL-13 had no effect on MLC, unlike rIL-4 which enhanced proliferation and induced Th2 and inhibited Th1 cytokines in MLC. rIL-13 inhibited IL-12p35, IL-12p40 and TNF-alpha mRNA induction in dendritic cell cultures. Treatment with rIL-13 prolonged fully allogeneic PVG neonatal heart graft survival to 18-21 (13-27) days (median (range)); compared to 12 (9-15) days in untreated normal rejection (p<0.05) and 14 (10-24) days in sham treated controls (p<0.05). RT-PCR studies on graft tissue identified reduced mRNA expression for the dendritic cell/macrophage molecules iNOS, TNF-alpha and IL-12 compared to normal rejection. rIL-13 treatment did not increase Th2 cytokines as compared to normal rejection, or the Th2 dependent IgG1 alloantibody response, while IL-4 did. These studies demonstrated that rIL-13 can prolong allograft survival associated with inhibition of IL-12, TNF-alpha and iNOS mRNA induction, and suggest IL-13 could modify graft rejection by inhibition of dendritic cell and/or macrophage function.
Collapse
Affiliation(s)
- Cassandra Davidson
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Genetic modification strategies have the potential to improve outcome following cell/organ transplantation. A unique opportunity in transplantation is that gene therapies need not be restricted to in vivo approaches and that ex vivo genetic modification of cell and/or organs can be of value. Improvements in vector design, production, and delivery should enhance transfection efficiency and optimize gene expression. Herein, we discuss potential modes of gene therapy, focusing on viral, liposome, or naked DNA-based systems for gene delivery. We suggest gene therapy targets taking into consideration the essential constituents of anti-allograft repertory. In addition to strategies that may have salutary effects in mitigating the threat of acute rejection, we suggest genetic strategies for minimizing ischemia/reperfusion injury as well as for the perennial problem of progressive functional loss of the transplanted organ. Data from pre-clinical transplant models support the idea that gene therapy may improve allograft function and survival. We are optimistic that gene therapy will be of clinical value in the near future in the management of recipients of allografts; we believe that genetic strategies would be essential for successful breaching of the formidable challenge of xenotransplantation.
Collapse
Affiliation(s)
- Dolca Thomas
- Division of Nephrology, Department of Medicine, Weill Medical College of Cornell University, New York Weill Cornell Center, 525 East 68th Street, New York, NY 10021, USA
| | | |
Collapse
|
7
|
Nakashima S, Qian Z, Rahimi S, Wasowska BA, Baldwin WM. Membrane attack complex contributes to destruction of vascular integrity in acute lung allograft rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4620-7. [PMID: 12370401 DOI: 10.4049/jimmunol.169.8.4620] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The lung is known to be particularly susceptible to complement-mediated injury. Both C5a and the membrane attack complex (MAC), which is formed by the terminal components of complement (C5b-C9), can cause acute pulmonary distress in nontransplanted lungs. We used C6-deficient rats to investigate whether MAC causes injury to lung allografts. PVG.R8 lungs were transplanted orthotopically to MHC class I-incompatible PVG.1U recipients. Allografts from C6-sufficient (C6(+)) donors to C6(+) recipients were rejected with an intense vascular infiltration and diffuse alveolar hemorrhage 7 days after transplantation (n = 5). Ab and complement (C3d) deposition was accompanied by extensive vascular endothelial injury and intravascular release of von Willebrand factor. In contrast, lung allografts from C6-deficient (C6(-)) donors to C6(-) recipients survived 13-17 days (n = 5). In the absence of C6, perivascular mononuclear infiltrates of ED1(+) macrophages and CD8(+) T lymphocytes were present 7 days after transplantation, but vascular endothelial cells were quiescent, with minimal von Willebrand factor release and no evidence of alveolar hemorrhage or edema. Lung allografts were performed from C6(-) donors to C6(+) recipients (n = 5) and from C6(+) donors to C6(-) recipients (n = 5) to separate the effects of systemic and local C6 production. Lungs transplanted from C6(+) donors to C6(-) recipients had increased alveolar macrophages and capillary injury. C6 production by lung allografts was demonstrated at the mRNA and protein levels. These results demonstrate that MAC causes vascular injury in lung allografts and that the location of injury is dependent on the source of C6.
Collapse
Affiliation(s)
- Shinji Nakashima
- Transplantation Laboratory, Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Allograft rejection results from a complex process involving both the innate and acquired immune systems. The innate immune system predominates in the early phase of the allogeneic response, during which chemokines and cell adhesion play essential roles, not only for leukocyte migration into the graft but also for facilitating dendritic and T-cell trafficking between lymph nodes and the transplant. This results in a specific and acquired alloimmune response mediated by T cells. Subsequently, T cells and cells from innate immune system function synergistically to reject the allograft through nonexclusive pathways, including contact-dependent T cell cytotoxicity, granulocyte activation by either Th1 or Th2 derived cytokines, NK cell activation, alloantibody production, and complement activation. Blockade of individual pathways generally does not prevent allograft rejection, and long-term allograft survival is achieved only after simultaneous blockade of several of them. In this review, we explore each of these pathways and discuss the experimental evidence highlighting their roles in allograft rejection.
Collapse
Affiliation(s)
- Alain Le Moine
- Laboratory of Experimental Immunology, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | |
Collapse
|
9
|
Tran GT, Hodgkinson SJ, Carter N, Killingsworth M, Spicer ST, Hall BM. Attenuation of experimental allergic encephalomyelitis in complement component 6-deficient rats is associated with reduced complement C9 deposition, P-selectin expression, and cellular infiltrate in spinal cords. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4293-300. [PMID: 11970970 DOI: 10.4049/jimmunol.168.9.4293] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of Ab deposition and complement activation, especially the membrane attack complex (MAC), in the mediation of injury in experimental allergic encephalomyelitis (EAE) is not resolved. The course of active EAE in normal PVG rats was compared with that in PVG rats deficient in the C6 component of complement (PVG/C6(-)) that are unable to form MAC. Following immunization with myelin basic protein, PVG/C6(-) rats developed significantly milder EAE than PVG/C rats. The anti-myelin basic protein response was similar in both strains, as was deposition of C3 in spinal cord. C9 was detected in PVG/C rats but not in PVG/C6(-), consistent with their lack of C6 and inability to form MAC. In PVG/C6(-) rats, the T cell and macrophage infiltrate in the spinal cord was also significantly less than in normal PVG/C rats. There was also reduced expression of P-selectin on endothelial cells, which may have contributed to the reduced cellular infiltrate by limiting migration from the circulation. Assay of cytokine mRNA by RT-PCR in the spinal cords showed no differences in the profile of Th1 or Th2 cytokines between PVG/C and PVG/C6(-) rats. PVG/C rats also had a greater increase in peripheral blood white blood cell, neutrophil, and basophil counts than was observed in the PVG/C6(-). These findings suggest that the MAC may have a role in the pathogenesis of EAE, not only by Ig-activated MAC injury but also via induction of P-selectin on vascular endothelium to promote infiltration of T cells and macrophages into the spinal cord.
Collapse
Affiliation(s)
- Giang T Tran
- Department of Medicine, University of New South Wales, Liverpool Hospital, Liverpool, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Qian Z, Hu W, Liu J, Sanfilippo F, Hruban RH, Baldwin WM. Accelerated graft arteriosclerosis in cardiac transplants: complement activation promotes progression of lesions from medium to large arteries. Transplantation 2001; 72:900-6. [PMID: 11571457 DOI: 10.1097/00007890-200109150-00027] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A critical role for the terminal components of complement (C5b-C9) has been demonstrated previously in acute allograft rejection with the use of C6-deficient PVG congenic rat strains. The C6 deficiency prevents the formation of membrane attack complex (MAC) by C5b-C9. Hearts transplanted from PVG.1A (RT1a) rats are rejected acutely (7-9 days) by fully MHC-incompatible C6-sufficient PVG.1L (RT11) recipients, but they survive significantly longer in untreated C6-deficient PVG.1L recipients (19 to >60 days). METHODS To investigate the contribution of MAC to chronic rejection and accelerated graft arteriosclerosis (AGA) in long-term cardiac allografts, hearts were transplanted heterotopically from PVG.1A donors to C6-sufficient and C6-deficient PVG.1L hosts that were treated with cyclosporine 15 mg/kg/day for 14 days after cardiac grafting. Alloantibody responses in hosts were measured by flow cytometry at 4, 8, 12, and 16 weeks after transplantation. Vigorously contracting grafts were removed at 60 days (n=5) and at 90-128 days (n=12) after surgery for morphological evaluation. Computerized planimetry measurements were made in complete cross-sections of grafts on all assessable arteries larger than 16 microns in diameter. RESULTS The survival of most (six of seven) cardiac allografts in C6-deficient recipients was prolonged by cyclosporine treatment to greater than 90 days. In contrast, 14 of 25 hearts that were transplanted to C6-sufficient recipients were rejected between 21 and 84 days with severe vascular injury. AGA, defined as smooth muscle cells forming a neointima inside the internal elastic lamina and luminal compromise, affected a greater percentage of arteries in C6-sufficient than in C6-deficient recipients. AGA developed earlier and more frequently in arteries of medium (<100 micron) diameter than those of large diameter in both C6-sufficient and C6-deficient recipients. Serial sections demonstrated the lesions in medium arteries to be located adjacent to the smooth muscle sphincters at the junction of arteriolar branches. CONCLUSIONS These results demonstrate that MAC promotes the pathogenesis of AGA in long-term cardiac allografts.
Collapse
Affiliation(s)
- Z Qian
- Department of Pathology, Ross Research Bldg., Room 664-D, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The initial description of murine strains deficient in complement component C5 has been followed by the recognition in a range of animal species of a variety of natural complement component deficiencies, many of which have been characterized at the molecular level. The use of such species in inflammatory and infectious experimental models has led to significant progress in understanding the role of specific complement factors (and pathways) in disease pathogenesis. Deficiencies of early complement factors are characterized by impairment of immune response, possibly due to defective processing of immune complexes. Complete (but not partial) deficiency of the central component C3 predisposes affected animals to significant risk of infection and renal disease. Studies in species deficient in the terminal pathway component C6 are particularly relevant for investigating the pathogenetic role of the terminal membrane attack complex (MAC), implicating it as a causative agent in diverse inflammatory insults such as reperfusion injury, glomerular damage, and xenograft hyperacute rejection. Further investigations in such naturally deficient strains, added to results derived from studies in knockout animals, are likely to expand our understanding of the role of the activated complement system in experimental inflammatory disease, with significant potential implications for the treatment of human disease.
Collapse
Affiliation(s)
- S Linton
- Department of Rheumatology, Nevill Hall Hospital, Brecon Road, Abergavenny, NP7 7EG, UK.
| |
Collapse
|
12
|
Byun SJ, Bahk YY, Ryoo ZY, Kim KE, Hwang HY, Lee JW, Yi JY, Kim TY. Identification of cDNA encoding a serine protease homologous to human complement C1r precursor from grafted mouse skin. J Invest Dermatol 2001; 116:374-9. [PMID: 11231310 DOI: 10.1046/j.1523-1747.2001.01257.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We isolated a cDNA clone from grafted mouse skin that encodes a serine protease homologous to human C1r. The C1r protease is involved in the activation of the first component of the classical pathway in the complement system. In order to identify novel transcripts whose expression is regulated in grafted mouse skin, we first performed differential display reverse transcription polymerase chain reaction analysis and obtained 18 partial cDNA clones whose protein products are likely to play an important role in allograft rejection. One of these showed significant sequence homology with human complement C1r precursor. The other clones displayed no homology to any known sequences, however. Northern blot analysis demonstrated that the level of this transcript was upregulated in day 8 postgrafted skin. The full-length cDNA 2121 nucleotides in length obtained from screening a mouse skin cDNA library contained a single open reading frame encoding 707 amino acid residues with a calculated molecular weight of 80,732 Da. Its deduced amino acid sequence revealed an 81% identity and 89% similarity to the human C1r counterpart. In particular, mouse C1r contained His501, Asp559, and Ser656, which were conserved among this group of serine proteases. This protein was thus designated as mouse C1r. We have expressed a truncated fragment of C1r protein without the N-terminal hydrophobic sequence in Escherichia coli and generated a polyclonal antibody against it. Subsequent immunohistochemical analysis confirmed that mouse C1r was significantly expressed 8 d after the skin graft in both allografted and autografted skins, compared with normal skins. These collective data suggest that a component of the complement system, C1r, might contribute to the graft versus host immune responses in mice.
Collapse
Affiliation(s)
- S J Byun
- Department of Dermatology-Immunology, Kangnam St. Mary Hospital, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Baldwin WM, Qian Z, Wasowska B, Sanfilippo F. Complement causes allograft injury by cell activation rather than lysis. Transplantation 1999; 67:1498-9. [PMID: 10385097 DOI: 10.1097/00007890-199906150-00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|