1
|
Wang H, Li P, Xu N, Zhu L, Cai M, Yu W, Gao Y. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Med Gas Res 2016; 6:194-205. [PMID: 28217291 PMCID: PMC5223310 DOI: 10.4103/2045-9912.196901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Hailian Wang
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peiying Li
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Xu
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ling Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengfei Cai
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqin Gao
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Wise-Faberowski L, Osorio-Lujan S. Acute and sustained isoflurane neuroprotection: The effect of culture age and duration of oxygen and glucose deprivation. Brain Inj 2013; 27:444-53. [DOI: 10.3109/02699052.2012.750755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Somekawa-Kondo T, Yamaguchi K, Ishitsuka Y, Ito S, Tanaka K, Irikura M, Moriuchi H, Takahama K, Ando Y, Yamazaki T, Irie T. Aminophylline, administered at usual doses for rodents in pharmacological studies, induces hippocampal neuronal cell injury under low tidal volume hypoxic conditions in guinea-pigs. J Pharm Pharmacol 2012; 65:102-14. [PMID: 23215693 DOI: 10.1111/j.2042-7158.2012.01566.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To establish whether aminophylline, administered at usual doses for rodents in pharmacological studies, induces brain injury in systemic hypoxaemia in guinea-pigs. METHODS A hypoxaemia (partial oxygen tension of arterial blood (PaO₂) = 40-60 mmHg) model was developed by low tidal volume mechanical ventilation in guinea-pigs. KEY FINDINGS Under hypoxic conditions, aminophylline significantly increased the concentration of brain-specific creatine kinase in the serum in a dose- and time-dependent manner. A reduced number of hippocampal neuronal cells in the CA1 region, an increase in the concentration of neuron-specific enolase (NSE) in cerebrospinal fluid (CSF), an increase in lipid hydroperoxides and a decrease in the ratio of glutathione to glutathione disulfide in the brain tissues were also observed. These effects were not observed when aminophylline at the same doses was administered under normoxic conditions (PaO₂ = 80-100 mmHg). There was no difference in either serum or CSF concentrations of theophylline between normoxic and hypoxic conditions. Another methylxanthine, caffeine, did not increase the concentration of NSE in CSF. CONCLUSIONS Aminophylline potentially induces brain damage under hypoxic conditions. We suggest that aminophylline treatment has adverse effects in patients with hypoxaemia subsequent to respiratory disorders such as asthma.
Collapse
Affiliation(s)
- Tomoko Somekawa-Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sun LN, Li LL, Li ZB, Wang L, Wang XL. Protective effects of TREK-1 against oxidative injury induced by SNP and H2O2. Acta Pharmacol Sin 2008; 29:1150-6. [PMID: 18817618 DOI: 10.1111/j.1745-7254.2008.00853.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIM TREK-1 (TWIK-related K+ channel-1) is a 2-pore-domain K+ channel subtype. The present study investigated the role of TREK-1 in cell death induced by oxidative stress. METHODS The cell viability of wild-type Chinese hamster ovary (CHO) and TREK-1-transfected CHO cells (TREK-1/CHO cells) was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence of sodium nitroprusside (SNP) or hydrogen peroxide (H2O2). Apoptosis of wild-type CHO and TREK-1/CHO cells was detected using Hoechst33342 staining. RESULTS Both SNP and H2O2 caused dose- and time-dependent growth inhibition of wild-type CHO and TREK-1/ CHO cells. Following a 12 h exposure to SNP, the 50% inhibition (IC(50)) values for wild-type CHO and TREK-1/CHO cells were calculated as 0.69 mmol/L and 1.14 mmol/L, respectively. The IC(50) values were 0.07 mmol/L and 0.09 mmol/L in H2O2-treated wild-type CHO and TREK-1/CHO cells, respectively, following 12 h exposure to H2O2. Moreover, SNP/H2O2 induced less apoptosis in TREK-1/ CHO cells than that in wild-type CHO cells (P<0.05). CONCLUSION The results demonstrated that TREK-1 played a protective role against oxidative injury.
Collapse
Affiliation(s)
- Li-na Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | |
Collapse
|
5
|
Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 2007; 27:1108-28. [PMID: 17047683 PMCID: PMC2266688 DOI: 10.1038/sj.jcbfm.9600410] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will focus on inhalational anesthetic neuroprotection during cerebral ischemia and inhalational anesthetic preconditioning before ischemic brain injury. The limitations and challenges of past and current research in this area will be addressed before reviewing experimental and clinical studies evaluating the effects of inhalational anesthetics before and during cerebral ischemia. Mechanisms underlying volatile anesthetic neuroprotection and preconditioning will also be examined. Lastly, future directions for inhalational anesthetics and ischemic brain injury will be briefly discussed.
Collapse
Affiliation(s)
- Hideto Kitano
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
6
|
Liu C, Cotten JF, Schuyler JA, Fahlman CS, Au JD, Bickler PE, Yost CS. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress. Brain Res 2005; 1031:164-73. [PMID: 15649441 DOI: 10.1016/j.brainres.2004.10.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 12/22/2022]
Abstract
Tandem pore domain (or 2P) K channels form a recently isolated family of channels that are responsible for background K currents in excitable tissues. Previous studies have indicated that 2P K channel activity produces membrane hyperpolarization, which may offer protection from cellular insults. To study the effect of these channels in neuroprotection, we overexpressed pH-sensitive 2P K channels by transfecting the partially transformed C8 cell line with these channels. Tandem pore weak inward rectifier K channel (TWIK)-related acid-sensitive K channel 3 (TASK-3, KCNK9) as well as other pH sensitive 2P K channels (TASK-1 and TASK-2) enhanced cell viability by inhibiting the activation of intracellular apoptosis pathways. To explore the cellular basis for this protection in a more complex cellular environment, we infected cultured hippocampal slices with Sindbis virus constructs containing the coding sequences of these channels. Expression of TASK-3 throughout the hippocampal structure afforded neurons within the dentate and CA1 regions significant protection from an oxygen-glucose deprivation (OGD) injury. Neuroprotection within TASK-3 expressing slices was also enhanced by incubation with isoflurane. These results confirm a protective physiologic capability of TASK-3 and related 2P K channels, and suggest agents that enhance their activity, such as volatile anesthetics may intensify these protective effects.
Collapse
Affiliation(s)
- Canhui Liu
- Severinghaus Anesthesia Laboratory, Department of Anesthesia and Perioperative Care, University of California San Francisco, 513 Parnassus Ave., Room S-261, Box 0542, San Francisco, CA 94143-0542, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Wise-Faberowski L, Aono M, Pearlstein RD, Warner DS. Apoptosis is not enhanced in primary mixed neuronal/glial cultures protected by isoflurane against N-methyl-D-aspartate excitotoxicity. Anesth Analg 2004; 99:1708-1714. [PMID: 15562059 DOI: 10.1213/01.ane.0000136474.35627.ff] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Volatile anesthetics reduce acute excitotoxic cell death in primary neuronal/glial cultures. We hypothesized that cells protected by isoflurane against N-methyl-d-aspartate (NMDA)-induced necrosis would instead become apoptotic. Primary mixed neuronal/glial cultures prepared from fetal rat brain were exposed to dissolved isoflurane (0 mM, 0.4 mM [1.8 minimum alveolar anesthetic concentration], or 1.6 mM [7 minimum alveolar anesthetic concentration]) and NMDA (0 or 100 microM) at 37 degrees C for 30 min. Dizocilpine (10 microM) plus 100 microM NMDA served as a positive control. Necrosis and apoptosis were assessed at 24 and/or 48 h after exposure by using Hoechst/propidium iodide staining, terminal-deoxynucleotidyl transferase end-nick labeling, DNA fragmentation enzyme-linked immunoabsorbence, and caspase-3 activity assays. NMDA increased the number of necrotic cells. Isoflurane (1.6 mM) and dizocilpine partially reduced cellular necrosis but did not increase the number of morphologically apoptotic or apoptotic-like cells resulting from exposure to 100 microM NMDA at 24 h. At 48 h, no evidence was found to indicate that cells protected by isoflurane had become apoptotic or apoptotic-like. However, cells protected by dizocilpine against necrosis showed evidence of caspase-3-mediated apoptosis. These in vitro data do not support the hypothesis that isoflurane protection against acute excitotoxic necrosis results in apoptosis.
Collapse
Affiliation(s)
- Lisa Wise-Faberowski
- Departments of *Anesthesiology, ‡Surgery, and §Neurobiology, †Duke University Medical Center, Durham, North Carolina
| | | | | | | |
Collapse
|
8
|
Bickler PE, Warner DS, Stratmann G, Schuyler JA. gamma-Aminobutyric acid-A receptors contribute to isoflurane neuroprotection in organotypic hippocampal cultures. Anesth Analg 2003; 97:564-571. [PMID: 12873954 DOI: 10.1213/01.ane.0000068880.82739.7b] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The mechanisms by which anesthetics such as isoflurane reduce cell death in rodent models of cerebral ischemia remain incompletely defined. Reduction in glutamate excitotoxicity explains some but not all of isoflurane's neuroprotection. Because isoflurane potentiates gamma-aminobutyric acid (GABA) receptor-mediated ion fluxes and GABA(A) receptor agonists have neuroprotective effects, we hypothesized that GABA(A) receptors contribute to isoflurane neuroprotection. As a model of cerebral ischemia and recovery, we used rat hippocampal slice cultures. Survival of CA1, CA3, and dentate neurons was examined 2 and 3 days after 1-h combined oxygen-glucose deprivation (OGD) at 37 degrees C. To define the role of GABA(A) receptors in mediating protection, the effect of 1% isoflurane on cell survival was examined in the presence of the GABA(A) antagonist bicuculline during OGD. Cell death was measured with propidium iodide fluorescence. Isoflurane and the selective GABA(A) agonist muscimol (25 micro M) reduced cell death after OGD to values similar to slices not exposed to OGD, with the exception that muscimol did not reduce cell death in CA3 neurons 2 days after OGD. The GABA(A) antagonist bicuculline reduced the neuroprotective effects of isoflurane on hippocampal neurons 2 and 3 days after OGD. We conclude that GABA(A) receptors contribute to neuroprotection against OGD produced by isoflurane in the hippocampal slice model. Based on this and other studies, it is likely that neuroprotection produced by isoflurane is multifactorial and includes actions at both GABA(A) and glutamate receptors and possibly other mechanisms. IMPLICATIONS Isoflurane is neuroprotective in rodent brain ischemia models, but the mechanisms for this effect remain incompletely defined. In organotypic cultures of rat hippocampus, we show that protection of CA1, CA3, and dentate neurons by 1% isoflurane from death caused by oxygen and glucose deprivation involves GABA(A) receptors.
Collapse
Affiliation(s)
- Philip E Bickler
- *Department of Anesthesia and Perioperative Care, University of California San Francisco; and †Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | | | | | | |
Collapse
|
9
|
Izumi Y, Benz AM, Katsuki H, Matsukawa M, Clifford DB, Zorumski CF. Effects of fructose-1,6-bisphosphate on morphological and functional neuronal integrity in rat hippocampal slices during energy deprivation. Neuroscience 2003; 116:465-75. [PMID: 12559101 DOI: 10.1016/s0306-4522(02)00661-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
D-fructose-1,6-bisphosphate, a high energy glycolytic intermediate, attenuates ischemic damage in a variety of tissues, including brain. To determine whether D-fructose-1,6-bisphosphate serves as an alternate energy substrate in the CNS, rat hippocampal slices were treated with D-fructose-1,6-bisphosphate during glucose deprivation. Unlike pyruvate, an endproduct of glycolysis, 10 mM D-fructose-1,6-bisphosphate did not preserve synaptic transmission or morphological integrity of CA1 pyramidal neurons during glucose deprivation. Moreover, during glucose deprivation, 10-mM D-fructose-1,6-bisphosphate failed to maintain adenosine triphosphate levels in slices. D-fructose-1,6-bisphosphate, however, attenuated acute neuronal degeneration produced by 200 microM iodoacetate, an inhibitor of glycolysis downstream of D-fructose-1,6-bisphosphate. Because (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine, an antagonist of N-methyl-D-aspartate receptors, exhibited similar protection against iodoacetate damage, we examined whether (5S, 10R)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine and D-fructose-1,6-bisphosphate share a common neuroprotective mechanism. Indeed, D-fructose-1,6-bisphosphate diminished N-methyl-D-aspartate receptor-mediated synaptic responses and partially attenuated neuronal degeneration induced by 100-microM N-methyl-D-aspartate. Taken together, these results indicate that D-fructose-1,6-bisphosphate is unlikely to serve as an energy substrate in the hippocampus, and that neuroprotective effects of D-fructose-1,6-bisphosphate are mediated by mechanisms other than anaerobic energy supply.
Collapse
Affiliation(s)
- Y Izumi
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63310, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Peeters C, Hoelen D, Groenendaal F, van Bel F, Bär D. Deferoxamine, allopurinol and oxypurinol are not neuroprotective after oxygen/glucose deprivation in an organotypic hippocampal model, lacking functional endothelial cells. Brain Res 2003; 963:72-80. [PMID: 12560112 DOI: 10.1016/s0006-8993(02)03843-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reactive oxygen species-induced reperfusion injury of the brain is an important cause of neonatal morbidity and mortality following perinatal hypoxia-ischemia. Deferoxamine, allopurinol and oxypurinol have previously been shown to be neuroprotective in vivo during or directly after hypoxia-ischemia. To further characterize and more precisely elucidate whether the neuroprotective properties of these agents are mediated via neuronal and glial cells, or whether endothelial cells contribute to this effect, we tested their ability to protect CA1 neurons in organotypic hippocampal slices. Hippocampal slices obtained from 8-day-old rats were cultured for 7 days and exposed to oxygen/glucose deprivation for 50 min, or used as control slices. Cell damage was assessed at 48 h after oxygen/glucose deprivation using propidium iodide staining. At different time points following oxygen/glucose deprivation we administered dizocilpine, 6-cyano-7-nitroquinoxaline-2,3-dione, and alpha-phenyl-N-tert-butyl nitrone for validation purposes. Deferoxamine, allopurinol or oxypurinol were used as test substances. As expected, 89% and 98% protection was demonstrated with dizocilpine present during or during/after oxygen/glucose deprivation resp. alpha-Phenyl-N-tert-butyl nitrone administered during/after oxygen/glucose deprivation provided 44% protection. However, iron chelation with deferoxamine and inhibition of xanthine oxidase by allopurinol or oxypurinol did not confer neuroprotection. The neuroprotective effect of deferoxamine, allopurinol or oxypurinol, as seen in vivo, may be obtained via inhibition of the production of damaging factors by blood born substances or endothelial cells.
Collapse
Affiliation(s)
- Cacha Peeters
- Department of Neonatology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci 2003. [PMID: 12533598 DOI: 10.1523/jneurosci.23-02-00384.2003] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate receptors and calcium have been implicated as triggering factors in the induction of tolerance by ischemic preconditioning (IPC) in the brain. However, little is known about the signal transduction pathway that ensues after the IPC induction pathway. The main goals of the present study were to determine whether NMDA induces preconditioning via a calcium pathway and promotes translocation of the protein kinase C epsilon (epsilonPKC) isozyme and whether this PKC isozyme is key in the IPC signal transduction pathway. We corroborate here that IPC and a sublethal dose of NMDA were neuroprotective, whereas blockade of NMDA receptors during IPC diminished IPC-induced neuroprotection. Calcium chelation blocked the protection afforded by both NMDA and ischemic preconditioning significantly, suggesting a significant role of calcium. Pharmacological preconditioning with the nonselective PKC isozyme activator phorbol myristate acetate could not emulate IPC, but blockade of PKC activation with chelerythrine during IPC blocked its neuroprotection. These results suggested that there might be a dual involvement of PKC isozymes during IPC. This was corroborated when neuroprotection was blocked when we inhibited epsilonPKC during IPC and NMDA preconditioning, and IPC neuroprotection was emulated with the activator of epsilonPKC. The possible correlation between NMDA, Ca2+, and epsilonPKC was found when we emulated IPC with the diacylglycerol analog oleoylacetyl glycerol, suggesting an indirect pathway by which Ca2+ could activate the calcium-insensitive epsilonPKC isozyme. These results demonstrated that the epsilonPKC isozyme played a key role in both IPC- and NMDA-induced tolerance.
Collapse
|