1
|
Zhang Y, Chen K, Li L, Mao W, Shen D, Yao N, Zhang L. CCR4 is a prognostic biomarker and correlated with immune infiltrates in head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1443. [PMID: 34733995 PMCID: PMC8506764 DOI: 10.21037/atm-21-3936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
Background Increased evidence has indicated that the tumour microenvironment plays an essential in the development, treatment and prognosis of head and neck squamous cell carcinoma (HNSC). Recent studies have indicated CC chemokine receptor 4 (CCR4) plays an essential role in tumor invasion and other adverse biological behavior. This study used data from the Cancer Genome Atlas (TCGA) database to explore the role of CCR4 in HNSC and its clinical significance. Methods The gene expression and clinical data of HNSC patients in the TCGA database were extracted. Gene Expression Profiling Interactive Analysis (GEPIA) was used to analyze the expression of CCR4 in tumor and non-tumor tissue. Kaplan-Meier survival analysis was used to analyze the relationship between CCR4 expression and overall survival rate (OS), disease-specific survival (DSS), and progression-free interval (PFI) in HNSC. A logistic regression model was used to analyze the relationships between various clinical factors and CCR4 expression. Gene Set Enrichment Analysis (GSEA) was used to explore the potential role of CCR4 in HNSC. Additionally, we explored the relationship between CCR4 and immune infiltration. Results The expression of CCR4 in HNSC was not significantly different from that in normal tissue. The expression level of CCR4 in wild-type TP53 was higher than that in mutant TP53. Cox regression analysis showed the expression level of CCR4 was related to the patient's tumor grade and Tumor-Node-Metastasis (TNM) stage. CCR4 expression level is an independent prognostic factor. CCR4 is positively correlated with immune infiltration and immune checkpoints expression levels. The results of GSEA revealed that the high CCR4 expression group genes were enriched in allograft rejection, inflammatory response, IL-6/JAK/STAT3 signaling, interferon gamma response, and KRAS signaling up. Low CCR4 expression group genes were enriched in oxidative phosphorylation, MYC targets v1, DNA repair, reactive oxygen species pathway, and P53 pathway. Further, our study indicated CCR4 can also predict the prognosis of radiotherapy patients. Conclusions Our study found that CCR4 was a prognostic marker related to HNSC immune infiltration, and patients with high expression of CCR4 had a better prognosis.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Chen
- Department of Radiotherapy, First People's Hospital of Yancheng, Yancheng, China
| | - Li Li
- Department of Oncology, Huaian Hospital, Huai'an, China
| | - Weidong Mao
- Department of Oncology, Jiangyin People's Hospital, Wuxi, China
| | - Dong Shen
- Department of Oncology, Jiangyin People's Hospital, Wuxi, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
3
|
Abstract
BACKGROUND T cell-mediated graft rejection is mostly correlated with potent Th1 responses. However, because IFNγ mice reject their graft as efficiently as wild-type (WT) mice, the exact contribution of IFNγ and its transcription factor T-bet remains a matter of debate. Here, we address this question in the context of pancreatic islet allograft to better inform the molecular pathways that hampers islet survival in vivo. METHODS Pancreatic islets from BALB/c mice were transplanted in WT, IFNγ, or T-bet C57BL/6 mice. Graft survival and the induction of effector and cytotoxic T-cell responses were monitored. RESULTS Rejection of fully mismatched islet allografts correlated with high expression of both IFNγ and T-bet in WT recipients. However, allogeneic islets were permanently accepted in T-bet mice, in contrast to IFNγ hosts. Long-term survival correlated with decreased CD4 and CD8 T-cell infiltrates, drastically reduced donor-specific IFNγ and tumor necrosis factor tumor necrosis factor α responses and very low expression of the cytotoxic markers granzyme B, perforin, and FasLigand. In addition, in vitro and in vivo data pointed to an increased susceptibility of T-bet CD8 T cell to apoptosis. These observations were not reported in IFNγ mice, which have set up compensatory effector mechanisms comprising an increased expression of the transcription factor Eomes and cytolytic molecules as well as tumor necrosis factor α-mediated but not IL-4 nor IL-17-mediated allogeneic responses. CONCLUSIONS Anti-islet T-cell responses require T-bet but not IFNγ-dependent programs. Our results provide new clues on the mechanisms dictating islet rejection and may help refine the therapeutic/immunosuppressive regimens applied in diabetic patients receiving islets or pancreas allografts.
Collapse
|
4
|
Tissue adhesive FK506-loaded polymeric nanoparticles for multi-layered nano-shielding of pancreatic islets to enhance xenograft survival in a diabetic mouse model. Biomaterials 2017; 154:182-196. [PMID: 29128846 DOI: 10.1016/j.biomaterials.2017.10.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
This study aims to develop a novel surface modification technology to prolong the survival time of pancreatic islets in a xenogenic transplantation model, using 3,4-dihydroxyphenethylamine (DOPA) conjugated poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (DOPA-NPs) carrying immunosuppressant FK506 (FK506/DOPA-NPs). The functionalized DOPA-NPs formed a versatile coating layer for antigen camouflage without interfering the viability and functionality of islets. The coating layer effectively preserved the morphology and viability of islets in a co-culture condition with xenogenic lymphocytes for 7 days. Interestingly, the mean survival time of islets coated with FK506/DOPA-NPs was significantly higher as compared with that of islets coated with DOPA-NPs (without FK506) and control. This study demonstrated that the combination of surface camouflage and localized low dose of immunosuppressant could be an effective approach in prolonging the survival of transplanted islets. This newly developed platform might be useful for immobilizing various types of small molecules on therapeutic cells and biomaterial surface to improve the therapeutic efficacy in cell therapy and regenerative medicine.
Collapse
|
5
|
Haque MR, Kim J, Park H, Lee HS, Lee KW, Al-Hilal TA, Jeong JH, Ahn CH, Lee DS, Kim SJ, Byun Y. Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol. J Control Release 2017; 258:10-21. [DOI: 10.1016/j.jconrel.2017.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
|
6
|
Nicolls MR, Voelkel NF. The Roles of Immunity in the Prevention and Evolution of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1292-1299. [PMID: 27786553 PMCID: PMC5443903 DOI: 10.1164/rccm.201608-1630pp] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Palo Alto/Stanford University, Palo Alto, California; and
| | - Norbert F. Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Hall BM, Tran GT, Robinson CM, Hodgkinson SJ. Induction of antigen specific CD4+CD25+Foxp3+T regulatory cells from naïve natural thymic derived T regulatory cells. Int Immunopharmacol 2015; 28:875-86. [DOI: 10.1016/j.intimp.2015.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
|
8
|
Abstract
Long-term allograft survival is a major challenge facing solid organ transplantation. Recent studies have shown a negative correlation between infiltration of memory T cells and allograft survival. Furthermore, blockade of leukocyte activation increases acceptance of transplanted organs, including heart, liver, and kidney. Lung allografts are associated with high rates of rejection, and therapies that increase acceptance of other transplanted organs have not translated into the lung. In this issue of the JCI, Krupnick and colleagues demonstrate in a murine model that lung allograft acceptance requires infiltration of a specific T cell population into the graft. This study highlights the unique immunobiology of the lung and the complexity of lung transplant tolerance.
Collapse
|
9
|
Fotino C, Pileggi A. Blockade of leukocyte function antigen-1 (LFA-1) in clinical islet transplantation. Curr Diab Rep 2011; 11:337-44. [PMID: 21755435 DOI: 10.1007/s11892-011-0214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Carmen Fotino
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA.
| | | |
Collapse
|
10
|
Hutton JC, Davidson HW. Cytokine-induced dicing and splicing in the beta-cell and the immune response in type 1 diabetes. Diabetes 2010; 59:335-6. [PMID: 20103713 PMCID: PMC2809971 DOI: 10.2337/db09-1767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- John C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
| | | |
Collapse
|
11
|
Beilke JN, Gill RG. Frontiers in Nephrology: The Varied Faces of Natural Killer Cells in Transplantation—Contributions to Both Allograft Immunity and Tolerance. J Am Soc Nephrol 2007; 18:2262-7. [PMID: 17634430 DOI: 10.1681/asn.2007040423] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells are recognized for providing an important early innate immune response to viral and bacterial pathogens and for the surveillance of stressed and transformed autologous cells. However, with the exception of a pronounced role in allogeneic hematopoietic stem cell rejection, it has been challenging to ascribe the precise roles for NK cells in reactivity to tissue and solid-organ transplants. In general, NK cells initiate a rapid, proinflammatory environment that is conducive to many forms of effective immune host defense. This reactivity is often considered deleterious to allograft survival because NK cells are implicated in promoting both acute and chronic graft injury. However, more recent findings indicate that NK cells can also play a surprisingly profound role in allograft tolerance induction. This duality of function requires a reconsideration of the nature and consequence of NK cell reactivity during the allograft response. This review focuses on the differing "faces" of NK cells, especially the unexpected role of NK cells in allograft tolerance induction.
Collapse
Affiliation(s)
- Joshua N Beilke
- Department of Microbiology & Immunology, University of California San Francisco, USA
| | | |
Collapse
|
12
|
Bi EG, Shi W, Zou J, Hao ZH, Li ZH, Cai D, Zhang HQ, Sun B. IL-12p40 is not required for islet allograft rejection. Acta Pharmacol Sin 2006; 27:1065-70. [PMID: 16867260 DOI: 10.1111/j.1745-7254.2006.00341.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To investigate whether IL-12p40 plays a crucial role in regulating islet allograft rejection in a streptozotocin (STZ)-induced diabetes mouse model. METHODS C57BL/6 and IL-12p40 gene knockout mice were selected as recipient mice, to which the diabetes was induced with a treatment of STZ (150-200 mg/kg) by a single ip injection. BALB/c mice were selected as donor mice and islet cells were isolated from the mice. The 500 islets were transplanted into recipient mice beneath the capsule of the left kidney. Following the islet transplantation the glucose from the mice sera was monitored and the rejection rate of islets was analyzed. RESULTS STZ could induce diabetes in the recipient mice within 1 week. After transplantation of allograft islets, the increased glucose in wild-type (WT) mice returned to normal level and was maintained for 10 d. Unexpectedly, the rejection rate of islet allograft between IL-12p40-deficient mice and WT mice was similar. CONCLUSION The results suggested that, although islet allograft rejection is believed to be Th1-cell predominant, the Th1 response inducer, IL-12 and IL-23 are not essential to induce islet allograft rejection.
Collapse
Affiliation(s)
- En-Guang Bi
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Leukocyte function associated antigen-1 (LFA-1) was one of the earliest of cell-surface molecules identified by monoclonal antibodies generated against leukocyte immunogens. This integrin heterodimer is perhaps best known as a classic adhesion molecule facilitating the interaction between T cells and antigen-presenting cells. However, varied studies indicate that LFA-1 has multi-faceted roles in the immune response including adhesion, activation and trafficking of leukocyte populations. While there has been long-standing interest in LFA-1 as a therapeutic target for regulating immunity, anti-LFA-1 therapy is still not a first-line indication for any clinical condition. Antagonism of LFA-1 with monoclonal antibodies, either alone or in combination with other agents, can result in regulatory tolerance in vivo. Furthermore, new generation humanized anti-LFA-1 monoclonal antibodies (Efalizumab) show at least modest promise for continued application in clinical trials. Thus, anti-LFA-1 forms a potential, but still largely unexploited, immunotherapy which may find its greatest application as an agent which augments other therapies.
Collapse
Affiliation(s)
- M R Nicolls
- Department of Medicine, University of Colorado Health Science Center, Denver, Colorado, USA.
| | | |
Collapse
|
14
|
Rayat GR, Gill RG. Indefinite survival of neonatal porcine islet xenografts by simultaneous targeting of LFA-1 and CD154 or CD45RB. Diabetes 2005; 54:443-51. [PMID: 15677502 DOI: 10.2337/diabetes.54.2.443] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A variety of transient therapies directed against molecules involved in T-cell activation and function result in long-term islet allograft survival. However, there are relatively few examples of durable islet xenograft survival using similar short-term approaches, especially regarding highly phylogenetically disparate xenograft donors. Previous studies demonstrate that combined anti-lymphocyte function-associated antigen-1 (LFA-1) plus anti-CD154 therapy results in a robust form of islet allograft tolerance not observed with either individual monotherapy. Thus, the aim of this study was to determine whether the perturbation of anti-LFA-1, either alone or in combination with targeting CD154 or CD45RB, would promote neonatal porcine islet (NPI) xenograft survival in mice. NPI xenografts are rapidly rejected in wild-type C57BL/6 mice but reproducibly mature and restore durable euglycemia in diabetic, immune-deficient C57BL/6 rag-1(-/-) recipients. A short course of individual anti-LFA-1, anti-CD154, or anti-CD45RB therapy resulted in long-term (>100 days) survival in a moderate proportion of C57BL/6 recipients. However, simultaneous treatment with anti-LFA-1 plus either anti-CD154 or anti-CD45RB therapy could achieve indefinite xenograft function in the majority of recipient animals. Importantly, prolongation of islet xenograft survival using combined anti-LFA-1/anti-CD154 therapy was associated with little mononuclear cell infiltration and greatly reduced anti-porcine antibody levels. Taken together, results indicate that therapies simultaneously targeting differing pathways impacting T-cell function can show marked efficacy for inducing long-term xenograft survival and produce a prolonged state of host hyporeactivity in vivo.
Collapse
Affiliation(s)
- Gina R Rayat
- Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
15
|
Nicolls MR, Coulombe M, Beilke J, Gelhaus HC, Gill RG. CD4-dependent generation of dominant transplantation tolerance induced by simultaneous perturbation of CD154 and LFA-1 pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4831-9. [PMID: 12391193 DOI: 10.4049/jimmunol.169.9.4831] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD154 and LFA-1 (CD11a) represent conceptually distinct pathways of receptor/ligand interactions (costimulation and adhesion/homing, respectively) that have been effectively targeted to induce long-term allograft acceptance and tolerance. In the current study, we determined the relative efficacy and nature of tolerance induced by mAbs specific for these pathways. In vitro analysis indicated that simultaneous targeting of CD154 and LFA-1 resulted in profound inhibition of alloreactivity, suggesting that combined anti-CD154/anti-LFA-1 therapy could be highly effective in vivo. Thus, we evaluated combining mAb therapies targeting CD154 and LFA-1 for inducing transplantation tolerance to pancreatic islet allografts. Monotherapy with either anti-CD154 or anti-LFA-1 was partially effective for inducing long-term allograft survival, whereas the combination resulted in uniform allograft acceptance in high-responder C57BL/6 recipients. This combined therapy was not lymphocyte depleting and did not require the long-term deletion of donor-reactive T lymphocytes to maintain allograft survival. Importantly, combined anti-CD154/anti-LFA therapy uniquely resulted in "dominant" transplantation tolerance. Therefore, simultaneous perturbation of CD154 and LFA-1 molecules can result in profound tolerance induction not accomplished through individual monotherapy approaches. Furthermore, results show that such regulatory tolerance can coexist with the presence of robust anti-donor reactivity, suggesting that active tolerance does not require a corresponding deletion of donor-reactive T cells. Interestingly, although the induction of this regulatory state was highly CD4 dependent, the adoptive transfer of tolerance was less CD4 dependent in vivo.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- CD40 Ligand/immunology
- CD40 Ligand/physiology
- Clonal Deletion/genetics
- Drug Therapy, Combination
- Immunodominant Epitopes/immunology
- Injections, Intraperitoneal
- Islets of Langerhans Transplantation/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Culture Test, Mixed
- Lymphocyte Function-Associated Antigen-1/immunology
- Lymphocyte Function-Associated Antigen-1/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Signal Transduction/genetics
- Signal Transduction/immunology
- Transplantation Tolerance/genetics
Collapse
Affiliation(s)
- Mark R Nicolls
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | |
Collapse
|