1
|
Frodsham G, Pankhurst QA. Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration. ACTA ACUST UNITED AC 2016; 60:393-404. [PMID: 26439594 DOI: 10.1515/bmt-2015-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/08/2015] [Indexed: 11/15/2022]
Abstract
High gradient magnetic separation is a well-established technology in the mineral processing industry, and has been used for decades in the bioprocessing industry. Less well known is the increasing role that high gradient magnetic separation is playing in biomedical applications, for both diagnostic and therapeutic purposes. We review here the state of the art in this emerging field, with a focus on therapeutic haemofiltration, the key enabling technologies relating to the functionalisation of magnetic nanoparticles with target-specific binding agents, and the development of extra-corporeal circuits to enable the in situ filtering of human blood.
Collapse
|
2
|
Alegre E, Sammamed M, Fernández-Landázuri S, Zubiri L, González Á. Circulating biomarkers in malignant melanoma. Adv Clin Chem 2015; 69:47-89. [PMID: 25934359 DOI: 10.1016/bs.acc.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Melanoma is an aggressive tumor with increasing incidence worldwide. Biomarkers are valuable tools to minimize the cost and improve efficacy of treatment of this deadly disease. Serological markers have not widely been introduced in routine clinical practice due to their insufficient diagnostic sensitivity and specificity. It is likely that the lack of objective responses with traditional treatment hinder biomarker research and development in melanoma. Recently, new drugs and therapies have, however, emerged in advanced melanoma with noticeable objective response ratio and survival. In this new scenario, serological tumor markers should be revisited. In addition, other potential circulating biomarkers such as cell-free DNA, exosomes, microRNA, and circulating tumor cells have also been identified. In this review, we summarize classical and emerging tumor markers and discuss their possible roles in emerging therapeutics.
Collapse
Affiliation(s)
- Estibaliz Alegre
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | - Miguel Sammamed
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | | | - Leyre Zubiri
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Álvaro González
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Rodic S, Mihalcioiu C, Saleh RR. Detection methods of circulating tumor cells in cutaneous melanoma: a systematic review. Crit Rev Oncol Hematol 2014; 91:74-92. [PMID: 24530125 DOI: 10.1016/j.critrevonc.2014.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 12/25/2022] Open
Abstract
The vast majority of melanoma-related deaths are due to disseminated malignancy. Many treated patients who are clinically disease-free will go on to relapse. Therefore, new prognostic tools must be developed to better assess metastatic potential and assist in patient management. Circulating tumor cells are a widely studied metastatic biomarker with promising prognostic utility, as the shedding of cells from the primary tumor into peripheral blood is a necessary step in disease dissemination. An assortment of technologies and techniques has been developed to isolate and detect circulating melanoma cells (CMCs), but a standardized method is yet to be established. It is the aim of this study to systematically review the diverse enrichment and detection methods of circulating tumor cells in cutaneous melanoma. A literature search yielded 351 articles, of which 74 were deemed eligible according to inclusion criteria, the primary requirement being the reporting of patient CMC positivity status stratified by the stage of melanoma. Pertinent studies were used to evaluate the advantages and disadvantages of each method. Additionally, we calculated the sensitivity and specificity of seven common melanoma-associated markers based on the available literature.
Collapse
Affiliation(s)
- Stefan Rodic
- Division of Biology, McGill University, Montreal, Canada
| | - Catalin Mihalcioiu
- Division of Medical Oncology, McGill University Health Centre, Montreal, Canada
| | - Ramy R Saleh
- Division of Medical Oncology, McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
4
|
Verburg FA, Luster M, Cupini C, Chiovato L, Duntas L, Elisei R, Feldt-Rasmussen U, Rimmele H, Seregni E, Smit JWA, Theimer C, Giovanella L. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid 2013; 23:1211-25. [PMID: 23692026 DOI: 10.1089/thy.2012.0606] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Even though the presence of antithyroglobulin antibodies (TgAbs) represents a significant problem in the follow-up of patients with differentiated thyroid cancer (DTC), the current guidelines on the management of DTC that have been published in recent years contain no text concerning the methods to be used for detecting such antibody-related interference in thyroglobulin (Tg) measurement or how to manage TgAb-positive patients in whom Tg cannot be used reliably as a tumor marker. AIM An international group of experts from the European Thyroid Association Cancer Research Network who are involved in the care of DTC patients met twice to form a consensus opinion on how to proceed with treatment and follow-up in TgAb-positive DTC patients based on the available evidence in the literature. Here we will report on the consensus opinions that were reached regarding technical and clinical issues. RESULTS This clinical opinion article provides an overview of the available evidence and the resulting consensus recommendations. The current literature does not provide sufficient data for giving evidence-based answers to many questions arising in the care of TgAb-positive DTC patients. Where insufficient evidence was available, a thorough discussion by a group of physician-scientists, all of whom have a distinguished track record in thyroid cancer care, was held to arrive at a consensus expert opinion. The questions and answers discussed were then summarized into an algorithm for the management of TgAb-positive patients. CONCLUSION We were able to define 26 consensus expert recommendations and a resulting algorithm for the care of TgAb-positive DTC patients.
Collapse
Affiliation(s)
- Frederik A Verburg
- 1 Department of Nuclear Medicine, University Hospital Aachen , Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yang HW, Hua MY, Liu HL, Huang CY, Wei KC. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl 2012; 5:73-86. [PMID: 24198498 DOI: 10.2147/nsa.s35506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nanoparticles (NPs) play an important role in the molecular diagnosis, treatment, and monitoring of therapeutic outcomes in various diseases. Their nanoscale size, large surface area, unique capabilities, and negligible side effects make NPs highly effective for biomedical applications such as cancer therapy, thrombolysis, and molecular imaging. In particular, nontoxic superparamagnetic magnetic NPs (MNPs) with functionalized surface coatings can conjugate chemotherapeutic drugs or be used to target ligands/proteins, making them useful for drug delivery, targeted therapy, magnetic resonance imaging, transfection, and cell/protein/DNA separation. To optimize the therapeutic efficacy of MNPs for a specific application, three issues must be addressed. First, the efficacy of magnetic targeting/guidance is dependent on particle magnetization, which can be controlled by adjusting the reaction conditions during synthesis. Second, the tendency of MNPs to aggregate limits their therapeutic use in vivo; surface modifications to produce high positive or negative charges can reduce this tendency. Finally, the surface of MNPs can be coated with drugs which can be rapidly released after injection, resulting in targeting of low doses of the drug. Drugs therefore need to be conjugated to MNPs such that their release is delayed and their thermal stability enhanced. This chapter describes the creation of nanocarriers with a high drug-loading capacity comprised of a high-magnetization MNP core and a shell of aqueous, stable, conducting polyaniline derivatives and their applications in cancer therapy. It further summarizes some newly developed methods to synthesize and modify the surfaces of MNPs and their biomedical applications.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Molecular Medicine Research Center, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan ; Department of Neurosurgery, Chang Gung University and Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Nezos A, Msaouel P, Pissimissis N, Lembessis P, Sourla A, Armakolas A, Gogas H, Stratigos AJ, Katsambas AD, Koutsilieris M. Methods of detection of circulating melanoma cells: a comparative overview. Cancer Treat Rev 2010; 37:284-90. [PMID: 21106295 DOI: 10.1016/j.ctrv.2010.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 10/24/2010] [Accepted: 10/28/2010] [Indexed: 02/07/2023]
Abstract
Disease dissemination is the major cause of melanoma-related death. A crucial step in the metastatic process is the intravascular invasion and circulation of melanoma cells in the bloodstream with subsequent development of distant micrometastases that is initially clinically undetectable and will eventually progress into clinically apparent metastasis. Therefore, the use of molecular methods to detect circulating melanoma cells may be of value in risk stratification and clinical management of such patients. Herein, we review the currently applied techniques for the detection, isolation, enrichment and further characterization of circulating melanoma cells from peripheral blood samples in melanoma patients. Furthermore, we provide a brief overview of the various molecular markers currently being evaluated as prognostic indicators of melanoma progression.
Collapse
Affiliation(s)
- Andrianos Nezos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias str., Goudi-Athens 115 27, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang E, Lian X, Chen W, Yang T, Yang L. Characterization of rat hair follicle stem cells selected by vario magnetic activated cell sorting system. Acta Histochem Cytochem 2009; 42:129-36. [PMID: 19918321 PMCID: PMC2775103 DOI: 10.1267/ahc.09016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/02/2009] [Indexed: 12/02/2022] Open
Abstract
Hair follicle stem cells (HfSCs) play crucial roles in hair follicle morphogenesis and hair cycling. These stem cells are self-renewable and have the multi-lineage potential to generate epidermis, sebaceous glands, and hair follicle. The separation and identification of hair follicle stem cells are important for further research in stem cell biology. In this study, we report on the successful enrichment of rat hair follicle stem cells through vario magnetic activated cell sorting (Vario MACS) and the biological characteristics of the stem cells. We chose the HfSCs positive surface markers CD34, α6-integrin and the negative marker CD71 to design four isolation strategies: positive selection with single marker of CD34, positive selection with single marker of α6-integrin, CD71 depletion followed by CD34 positive selection, and CD71 depletion followed by α6-integrin positive selection. The results of flow cytometry analysis showed that all four strategies had ideal effects. Specifically, we conducted a series of researches on HfSCs characterized by their high level of CD34, termed CD34bri cells, and low to undetectable expression of CD34, termed CD34dim cells. CD34bri cells had greater proliferative potential and higher colony-forming ability than CD34dim cells. Furthermore, CD34bri cells had some typical characteristics as progenitor cells, such as large nucleus, obvious nucleolus, large nuclear:cytoplasmic ratio and few cytoplasmic organelles. Our findings clearly demonstrated that HfSCs with high purity and viability could be successfully enriched with Vario MACS.
Collapse
Affiliation(s)
- Enyi Huang
- Department of Bioengineering, Chongqing University
| | - Xiaohua Lian
- Department of Cell Biology, Third Military Medical University
| | - Wei Chen
- Department of Cell Biology, Third Military Medical University
| | - Tian Yang
- Department of Cell Biology, Third Military Medical University
| | - Li Yang
- Department of Bioengineering, Chongqing University
| |
Collapse
|
9
|
Frontal analysis microchip capillary electrophoresis to study the binding of ligands to receptors derivatized on magnetic beads. Anal Bioanal Chem 2008; 393:615-21. [DOI: 10.1007/s00216-008-2506-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
|
10
|
Piyasena ME, Real LJ, Diamond RA, Xu HH, Gomez FA. Magnetic microsphere-based methods to study the interaction of teicoplanin with peptides and bacteria. Anal Bioanal Chem 2008; 392:877-86. [PMID: 18712518 DOI: 10.1007/s00216-008-2327-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 11/25/2022]
Abstract
Teicoplanin (teic) from Actinoplanes teichomyceticus is a glycopeptide antibiotic used to treat many gram-positive bacterial infections. Glycopeptide antibiotics inhibit bacterial growth by binding to carboxy-terminal D-Ala-D-Ala intermediates in the peptidoglycan of the cell wall of gram-positive bacteria. In this paper we report the derivatization of magnetic microspheres with teic (teic-microspheres). Fluorescence-based techniques have been developed to analyze the binding properties of the microspheres to two D-Ala-D-Ala terminus peptides. The dissociation constant for the binding of carboxyfluorescein-labeled D-Ala-D-Ala-D-Ala to teic on microspheres was established via fluorimetry and flow cytometry and was determined to be 0.5 x 10(-6) and 3.0 x 10(-6) mol L(-1), respectively. The feasibility of utilizing microparticles with fluorescence methods to detect low levels (the limit of bacterial detection was determined to be 30 colon-forming units; cfu) of gram-positive bacteria has been demonstrated. A simple microfluidic experiment is reported to demonstrate the possibility of developing microsphere-based affinity assays to study peptide-antibiotic interaction.
Collapse
Affiliation(s)
- Menake E Piyasena
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032-8202, USA
| | | | | | | | | |
Collapse
|
11
|
Horák D, Babic M, Macková H, Benes MJ. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 2007; 30:1751-72. [PMID: 17623453 DOI: 10.1002/jssc.200700088] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The paper presents a critical overview on magnetic nanoparticles and microspheres used as separation media in different fields of chemistry, biochemistry, biology, and environment protection. The preparation of most widely used magnetic iron oxides in appropriate form, their coating or encapsulation in polymer microspheres, and functionalization is discussed in the first part. In the second part, new developments in the main application areas of magnetic composite particles for separation and catalytical purposes are briefly described. They cover separations and isolations of toxic inorganic and organic ions, proteins, and other biopolymers, cells, and microorganisms. Only selected number of relevant papers could be included due to the restricted extent of the review.
Collapse
Affiliation(s)
- Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
12
|
Romeo MJ, Wunderlich J, Ngo L, Rosenberg SA, Steinberg SM, Berman DM. Measuring tissue-based biomarkers by immunochromatography coupled with reverse-phase lysate microarray. Clin Cancer Res 2006; 12:2463-7. [PMID: 16638853 PMCID: PMC2147079 DOI: 10.1158/1078-0432.ccr-05-1479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There is a need for new technologies to study tissue-based biomarkers. The current gold standard, immunohistochemistry, is compromised by variability in tissue processing and observer bias. Reverse transcription-PCR (RT-PCR), immunocytochemistry, and reverse-phase lysate microarrays (RPM) are promising alternative technologies but have not yet been validated, or correlated, on the same patient-derived tissues. Furthermore, RPM is currently limited by time-consuming microdissection and low amounts of evaluable protein lysates. EXPERIMENTAL DESIGN Metastatic melanoma was surgically excised from 30 patients and macroscopically dissected from surrounding stroma. Each specimen was processed by formalin-fixation (immunohistochemistry), cytospin (immunocytochemistry), or disaggreagation and enrichment (RT-PCR and RPM). The latter protocol uses immunochromatography to remove hematopoetic-derived cells, thus enriching for melanoma cells. Each sample was measured for the expression of gp100 or MART-1 normalized to actin. RESULTS Immunochromatography coupled with RPM (I-RPM) is reproducible (r >/= 0.70) and, for gp100, correlates strongly with immunohistochemistry and immunocytochemistry (r = 0.78 and 0.76, respectively) and moderately with transcript levels, measured by RT-PCR (r = 0.61). In contrast, for MART-1, I-RPM correlates strongly with transcript level (r = 0.78) but only moderately strong correlations are noted with immunohistochemistry and immunocytochemistry (r = 0.64 and 0.59, respectively). In general, transcript levels show only moderately strong correlations with immunohistochemistry and immunocytochemistry (r = 0.41-0.64). CONCLUSION I-RPM is a promising technology for quantitative grading of tissue biomarkers; however, antigen-dependent correlations are noted.
Collapse
Affiliation(s)
- Martin J. Romeo
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - John Wunderlich
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | - Lien Ngo
- Surgery Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David M. Berman
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
13
|
Carlson JA, Ross JS, Slominski A, Linette G, Mysliborski J, Hill J, Mihm M. Molecular diagnostics in melanoma. J Am Acad Dermatol 2006; 52:743-75; quiz 775-8. [PMID: 15858465 DOI: 10.1016/j.jaad.2004.08.034] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular pathology is rapidly evolving, featuring continuous technologic improvements that offer novel clinical opportunities for the recognition of disease predisposition, for identifying sub-clinical disease, for more accurate diagnosis, for selecting efficacious and non-toxic therapy, and for monitoring of disease outcome. Currently, the identification and prognosis of primary cutaneous melanoma is based on histologic factors (tumor depth and ulceration) and clinical factors (number of lymph node and/or distant metastases). However, metastasis can occur in patients with thin melanomas, and sentinel lymph node biopsy does not identify all patients at risk for distant metastasis. New markers exist that correlate with melanoma progression, which may aid in melanoma identification, prognostication, and detection of minimal residual disease/early recurrence. Moreover, not many therapeutic options exist for melanoma as no regimen prolongs survival. Emerging data with investigational therapies suggest that certain markers might play a crucial role in identifying patients who will respond to therapy or show utility in the monitoring the response to therapy. Herein, molecular diagnostics that can potentially benefit the individual melanoma patient will be discussed.
Collapse
Affiliation(s)
- J Andrew Carlson
- Division of Dermatopathology, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Naciff JM, Richardson BD, Oliver KG, Jump ML, Torontali SM, Juhlin KD, Carr GJ, Paine JR, Tiesman JP, Daston GP. Design of a microsphere-based high-throughput gene expression assay to determine estrogenic potential. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1164-71. [PMID: 16140622 PMCID: PMC1280396 DOI: 10.1289/ehp.7843] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently gene expression studies have been multiplied at an accelerated rate by the use of high-density microarrays. By assaying thousands of transcripts at a time, microarrays have led to the discovery of dozens of genes involved in particular biochemical processes, for example, the response of a tissue/organ to a given chemical with therapeutic or toxic properties. The next step in these studies is to focus on the response of a subset of relevant genes to verify or refine potential therapeutic or toxic properties. We have developed a sensitive, high-throughput gene expression assay for this purpose. In this assay, based on the Luminex xMAP system, carefully selected oligonucleotides were covalently linked to fluorescently coded microspheres that are hybridized to biotinylated cRNA followed by amplification of the signal, which results in a rapid, sensitive, multiplexed assay platform. Using this system, we have developed an RNA expression profiling assay specific for 17 estrogen-responsive transcripts and three controls. This assay can evaluate up to 100 distinct analytes simultaneously in a single sample, in a 96-well plate format. This system has improved sensitivity versus existing microsphere-based assays and has sensitivity and precision comparable with or better than microarray technology. We have achieved detection levels down to 1 amol, detecting rare messages in complex cRNA samples, using as little as 2.5 microg starting cRNA. This assay offers increased throughput with decreased costs compared with existing microarray technologies, with the trade-off being in the total number of transcripts that can be analyzed.
Collapse
Affiliation(s)
- Jorge M Naciff
- Miami Valley Innovation Center, Procter & Gamble Company, Cincinnati, OH 45253, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Felcht M, Fischer JC, Michels M, Weinhold M, Zouboulis CC. [Malignant melanoma -- a medical students' viewpoint]. J Dtsch Dermatol Ges 2005; 3:421-30. [PMID: 15892844 DOI: 10.1111/j.1610-0387.2005.05024.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malignant melanoma is a primarily cutaneous melanocytic tumour with increasing incidence responsible for 90 % of skin cancer mortality. Genetic predisposition has been identified as the most important risk factor, while UV is second in importance and can be avoided. New diagnostic methods include sentinel lymph node biopsy and the detection of tumour markers in blood. Furthermore, malignant melanoma shows an extraordinary resistance to therapy; at present the only cure lies in early excision of the primary tumour. Thus early recognition is of utmost importance. Experimental approaches, such as dendritic cell vaccination, have shown some effectiveness which must be confirmed in multicenter, randomised trials.
Collapse
Affiliation(s)
- Moritz Felcht
- Benjamin-Franklin-Kolleg, Fachbereich Humanmedizin, Berlin
| | | | | | | | | |
Collapse
|
16
|
Lotze MT, Wang E, Marincola FM, Hanna N, Bugelski PJ, Burns CA, Coukos G, Damle N, Godfrey TE, Howell WM, Panelli MC, Perricone MA, Petricoin EF, Sauter G, Scheibenbogen C, Shivers SC, Taylor DL, Weinstein JN, Whiteside TL. Workshop on Cancer Biometrics: Identifying Biomarkers and Surrogates of Cancer in Patients. J Immunother 2005; 28:79-119. [PMID: 15725954 DOI: 10.1097/01.cji.0000154251.20125.2e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current excitement about molecular targeted therapies has driven much of the recent dialog in cancer diagnosis and treatment. Particularly in the biologic therapy of cancer, identifiable antigenic T-cell targets restricted by MHC molecules and the related novel stress molecules such as MICA/B and Letal allow a degree of precision previously unknown in cancer therapy. We have previously held workshops on immunologic monitoring and angiogenesis monitoring. This workshop was designed to discuss the state of the art in identification of biomarkers and surrogates of tumor in patients with cancer, with particular emphasis on assays within the blood and tumor. We distinguish this from immunologic monitoring in the sense that it is primarily a measure of the tumor burden as opposed to the immune response to it. Recommendations for intensive investigation and targeted funding to enable such strategies were developed in seven areas: genomic analysis; detection of molecular markers in peripheral blood and lymph node by tumor capture and RT-PCR; serum, plasma, and tumor proteomics; immune polymorphisms; high content screening using flow and imaging cytometry; immunohistochemistry and tissue microarrays; and assessment of immune infiltrate and necrosis in tumors. Concrete recommendations for current application and enabling further development in cancer biometrics are summarized. This will allow a more informed, rapid, and accurate assessment of novel cancer therapies.
Collapse
Affiliation(s)
- Michael T Lotze
- Translational Research, University of Pittsburgh Molecular Medicine Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lara O, Tong X, Zborowski M, Chalmers JJ. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol 2004; 32:891-904. [PMID: 15504544 DOI: 10.1016/j.exphem.2004.07.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 07/06/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To develop a reliable technique to enrich for rare cells in blood suspensions using only negative selection steps including a flow-through immunomagnetic cell separations system and by optimizing variables normally encountered during such enrichment processes. METHODS A human breast cancer cell line was cultivated and spiked at a ratio of 1 cancer cell to 10(5) total leukocytes in buffy coat or 1 cancer cell to 10(8) total cells in whole blood samples. The final, optimized process consisted of: a red cell lysis step, immunomagnetically staining leukocytes with an anti-CD45 PE, anti- MACS sandwich, immunomagnetic sorting using a flow-through system (QMS), and a final cell analysis step using either an automated cell counter, filtration, and visual counting or a cytospin analysis. RESULTS The final, optimized process produced a final enrichment of the rare cancer cells of 5.17 log(10) and an average, final recovery of 46%. It should be noted that a negative depletion protocol was used (i.e., no labeling of the rare cancer cells was used). CONCLUSIONS To the authors' knowledge, no examples in the literature exist of a 5.17 log(10) enrichment of cancer cells in human blood using a negative depletion protocol. The closest example is a 4 log(10) enrichment in which two positive magnetic cell separation steps were used (none were used in this study). Ongoing studies are investigating further modifications of the precommercial, prototype flow-through immunmagnetic separation system to increase both the enrichment and recovery rate. However, even at current performance levels, the presented process could significantly improve visual and molecular analysis of rare cells in blood.
Collapse
Affiliation(s)
- Oscar Lara
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
18
|
Bonmassar L, Massara MC, Cottarelli A, Aquino A, Formica V, Prete SP, Lacal PM, Marchetti P, Concolino F, Faraoni I, D'Atri S. Preclinical studies on detection of circulating melanoma cells in patients: telomerase as a recognition marker of malignancy. J Chemother 2004; 16:479-86. [PMID: 15565916 DOI: 10.1179/joc.2004.16.5.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Preclinical studies based on a "simulation design", were performed with cultured melanoma cells prelabeled with 51Cr, added to normal blood and subjected to separation and recognition steps. Mononuclear cells (MNC) were isolated on ficollhypaque gradient, and melanoma cells were separated from lymphocytes using anti-CD45 immunomagnetic beads. Malignant cells were then recognized by measuring telomerase activity (TRAP and TRAP-ELISA assays). It was found that: (a)recovery of prelabeled cells present in MNC did not exceed 75%; (b) further recovery of prelabeled cells after separation from lymphocytes did not exceed 68%. Therefore, the overall recovery of prelabeled cells did not exceed 48%; (c) the entire procedure was able to reliably detect as few as 30 malignant cells added to normal blood, providing a telomerase signal significantly higher than that found in absence of melanoma cells. These results furnish the technical bases for developing a tumor detection assay in the blood of melanoma patients.
Collapse
Affiliation(s)
- L Bonmassar
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Via dei Monti di Creta 104, 00167, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|