1
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Luginina A, Gusach A, Lyapina E, Khorn P, Safronova N, Shevtsov M, Dmitirieva D, Dashevskii D, Kotova T, Smirnova E, Borshchevskiy V, Cherezov V, Mishin A. Structural diversity of leukotriene G-protein coupled receptors. J Biol Chem 2023; 299:105247. [PMID: 37703990 PMCID: PMC10570957 DOI: 10.1016/j.jbc.2023.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Dihydroxy acid leukotriene (LTB4) and cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are inflammatory mediators derived from arachidonic acid via the 5-lipoxygenase pathway. While structurally similar, these two types of leukotrienes (LTs) exert their functions through interactions with two distinct G protein-coupled receptor (GPCR) families, BLT and CysLT receptors, which share low sequence similarity and belong to phylogenetically divergent GPCR groups. Selective antagonism of LT receptors has been proposed as a promising strategy for the treatment of many inflammation-related diseases including asthma and chronic obstructive pulmonary disease, rheumatoid arthritis, cystic fibrosis, diabetes, and several types of cancer. Selective CysLT1R antagonists are currently used as antiasthmatic drugs, however, there are no approved drugs targeting CysLT2 and BLT receptors. In this review, we highlight recently published structures of BLT1R and CysLTRs revealing unique structural features of the two receptor families. X-ray and cryo-EM data shed light on their overall conformations, differences in functional motifs involved in receptor activation, and details of the ligand-binding pockets. An unexpected binding mode of the selective antagonist BIIL260 in the BLT1R structure makes it the first example of a compound targeting the sodium-binding site of GPCRs and suggests a novel strategy for the receptor activity modulation. Taken together, these recent structural data reveal dramatic differences in the molecular architecture of the two LT receptor families and pave the way to new therapeutic strategies of selective targeting individual receptors with novel tool compounds obtained by the structure-based drug design approach.
Collapse
Affiliation(s)
- Aleksandra Luginina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasiia Gusach
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elizaveta Lyapina
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Polina Khorn
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nadezda Safronova
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shevtsov
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria Dmitirieva
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitrii Dashevskii
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Tatiana Kotova
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ekaterina Smirnova
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Joint Institute for Nuclear Research, Dubna, Russia
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, California, USA.
| | - Alexey Mishin
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
3
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
4
|
Duello TM, Rivedal S, Wickland C, Weller A. Race and genetics versus 'race' in genetics: A systematic review of the use of African ancestry in genetic studies. Evol Med Public Health 2021; 9:232-245. [PMID: 34815885 PMCID: PMC8604262 DOI: 10.1093/emph/eoab018] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/09/2021] [Indexed: 08/11/2023] Open
Abstract
Social scientists have long understood race to be a social category invented to justify slavery and evolutionary biologists know the socially constructed racial categories do not align with our biological understanding of genetic variation. The completion of the Human Genome Project in 2003 confirmed humans are 99.9% identical at the DNA level and there is no genetic basis for race. A systematic review of the PubMed medical literature published since 2003 was conducted to assess the use of African ancestry to denote study populations in genetic studies categorized as clinical trials, to examine the stated rationale for its use and to assess the use of evolutionary principles to explain human genetic diversity. We searched for papers that included the terms 'African', 'African American' or 'Black' in studies of behavior (20 papers), physiological responses, the pharmacokinetics of drugs and/or disease associations (62 papers), and as a genetic category in studies, including the examination of genotypes associated with life stress, pain, stuttering and drug clearance (126 papers). Of these, we identified 74 studies in which self-reported race alone or in combination with admixture mapping was used to define the study population. However, none of these studies provided a genetic explanation for the use of the self-identified race as a genetic category and only seven proffered evolutionary explanations of their data. The concept of continuous genetic variation was not clearly articulated in any of these papers, presumably due to the paucity of evolutionary science in the college and medical school curricula.
Collapse
Affiliation(s)
- Theresa M Duello
- Department of Obstetrics and Gynecology, School of
Medicine and Public Health, University of Wisconsin –
Madison, Madison, WI 53706, USA
| | - Shawna Rivedal
- Department of Obstetrics and Gynecology, School of
Medicine and Public Health, University of Wisconsin –
Madison, Madison, WI 53706, USA
| | - Colton Wickland
- Department of Obstetrics and Gynecology, School of
Medicine and Public Health, University of Wisconsin –
Madison, Madison, WI 53706, USA
| | - Annika Weller
- Department of Obstetrics and Gynecology, School of
Medicine and Public Health, University of Wisconsin –
Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Leukotriene D 4 paradoxically limits LTC 4-driven platelet activation and lung immunopathology. J Allergy Clin Immunol 2020; 148:195-208.e5. [PMID: 33285161 DOI: 10.1016/j.jaci.2020.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The 3 cysteinyl leukotrienes (cysLTs), leukotriene (LT) C4 (LTC4), LTD4, and LTE4, have different biologic half-lives, cellular targets, and receptor specificities. CysLT2R binds LTC4 and LTD4in vitro with similar affinities, but it displays a marked selectivity for LTC4in vivo. LTC4, but not LTD4, strongly potentiates allergen-induced pulmonary eosinophilia in mice through a CysLT2R-mediated, platelet- and IL-33-dependent pathway. OBJECTIVE We sought to determine whether LTD4 functionally antagonizes LTC4 signaling at CysLT2R. METHODS We used 2 different in vivo models of CysLT2R-dependent immunopathology, as well as ex vivo activation of mouse and human platelets. RESULTS LTC4-induced CD62P expression; HMGB1 release; and secretions of thromboxane A2, CXCL7, and IL-33 by mouse platelets were all were blocked by a selective CysLT2R antagonist and inhibited by LTD4. These effects did not depend on CysLT1R. Inhaled LTD4 blocked LTC4-mediated potentiation of ovalbumin-induced eosinophilic inflammation; recruitment of platelet-adherent eosinophils; and increases in IL-33, IL-4, IL-5, and IL-13 levels in lung tissue. In contrast, the effect of administration of LTE4, the preferred ligand for CysLT3R, was additive with LTC4. The administration of LTD4 to Ptges-/- mice, which display enhanced LTC4 synthesis similar to that in aspirin-exacerbated respiratory disease, completely blocked the physiologic response to subsequent lysine-aspirin inhalation challenges, as well as increases in levels of IL-33, type 2 cytokines, and biochemical markers of mast cell and platelet activation. CONCLUSION The conversion of LTC4 to LTD4 may limit the duration and extent of potentially deleterious signaling through CysLT2R, and it may contribute to the therapeutic properties of desensitization to aspirin in aspirin-exacerbated respiratory disease.
Collapse
|
6
|
Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat Commun 2019; 10:5573. [PMID: 31811124 PMCID: PMC6897958 DOI: 10.1038/s41467-019-13348-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. While selective inhibition of CysLT1R has been used for treating asthma and associated diseases for over two decades, CysLT2R has recently started to emerge as a potential drug target against atopic asthma, brain injury and central nervous system disorders, as well as several types of cancer. Here, we describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists. The reported structures together with the results of comprehensive mutagenesis and computer modeling studies shed light on molecular determinants of CysLTR ligand selectivity and specific effects of disease-related single nucleotide variants. Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. Here, authors describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists, which shed light on CysLTR ligand selectivity.
Collapse
|
7
|
Dos S Jesus T, Dos S Costa R, Alcântara-Neves NM, Barreto ML, Figueiredo CA. Variants in the CYSLTR2 are associated with asthma, atopy markers and helminths infections in the Brazilian population. Prostaglandins Leukot Essent Fatty Acids 2019; 145:15-22. [PMID: 31126515 DOI: 10.1016/j.plefa.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Asthma is a chronic disease of the airways and its most common phenotype is characterized by a T2 type response with IgE production and inflammatory mediators in response to common allergens. Cysteinyl leukotrienes (CysLTs), LTC4, LTD4 and LTE4, are mediators known to possess important proinflammatory action. CysLTs can bind to the Cysteinyl leukotriene receptor type 2 (CysLTR2) and activate an inflammatory. Polymorphisms in CysLTR2 have been associated with asthma and atopy, although the mechanism is not clear. OBJECTIVE To evaluate the association between genetic polymorphisms in CYSLTR2 with asthma phenotypes, atopy markers and helminth infection. METHODS Genotyping was performed using a panel Illumina and carried out in 1245 participants of SCAALA program (Social Change, Asthma, Allergy in Latin American). Logistic regressions for asthma, helminth infections (Trichuris trichiura and Ascaris lumbricoides) and allergy markers (skin tests and IgE production) were performed using PLINK 1.9 software adjusted for sex, age, helminth infection and ancestry markers. RESULTS The G allele of rs1323556 was negatively associated with asthma in the additive model (OR 0.74, 95% CI 0.59-0.93) and in the dominant model (OR 0.71, 95% CI 0.53-0.74). The G allele of rs1575464 was also negatively associated with asthma in two genetic models, additive (OR 0.77, 95% CI 0.62-0.96) and dominant (OR 0.73, 95% CI 0.55-0.97). The G allele of rs61735175 was positively associated with asthma severity in the additive model (OR 1.72, 95% CI 1.07-2.77) and in the dominant model (OR 1.77, 95% CI 1.09-2.85). Five SNVs were associated with atopy markers and four SNVs were associated with helminth infections. CONCLUSION Polymorphisms in the CYSLTR2 gene are associated with asthma, atopy markers and helminth infection in Brazilian individuals, which may lead to protection or risk for such conditions, however, more studies are needed to evaluate the functional of this variants here in described.
Collapse
Affiliation(s)
- Talita Dos S Jesus
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil
| | - Ryan Dos S Costa
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil
| | - Neuza Maria Alcântara-Neves
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil
| | | | - Camila Alexandrina Figueiredo
- Departamento de Biorregulação, Laboratório de Imunofarmacologia e Biologia Molecular, Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, Bahia, Brazil.
| |
Collapse
|
8
|
García-Menaya JM, Cordobés-Durán C, García-Martín E, Agúndez JAG. Pharmacogenetic Factors Affecting Asthma Treatment Response. Potential Implications for Drug Therapy. Front Pharmacol 2019; 10:520. [PMID: 31178722 PMCID: PMC6537658 DOI: 10.3389/fphar.2019.00520] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/25/2019] [Indexed: 12/27/2022] Open
Abstract
Asthma is a frequent disease, mainly characterized by airway inflammation, in which drug therapy is crucial in its management. The potential of pharmacogenomics testing in asthma therapy has been, to date, little explored. In this review, we discuss pharmacogenetic factors affecting asthma treatment, both related to drugs used as controller medications for regular maintenance, such as inhaled corticosteroids, anti-leukotriene agents, long-acting beta-agonists, and the new biologic agents used to treat severe persistent asthma. In addition, we discuss current pharmacogenomics knowledge for rescue medications provided to all patients for as-needed relief, such as short-acting beta-agonists. Evidence for genetic variations as a factor related to drugs response has been provided for the following genes and groups of drugs: Inhaled corticosteroids: FCER2; anti-leukotriene agents: ABCC1, and LTC4S; beta-agonists: ADRB2. However, the following genes require further studies confirming or rejecting association with the response to asthma therapy: ADCY9, ALOX5, ARG1, ARG2, CRHR1, CRHR2, CYP3A4, CYP3A5, CYSLTR1, CYSLTR2, GLCCI1, IL4RA, LTA4H, ORMDL3, SLCO2B1, SPATS2L, STIP1, T, TBX21, THRA, THRB, and VEGFA. Although only a minority of these genes are, at present, listed as associated with drugs used in asthma therapy, in the Clinical Pharmacogenomics Implementation Consortium gene-drug pair list, this review reveals that sufficient evidence to start testing the potential of clinical pharmacogenomics in asthma therapy already exists. This evidence supports the inclusion in pilot pharmacogenetics tests of at least four genes. Hopefully these tests, if proven useful, will increase the efficiency and the safety of asthma therapy.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
9
|
Thompson MD, Sakurai T, Rainero I, Maj MC, Kukkonen JP. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics. Pharmaceuticals (Basel) 2017; 10:ph10040079. [PMID: 28991183 PMCID: PMC5748636 DOI: 10.3390/ph10040079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs) for these ligands, the OX₁ and OX₂ orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX₂ gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia) or are of potential pharmacogenetic significance. Evidence for functional interactions and/or heterodimerization between wild-type and variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pediatrics, University of California, San Diego 92093, CA, USA.
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa 920-8620, Japan.
| | - Innocenzo Rainero
- Department of Neuroscience, University of Turin, Torino 10124, Italy.
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University, Saint George's 11739, Grenada.
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki 11739, Finland.
- Department of Physiology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki 00100, Finland.
| |
Collapse
|
10
|
Thompson MD, Capra V, Clunes MT, Rovati GE, Stankova J, Maj MC, Duffy DL. Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies. Front Pharmacol 2016; 7:299. [PMID: 27990118 PMCID: PMC5131607 DOI: 10.3389/fphar.2016.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
Genetic variants associated with asthma pathogenesis and altered response to drug therapy are discussed. Many studies implicate polymorphisms in genes encoding the enzymes responsible for leukotriene synthesis and intracellular signaling through activation of seven transmembrane domain receptors, such as the cysteinyl leukotriene 1 (CYSLTR1) and 2 (CYSLTR2) receptors. The leukotrienes are polyunsaturated lipoxygenated eicosatetraenoic acids that exhibit a wide range of pharmacological and physiological actions. Of the three enzymes involved in the formation of the leukotrienes, arachidonate 5 lipoxygenase 5 (ALOX5), leukotriene C4 synthase (LTC4S), and leukotriene hydrolase (LTA4H) are all polymorphic. These polymorphisms often result in variable production of the CysLTs (LTC4, LTD4, and LTE4) and LTB4. Variable number tandem repeat sequences located in the Sp1-binding motif within the promotor region of the ALOX5 gene are associated with leukotriene burden and bronchoconstriction independent of asthma risk. A 444A > C SNP polymorphism in the LTC4S gene, encoding an enzyme required for the formation of a glutathione adduct at the C-6 position of the arachidonic acid backbone, is associated with severe asthma and altered response to the CYSLTR1 receptor antagonist zafirlukast. Genetic variability in the CysLT pathway may contribute additively or synergistically to altered drug responses. The 601 A > G variant of the CYSLTR2 gene, encoding the Met201Val CYSLTR2 receptor variant, is associated with atopic asthma in the general European population, where it is present at a frequency of ∼2.6%. The variant was originally found in the founder population of Tristan da Cunha, a remote island in the South Atlantic, in which the prevalence of atopy is approximately 45% and the prevalence of asthma is 36%. In vitro work showed that the atopy-associated Met201Val variant was inactivating with respect to ligand binding, Ca2+ flux and inositol phosphate generation. In addition, the CYSLTR1 gene, located at Xq13-21.1, has been associated with atopic asthma. The activating Gly300Ser CYSLTR1 variant is discussed. In addition to genetic loci, risk for asthma may be influenced by environmental factors such as smoking. The contribution of CysLT pathway gene sequence variants to atopic asthma is discussed in the context of other genes and environmental influences known to influence asthma.
Collapse
Affiliation(s)
- Miles D Thompson
- Biochemical Genetics and Metabolomics Laboratory, Department of Pediatrics, University of California, San Diego, La JollaCA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONCanada
| | - Valerie Capra
- Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano Milano, Italy
| | - Mark T Clunes
- Department of Physiology/Neuroscience, School of Medicine, Saint George's University Saint George's, Grenada
| | - G E Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milano, Italy
| | - Jana Stankova
- Division of Immunology and Allergy, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke QC, Canada
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University Saint George's, Grenada
| | - David L Duffy
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| |
Collapse
|
11
|
Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca-López N. Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Front Pharmacol 2016; 7:316. [PMID: 27708579 PMCID: PMC5030812 DOI: 10.3389/fphar.2016.00316] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs), have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs) and leukotrienes (LTs) are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesized through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2); mast cell maturation, eosinophil recruitment, and allergic responses (PTGD2); vascular and respiratory smooth muscle contraction (PTGF2), and inhibition of platelet aggregation (PTGI2). LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs) (LTC4, LTD4, and LTE4) induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.
Collapse
Affiliation(s)
- José A Cornejo-García
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain; Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain
| | - James R Perkins
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | | - José A Agúndez
- Department of Pharmacology, University of Extremadura Caceres, Spain
| | - Enrique Viguera
- Genetics Unit, Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga Malaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | |
Collapse
|
12
|
Yaddaden L, Véronneau S, Thompson MD, Rola-Pleszczynski M, Stankova J. Cellular signalling of cysteinyl leukotriene type 1 receptor variants CysLT₁-G300S and CysLT₁-I206S. Prostaglandins Leukot Essent Fatty Acids 2016; 105:1-8. [PMID: 26869085 DOI: 10.1016/j.plefa.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/05/2015] [Accepted: 12/12/2015] [Indexed: 11/19/2022]
Abstract
Cysteinyl-leukotrienes are pro-inflammatory lipid mediators, involved in allergic asthma, that bind the G-protein-coupled receptors CysLT1, CysLT2 and GPR99. A polymorphism in one of these receptors, CysLT1-G300S was strongly associated with atopy, whereas the CysLT1-I206S polymorphism was not. In the present work, our aim was to characterize these two variants by studying their cellular signalling. Cell surface expression of mutant receptors in transfected HEK-293 cells was comparable to that of the wild-type receptor. Compared to CysLT1-WT, production of inositol phosphates as well as IL-8 and IL-13 promoter transactivation in response to either LTD4 or LTC4 was significantly increased in CysLT1-G300S-transfected cells. Moreover, LTD4-induced phosphorylation of the signalling effector Erk, but not p38, p65 or c-Jun was higher in CysLT1-G300S-transfected cells. On the other hand, the variant CysLT1-I206S did not show a significant difference in its signal transduction compared to the wild-type receptor. Taken together, our results indicate that the variant CysLT1-G300S can induce a greater signal than the CysLT1-WT receptor, a feature that may be relevant to its association with atopy.
Collapse
Affiliation(s)
- Louiza Yaddaden
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Steeve Véronneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Miles D Thompson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4.
| |
Collapse
|
13
|
Thompson MD, Hendy GN, Percy ME, Bichet DG, Cole DEC. G protein-coupled receptor mutations and human genetic disease. Methods Mol Biol 2015; 1175:153-87. [PMID: 25150870 DOI: 10.1007/978-1-4939-0956-8_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common pharmacogenetic variants.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | |
Collapse
|
14
|
Perkins JR, Sanak M, Canto G, Blanca M, Cornejo-García JA. Unravelling adverse reactions to NSAIDs using systems biology. Trends Pharmacol Sci 2015; 36:172-80. [PMID: 25577398 DOI: 10.1016/j.tips.2014.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
We introduce the reader to systems biology, using adverse drug reactions (ADRs), specifically hypersensitivity reactions to multiple non-steroidal anti-inflammatory drugs (NSAIDs), as a model. To disentangle the different processes that contribute to these reactions - from drug intake to the appearance of symptoms - it will be necessary to create high-throughput datasets. Just as crucial will be the use of systems biology to integrate and make sense of them. We review previous work using systems biology to study related pathologies such as asthma/allergy, and NSAID metabolism. We show examples of their application to NSAIDs-hypersensitivity using current datasets. We describe breakthroughs in high-throughput technology and speculate on their use to improve our understanding of this and other drug-induced pathologies.
Collapse
Affiliation(s)
- James R Perkins
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Miguel Blanca
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain.
| | - José Antonio Cornejo-García
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain; Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| |
Collapse
|
15
|
Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D. Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 2014; 57:13-39. [PMID: 25435097 PMCID: PMC7112624 DOI: 10.1016/j.plipres.2014.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022]
Abstract
Leukotrienes are pro-inflammatory lipid mediators, which are biosynthesized via the lipoxygenase pathway of the arachidonic acid cascade. Lipoxygenases form a family of lipid peroxidizing enzymes and human lipoxygenase isoforms have been implicated in the pathogenesis of inflammatory, hyperproliferative (cancer) and neurodegenerative diseases. Lipoxygenases are not restricted to humans but also occur in a large number of pro- and eucaryotic organisms. Lipoxygenase-like sequences have been identified in the three domains of life (bacteria, archaea, eucarya) but because of lacking functional data the occurrence of catalytically active lipoxygenases in archaea still remains an open question. Although the physiological and/or pathophysiological functions of various lipoxygenase isoforms have been studied throughout the last three decades there is no unifying concept for the biological importance of these enzymes. In this review we are summarizing the current knowledge on the distribution of lipoxygenases in living single and multicellular organisms with particular emphasis to higher vertebrates and will also focus on the genetic diversity of enzymes and receptors involved in human leukotriene signaling.
Collapse
Affiliation(s)
- Thomas Horn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany; Department of Chemistry and Biochemistry, University of California - Santa Cruz, 1156 High Street, 95064 Santa Cruz, USA
| | - Susan Adel
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Ralf Schumann
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Saubashya Sur
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Kumar Reddy Kakularam
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aparoy Polamarasetty
- School of Life Sciences, University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Pallu Redanna
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India; National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telangana, India
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
16
|
Thompson MD, Cole DEC, Capra V, Siminovitch KA, Rovati GE, Burnham WM, Rana BK. Pharmacogenetics of the G protein-coupled receptors. Methods Mol Biol 2014; 1175:189-242. [PMID: 25150871 DOI: 10.1007/978-1-4939-0956-8_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacogenetics investigates the influence of genetic variants on physiological phenotypes related to drug response and disease, while pharmacogenomics takes a genome-wide approach to advancing this knowledge. Both play an important role in identifying responders and nonresponders to medication, avoiding adverse drug reactions, and optimizing drug dose for the individual. G protein-coupled receptors (GPCRs) are the primary target of therapeutic drugs and have been the focus of these studies. With the advance of genomic technologies, there has been a substantial increase in the inventory of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms and insertion or deletions that have potential to alter GPCR expression of function. In vivo and in vitro studies have determined functional roles for many GPCR variants, but genetic association studies that define the physiological impact of the majority of these common variants are still limited. Despite the breadth of pharmacogenetic data available, GPCR variants have not been included in drug labeling and are only occasionally considered in optimizing clinical use of GPCR-targeted agents. In this chapter, pharmacogenetic and genomic studies on GPCR variants are reviewed with respect to a subset of GPCR systems, including the adrenergic, calcium sensing, cysteinyl leukotriene, cannabinoid CB1 and CB2 receptors, and the de-orphanized receptors such as GPR55. The nature of the disruption to receptor function is discussed with respect to regulation of gene expression, expression on the cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (altered ligand binding, G protein coupling, constitutive activity). The large body of experimental data generated on structure and function relationships and receptor-ligand interactions are being harnessed for the in silico functional prediction of naturally occurring GPCR variants. We provide information on online resources dedicated to GPCRs and present applications of publically available computational tools for pharmacogenetic studies of GPCRs. As the breadth of GPCR pharmacogenomic data becomes clearer, the opportunity for routine assessment of GPCR variants to predict disease risk, drug response, and potential adverse drug effects will become possible.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | | | | | |
Collapse
|
17
|
Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy 2013; 42:1313-20. [PMID: 22925317 DOI: 10.1111/j.1365-2222.2012.03982.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs) are three structurally similar, but functionally distinct lipid mediators of inflammation. The parent cys-LT, LTC(4) , is synthesized by and released from mast cells, eosinophils, basophils, and macrophages, and is converted to the potent constrictor LTD(4) and the stable metabolite, LTE(4) . While only two cys-LT-selective receptors (CysLTRs) have been identified, cloned, and characterized, studies dating back three decades predicted the existence of at least three functional CysLTRs, each with a characteristic physiological function in airways and other tissues. The recent demonstration that mice lacking both known CysLTRs exhibit full (and in some instances, augmented) physiological responses to cys-LTs verifies the existence of unidentified CysLTRs. Moreover, the ability to manipulate receptor expression in both whole animal and cellular systems reveals that the functions of CysLTRs are controlled at multiple levels, including receptor-receptor interactions. Finally, studies in transgenic mice have uncovered a potentially major role for cys-LTs in controlling the induction of Th(2) responses to common allergens. This review focuses on these recent findings and their potential clinical implications.
Collapse
Affiliation(s)
- T M Laidlaw
- Departments of Medicine and Paediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
18
|
Gleim S, Stitham J, Tang WH, Martin KA, Hwa J. An eicosanoid-centric view of atherothrombotic risk factors. Cell Mol Life Sci 2012; 69:3361-80. [PMID: 22491820 PMCID: PMC3691514 DOI: 10.1007/s00018-012-0982-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the foremost cause of morbidity and mortality in the Western world. Atherosclerosis followed by thrombosis (atherothrombosis) is the pathological process underlying most myocardial, cerebral, and peripheral vascular events. Atherothrombosis is a complex and heterogeneous inflammatory process that involves interactions between many cell types (including vascular smooth muscle cells, endothelial cells, macrophages, and platelets) and processes (including migration, proliferation, and activation). Despite a wealth of knowledge from many recent studies using knockout mouse and human genetic studies (GWAS and candidate approach) identifying genes and proteins directly involved in these processes, traditional cardiovascular risk factors (hyperlipidemia, hypertension, smoking, diabetes mellitus, sex, and age) remain the most useful predictor of disease. Eicosanoids (20 carbon polyunsaturated fatty acid derivatives of arachidonic acid and other essential fatty acids) are emerging as important regulators of cardiovascular disease processes. Drugs indirectly modulating these signals, including COX-1/COX-2 inhibitors, have proven to play major roles in the atherothrombotic process. However, the complexity of their roles and regulation by opposing eicosanoid signaling, have contributed to the lack of therapies directed at the eicosanoid receptors themselves. This is likely to change, as our understanding of the structure, signaling, and function of the eicosanoid receptors improves. Indeed, a major advance is emerging from the characterization of dysfunctional naturally occurring mutations of the eicosanoid receptors. In light of the proven and continuing importance of risk factors, we have elected to focus on the relationship between eicosanoids and cardiovascular risk factors.
Collapse
Affiliation(s)
- Scott Gleim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Jeremiah Stitham
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Wai Ho Tang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
19
|
Barrett NA, Fernandez JM, Maekawa A, Xing W, Li L, Parsons MW, Austen KF, Kanaoka Y. Cysteinyl leukotriene 2 receptor on dendritic cells negatively regulates ligand-dependent allergic pulmonary inflammation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4556-65. [PMID: 23002438 DOI: 10.4049/jimmunol.1201865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cysteinyl leukotrienes (cys-LTs) can mediate Th2 immunity to the house dust mite, Dermatophagoides farinae, via the type 1 receptor CysLT(1)R on dendritic cells (DCs). However, the role of the homologous type 2 receptor CysLT(2)R in Th2 immunity is unknown. D. farinae sensitization and challenge of CysLT(2)R-deficient mice showed a marked augmentation of eosinophilic pulmonary inflammation, serum IgE, and Th2 cytokines. Wild-type (WT) mice sensitized by adoptive transfer of D. farinae-pulsed CysLT(2)R-deficient bone marrow-derived DCs (BMDCs) also had a marked increase in D. farinae-elicited eosinophilic lung inflammation and Th2 cytokines in restimulated hilar nodes. This response was absent in mice sensitized with D. farinae-pulsed BMDCs lacking leukotriene C(4) synthase (LTC(4)S), CysLT(1)R, or both CysLT(2)R/LTC(4)S, suggesting that CysLT(2)R negatively regulates LTC(4)S- and CysLT(1)R-dependent DC-mediated sensitization. CysLT(2)R-deficient BMDCs had increased CysLT(1)R-dependent LTD(4)-induced ERK phosphorylation, whereas N-methyl LTC(4) activation of CysLT(2)R on WT BMDCs reduced such signaling. Activation of endogenously expressed CysLT(1)R and CysLT(2)R occurred over an equimolar range of LTD(4) and N-methyl LTC(4), respectively. Although the baseline expression of cell surface CysLT(1)R was not increased on CysLT(2)R-deficient BMDCs, it was upregulated at 24 h by a pulse of D. farinae, compared with WT or CysLT(2)R/LTC(4)S-deficient BMDCs. Importantly, treatment with N-methyl LTC(4) reduced D. farinae-induced CysLT(1)R expression on WT BMDCs. Thus, CysLT(2)R negatively regulates the development of cys-LT-dependent Th2 pulmonary inflammation by inhibiting both CysLT(1)R signaling and D. farinae-induced LTC(4)S-dependent cell surface expression of CysLT(1)R on DCs. Furthermore, these studies highlight how the biologic activity of cys-LTs can be tightly regulated by competition between these endogenously expressed receptors.
Collapse
Affiliation(s)
- Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacol Rev 2011; 63:539-84. [DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
22
|
Brochu-Bourque A, Véronneau S, Rola-Pleszczynski M, Stankova J. Differential signaling defects associated with the M201V polymorphism in the cysteinyl leukotriene type 2 receptor. J Pharmacol Exp Ther 2011; 336:431-9. [PMID: 20966037 DOI: 10.1124/jpet.110.172411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cysteinyl-leukotrienes (cysLTs) LTC(4), LTD(4), and LTE(4), are involved in a variety of inflammatory diseases, including asthma, and act on at least two distinct receptors, CysLT(1) and CysLT(2). Specific antagonists of CysLT(1) are currently used to control bronchoconstriction and inflammation in asthmatic patients. The potential role of CysLT(2) in asthma remains poorly understood. A polymorphism in the CysLT(2) gene, resulting in a single amino acid substitution (M201V), was found to be associated with asthma in three separate population studies. Here, we investigated whether the M201V mutation affected the affinity of CysLT(2) for its natural ligands and its signaling efficiency. Human embryonic kidney 293 cells were stably transfected with either wild-type (wt) or mutant (M201V) CysLT(2). Affinity of the M201V receptor for LTC(4) was reduced by 50%, whereas affinity for LTD(4) was essentially lost. LTC(4)-induced production of inositol phosphates (IPs) in M201V-expressing cells was significantly decreased at suboptimal concentrations of the ligand, but no difference was observed at high concentrations. In contrast, LTD(4)-induced IP production was 10- to 100-fold less in M201V- than in wt-expressing cells. Similar results were also observed with the transactivation of the interleukin-8 promoter induced by LTC(4) or LTD(4). Moreover, in contrast to wt-expressing cells, phosphorylation of nuclear factor κB p65 was absent in LTD(4)-stimulated M201V-expressing cells. Likewise, phosphorylation of c-Jun N-terminal kinase was not induced in LTD(4)-stimulated M201V cells, whereas activation of extracellular response kinase and p38 was maintained, at least at higher LTD(4) concentrations. Our results indicate that the M201V polymorphism drastically affects CysLT(2) responses to LTD(4) and less to LTC(4).
Collapse
Affiliation(s)
- Ariane Brochu-Bourque
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
23
|
KATO T, SAEKI H, TSUNEMI Y, SHIBATA S, SEKIYA T, NAKAMURA K, KAKINUMA T, KAGAMI S, FUJITA H, TADA Y, SUGAYA M, TAMAKI K. Cysteinyl leukotriene receptor 2 gene polymorphism -1220 A/C is not associated with atopic dermatitis or psoriasis vulgaris in Japanese patients. J Dermatol 2010; 38:497-9. [DOI: 10.1111/j.1346-8138.2010.01001.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Abstract
Leukotrienes (LT) are biologically active lipid mediators known to be involved in allergic inflammation. Leukotrienes have been shown to mediate diverse features of allergic conditions including inflammatory cell chemotaxis/activation and smooth muscle contraction. Cysteinyl leukotrienes (LTC(4), LTD(4) and, LTE(4)) and the dihydroxy leukotriene LTB(4) are generated by a series of enzymes/proteins constituting the LT synthetic pathway or 5-lipoxygenase (5-LO) pathway. Their function is mediated by interacting with multiple receptors. Leukotriene receptor antagonists (LTRA) and LT synthesis inhibitors (LTSI) have shown clinical efficacy in asthma and more recently in allergic rhinitis. Despite growing knowledge of leukotriene biology, the molecular regulation of these inflammatory mediators remains to be fully understood. Genes encoding enzymes of the 5-LO pathway (i.e. ALOX5, LTC4S and LTA4H) and encoding for LT receptors (CYSLTR1/2 and LTB4R1/2) provide excellent candidates for disease susceptibility and severity; however, their role remains unclear. Preliminary data also suggest that 5-LO pathway/receptor gene polymorphism can predict patient responses to LTSI and LTRA; however, the exact mechanisms require elucidation. The aim of this review was to summarize the recent advances in the knowledge of these important mediators, focusing on genetic and pharmacogenetic aspects in the context of allergic phenotypes.
Collapse
Affiliation(s)
- N P Duroudier
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
25
|
Zhang J, Paré PD, Sandford AJ. Recent advances in asthma genetics. Respir Res 2008; 9:4. [PMID: 18197984 PMCID: PMC2244620 DOI: 10.1186/1465-9921-9-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 01/15/2008] [Indexed: 12/20/2022] Open
Abstract
There are over 100 genes that have been reported to be associated with asthma or related phenotypes. In 2006–2007 alone there were 53 novel candidate gene associations reported in the literature. Replication of genetic associations and demonstration of a functional mechanism for the associated variants are needed to confirm an asthma susceptibility gene. For most of the candidate genes there is little functional information. In a previous review by Hoffjan et al. published in 2003, functional information was reported for 40 polymorphisms and here we list another 22 genes which have such data. Some important genes such as filaggrin, interleukin-13, interleukin-17 and the cysteinyl leukotriene receptor-1 which not only were replicated by independent association studies but also have functional data are reviewed in this article.
Collapse
Affiliation(s)
- Jian Zhang
- James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St, Paul's Hospital, Vancouver, B,C,, V6Z 1Y6,
| | | | | |
Collapse
|
26
|
Abstract
Common G protein-coupled receptor (GPCR) gene variants that encode receptor proteins with a distinct sequence may alter drug efficacy without always resulting in a disease phenotype. GPCR genetic loci harbor numerous variants, such as DNA insertions or deletions and single-nucleotide polymorphisms that alter GPCR expression and function, thereby contributing to interindividual differences in disease susceptibility/progression and drug responses. In this chapter, these pharmacogenetic phenomena are reviewed with respect to a limited sampling of GPCR systems, including the beta(2)-adrenergic receptors, the cysteinyl leukotriene receptors, and the calcium-sensing receptor. In each example, the nature of the disruption to receptor function that results from each variant is discussed with respect to the regulation of gene expression, expression on cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (by altering ligand binding, G protein coupling, and receptor constitutive activity). Despite the breadth of pharmacogenetic knowledge available, assessment for genetic variants is only occasionally applied to drug development projects involving pharmacogenomics or to optimizing the clinical use of GPCR drugs. The continued effort by the basic science of pharmacogenetics may draw the attention of drug discovery projects and clinicians alike to the utility of personalized pharmacogenomics as a means to optimize novel GPCR drug targets.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
27
|
Thompson C, Cloutier A, Bossé Y, Poisson C, Larivée P, McDonald PP, Stankova J, Rola-Pleszczynski M. Signaling by the Cysteinyl-Leukotriene Receptor 2. J Biol Chem 2008; 283:1974-84. [DOI: 10.1074/jbc.m608197200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
28
|
Thompson MD, Cole DEC, Jose PA. Pharmacogenomics of G protein-coupled receptor signaling: insights from health and disease. Methods Mol Biol 2008; 448:77-107. [PMID: 18370232 DOI: 10.1007/978-1-59745-205-2_6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification and characterization of the processes of G protein-coupled receptor (GPCR) activation and inactivation have refined not only the study of the GPCRs but also the genomics of many accessory proteins necessary for these processes. This has accelerated progress in understanding the fundamental mechanisms involved in GPCR structure and function, including receptor transport to the membrane, ligand binding, activation and inactivation by GRK-mediated (and other) phosphorylation. The catalog of G(s)alpha and Gbeta subunit polymorphisms that result in complex phenotypes has complemented the effort to catalog the GPCRs and their variants. The study of the genomics of GPCR accessory proteins has also provided insight into pathways of disease, such as the contributions of regulator of G protein signaling (RGS) protein to hypertension and activator of G protein signaling (AGS) proteins to the response to hypoxia. In the case of the G protein-coupled receptor kinases (GRKs), identified originally in the retinal tissues that converge on rhodopsin, proteins such as GRK4 have been identified that have been subsequently associated with hypertension. Here, we review the structure and function of GPCR and associated proteins in the context of the gene families that encode them and the genetic disorders associated with their altered function. An understanding of the pharmacogenomics of GPCR signaling provides the basis for examining the GPCRs disrupted in monogenic disease and the pharmacogenetics of a given receptor system.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Thompson MD, Capra V, Takasaki J, Maresca G, Rovati GE, Slutsky AS, Lilly C, Zamel N, McIntyre Burnham W, Cole DE, Siminovitch KA. A functional G300S variant of the cysteinyl leukotriene 1 receptor is associated with atopy in a Tristan da Cunha isolate. Pharmacogenet Genomics 2007; 17:539-49. [PMID: 17558309 DOI: 10.1097/fpc.0b013e328012d0bf] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atopy is a well-defined immune phenotype that is reported to be a risk factor for asthma. Among the many loci that contribute to a genetic predisposition to asthma, the cysteinyl leukotriene receptor genes and their variants have been important subjects of study because they are functionally and pharmacologically implicated in the atopy phenotype affecting many asthma subjects. Moreover, the product of cysteinyl-leukotriene 1 receptor gene (CysLT1), located at Xq13.2, is targeted by LT receptor antagonists. In our earlier association study, the M201V variant of the cysteinyl-leukotriene 2 receptor gene (CysLT2), located at 13q14, was implicated in atopic asthma. Here we report the screening of the coding region of the CysLT1, gene in the highly asthmatic Tristan da Cunha population. In this population, we discovered a CysLT1 G300S variant that is carried with a significantly higher frequency in atopics and asthmatics from the Tristan da Cunha population. Furthermore, we report the asthma independent association of the CysLT1 G300S variant with atopy. Subsequently, we compared the changes conferred by each SNP on CysLT function. The CysLT1 300S receptor interacts with LTD4 with significantly greater potency. For the 300S variant, a statistically significant decrease in the effector concentration for half-maximum response (EC50) for intracellular Ca flux and total InsP generation is observed. Other aspects of the receptor function and activity, such as desensitization, pharmacologic profile in response to montelukast, and cellular localization, are unchanged. These in vitro analyses provide evidence that the 300S CysLT1 variant, found more commonly in atopics in the Tristan da Cunha population, encodes a functionally more sensitive variant.
Collapse
Affiliation(s)
- Miles D Thompson
- Laboratory Medicine, Banting Institute, Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Erratum. Pharmacogenet Genomics 2007. [DOI: 10.1097/01.fpc.0000239981.07583.1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Klotsman M, York TP, Pillai SG, Vargas-Irwin C, Sharma SS, van den Oord EJCG, Anderson WH. Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics 2007; 17:189-96. [PMID: 17460547 DOI: 10.1097/fpc.0b013e3280120043] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Interindividual clinical response to leukotriene modifiers is highly variable, and less efficacious than inhaled corticosteroids in treating asthma. Genetic variability in 5-lipoxygenase biosynthetic and receptor pathway gene loci may influence cysteinyl-leukotriene production and subsequent response to leukotriene modifiers. METHODS Using data from two clinical trials of 12-week duration, post-hoc analyses were performed in 174 patients randomized to montelukast. Associations between polymorphisms in 10 candidate genes (ALOX5, ALOX5AP, LTC4S, CYSLTR1, CYSLTR2, PLA2G4A, CYP2C9, CYP3A4, ADRB2, and NR3C1) and response to montelukast were modeled using change in morning peak expiratory flow and forced expiratory volume in 1 s (FEV1) to define the response phenotype. RESULTS In our sample, eight out of 25 markers in 10 candidate genes were statistically associated with response to montelukast, with an estimated proportion of false discoveries of 16%. The strongest statistical evidence of clinically relevant pharmacogenetic effects peak expiratory flow were identified in CYSLTR2 (rs91227 and rs912278; P=0.02 and P=0.02, respectively) and ALOX5 (rs4987105 and rs4986832; P=0.01 and P=0.01, respectively). Patients with these variant genotypes, found in roughly 10-13% of patients, had an 18-25% improvement in peak expiratory flow. In contrast, the majority of patients with the wild-type alleles had only a marginal (8-10%) improvement. CONCLUSIONS The overall mean response to montelukast may be skewed towards a response phenotype by a small subset (<15%) of asthma patients. CYSLTR2 and ALOX5 polymorphisms may predispose a minority of individuals to excessive cysteinyl-leukotriene concentrations, yielding a distinct asthma phenotype most likely to respond to leukotriene modifier pharmacotherapy. These findings require replication to establish validity and clinical utility.
Collapse
Affiliation(s)
- Michael Klotsman
- GlaxoSmithKline, Research Triangle Park, North Carolina 27709-3398, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Thompson MD, Takasaki J, Capra V, Rovati GE, Siminovitch KA, Burnham WM, Hudson TJ, Bossé Y, Cole DEC. G-protein-coupled receptors and asthma endophenotypes: the cysteinyl leukotriene system in perspective. Mol Diagn Ther 2007; 10:353-66. [PMID: 17154652 DOI: 10.1007/bf03256212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states. GPCR genes implicated in asthma endophenotypes include variants of the cysteinyl leukotriene receptors (CYSLTR1 and CYSLTR2), and prostaglandin D2 receptors (PTGDR and CRTH2), thromboxane A2 receptor (TBXA2R), beta2-adrenergic receptor (ADRB2), chemokine receptor 5 (CCR5), and the G protein-coupled receptor associated with asthma (GPRA). This review of the contribution of variability in these genes places the contribution of the cysteinyl leukotriene system to respiratory endophenotypes in perspective. The genetic variant(s) of receptors that are associated with endophenotypes are discussed in the context of the extent to which they contribute to a disease phenotype or altered drug efficacy.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, and Department of Medical Genetics and Microbiology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hao L, Sayers I, Cakebread JA, Barton SJ, Beghé B, Holgate ST, Sampson AP, Holloway JW. The cysteinyl-leukotriene type 1 receptor polymorphism 927T/C is associated with atopy severity but not with asthma. Clin Exp Allergy 2006; 36:735-41. [PMID: 16776674 DOI: 10.1111/j.1365-2222.2006.02511.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The cysteinyl-leukotriene receptor type 1 (CysLT1) mediates the bronchoconstrictor and pro-inflammatory actions of cysteinyl-leukotrienes (LTC4, LTD4, LTE4) in asthma and is the molecular target of the lukast class of oral anti-leukotriene drugs. We screened the CYSLTR1 gene on chromosome Xq13-21 for coding region polymorphisms, and investigated their associations with allergy and asthma. METHODS Solid-phase chemical cleavage was used to screen polymorphisms in the coding region of CYSLTR1. A TaqMan allelic discrimination assay was used to genotype a 927T/C SNP and oligonucleotide ligation assays were used to genotype the previously reported 617T/C and 898G/A SNPs of CYSLTR1 in 341 asthmatic families from the UK. Associations with asthma diagnosis, atopic status, serum-specific IgE and severity of allergy and asthma were examined. RESULTS Family-based association tests showed that the 927 T allele was associated with atopy severity, especially in female subjects, but not with asthma diagnosis or severity, atopic status, bronchial hyper-responsiveness to methacholine or forced expiratory volume in 1 s. CONCLUSION Mutation screening identified only one polymorphism, 927T/C, in the coding region of the CysLT1 receptor. This polymorphsim is predictive of atopy severity, but not associated with asthma.
Collapse
Affiliation(s)
- L Hao
- Division of Human Genetics, University of Southampton School of Medicine, Southampton, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Arriba-Mendez S, Sanz C, Isidoro-Garcia M, Davild I, Laffond E, Horeno E, Avila C, Lorente F. 927T>C polymorphism of the cysteinyl-leukotriene type-1 receptor (CYSLTR1) gene in children with asthma and atopic dermatitis. Pediatr Allergy Immunol 2006; 17:323-8. [PMID: 16846449 DOI: 10.1111/j.1399-3038.2006.00416.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma and atopic dermatitis share several common features and Cysteinyl-leukotrienes are mediators that participate in the pathogenesis of both diseases. Recently, a new polymorphism (927T>C) has been identified in cysteinyl-leukotriene type-1 receptor (CYSLTR1) gene. This gene is found on the X chromosome. The aim of this study was to analyze this SNP in a population of children with asthma and atopic dermatitis. In this study, 166 individuals, 79 adult controls (CTR) and 87 children with asthma (AA) were included. Forty-one patients with asthma presented atopic dermatitis (AA-AD). Adults were chosen as controls to confirm lack of development of asthma and allergy during childhood. Standardized history, physical examination, skin prick tests, and lung function measurements were performed in all patients. The 927T>C CYSLTR1 SNP was analyzed by direct sequencing after PCR amplification. In males (53 individuals), the C allele was significantly more common among AA-AD patients (47%) than in CTR (8%) (Fisher's p < 0.005; Monte Carlo p < 0.008; OR:9.78; 95%CI: 1.73-55.30). When comparing AA-AD vs. AA-NAD (patients with asthma but not atopic dermatitis), significant differences were observed, (47% vs. 15%, Fisher's p = 0.014; Monte Carlo p = 0.022; OR: 4.97; 95%CI: 1.29-19.13). No differences in allele distribution were observed between these disease sub-groups in females. The 927T>C is a silent SNP; however, it could affect transcription or translation or may be linked to an unidentified, functional polymorphism and thus may pre-dispose male children to asthma and atopic dermatitis in our population. Further studies are needed to confirm these findings.
Collapse
|
36
|
Thompson MD, Burnham WM, Cole DEC. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 2005; 42:311-92. [PMID: 16281738 DOI: 10.1080/10408360591001895] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic variation in G-protein coupled receptors (GPCRs) is associated with a wide spectrum of disease phenotypes and predispositions that are of special significance because they are the targets of therapeutic agents. Each variant provides an opportunity to understand receptor function that complements a plethora of available in vitro data elucidating the pharmacology of the GPCRs. For example, discrete portions of the proximal tail of the dopamine D1 receptor have been discovered, in vitro, that may be involved in desensitization, recycling and trafficking. Similar in vitro strategies have been used to elucidate naturally occurring GPCR mutations. Inactive, over-active or constitutively active receptors have been identified by changes in ligand binding, G-protein coupling, receptor desensitization and receptor recycling. Selected examples reviewed include those disorders resulting from mutations in rhodopsin, thyrotropin, luteinizing hormone, vasopressin and angiotensin receptors. By comparison, the recurrent pharmacogenetic variants are more likely to result in an altered predisposition to complex disease in the population. These common variants may affect receptor sequence without intrinsic phenotype change or spontaneous induction of disease and yet result in significant alteration in drug efficacy. These pharmacogenetic phenomena will be reviewed with respect to a limited sampling of GPCR systems including the orexin/hypocretin system, the beta2 adrenergic receptors, the cysteinyl leukotriene receptors and the calcium-sensing receptor. These developments will be discussed with respect to strategies for drug discovery that take into account the potential for the development of drugs targeted at mutated and wild-type proteins.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, Banting Institute, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
37
|
Park JS, Chang HS, Park CS, Lee JH, Lee YM, Choi JH, Park HS, Kim LH, Park BL, Choi YH, Shin HD. Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet Genomics 2005; 15:483-92. [PMID: 15970796 DOI: 10.1097/01.fpc.0000166456.84905.a0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES AND METHODS The cysteinyl leukotriene receptor 2 (CYSLTR2) gene on chromosome 13q14.12-q21.1 encodes a receptor for CYSLTs, potent biological mediators in the pathogenesis of asthma, particularly that associated with aspirin intolerance (AIA). In an effort to discover additional polymorphism(s), the variant(s) of which have been implicated in asthma and aspirin intolerance, we scrutinized genetic polymorphisms of the CYSLTR2 gene, and evaluated this locus as a potential candidate for asthma. RESULTS DNA sequencing in 24 Koreans of the 5-kb region of the CYSLTR2 gene, including the approximately 1500-bp promoter region, revealed four sequence variants: one in the 5'-flanking region (c.-819T>G), two in the 3'-flanking region (c.2078C>T and c.2534A>G), and one downstream of the gene (c.2545+297A>G). The SNP frequencies were 0.499 (c.-819T>G), 0.351 (c.2078C>T), 0.429 (c.2534A>G), and 0.088 (c.2545+297A>G), and five haplotypes were constructed. The SNPs and haplotypes were not associated with risk of asthma development, but were significantly associated with aspirin intolerance. The frequencies of rare alleles on c.-819T>G, c.2078C>T, and c.2534A>G were higher in subjects with AIA than in subjects with aspirin-tolerant asthma (P=0.013-0.031). Asthmatics who had rare alleles for c.-819T>G, c.2078C>T or c.2534A>G exhibited a more pronounced fall in FEV1 after aspirin provocation than did those who carried the common allele (P=0.03-0.009). Asthmatics carrying ht2 (TTGA) also showed a more pronounced decrease in FEV1% after aspirin provocation than those carrying ht1 (GCGA) (P=0.006). These associations were even stronger when combined with LTC4S polymorphisms (-444A>C [c.-444A>C]) gene. CONCLUSION CYSLTR2 polymorphisms are associated with aspirin intolerance in asthmatics.
Collapse
Affiliation(s)
- Jong Sook Park
- Asthma Genome Research Group, Soonchunhyang University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ober C, Thompson EE. Rethinking genetic models of asthma: the role of environmental modifiers. Curr Opin Immunol 2005; 17:670-8. [PMID: 16214315 DOI: 10.1016/j.coi.2005.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/21/2005] [Indexed: 01/23/2023]
Abstract
Asthma is a common, chronic disease with a complex etiology. To date, more than 35 genes have been associated with asthma or related phenotypes in multiple populations, but none of them has been shown to contribute to risk in all populations studied. We suggest that genetic susceptibility is both context dependent and developmentally regulated, and that ignoring the environmental context will miss many important associations and clues to pathogenesis. We define 'environment' broadly to include the in utero environment, maternal affection status and sex, and propose that epigenetic mechanisms are the link between our genes and our environment.
Collapse
Affiliation(s)
- Carole Ober
- Department of Human Genetics, 920 East 58(th) Street, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
39
|
Fukai H, Ogasawara Y, Migita O, Koga M, Ichikawa K, Shibasaki M, Arinami T, Noguchi E. Association between a polymorphism in cysteinyl leukotriene receptor 2 on chromosome 13q14 and atopic asthma. ACTA ACUST UNITED AC 2005; 14:683-90. [PMID: 15454733 DOI: 10.1097/00008571-200410000-00006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cysteinyl leukotriene receptor 2 (CYSLTR2) is one of the receptors for the cysteinyl leukotrienes (CYSLTs), which cause bronchoconstrictions, vascular hyperpermeability and mucus hypersecretion in asthmatic patients. CYSLTR1 antagonists have been shown to be effective in the treatment of chronic asthma. CYSLTR2 is located approximately 300 kb from D13S153, which is reportedly linked to asthma in several populations. We characterized the genomic structure of humans CYSLTR2, determined the putative major promoter region and conducted association studies pertaining to polymorphisms in CYSLTR2 and asthma. METHODS AND RESULTS We identified three novel exons in the 5' untranslated region of CYSLTR2 by rapid amplification of cDNA ends and identified eight novel polymorphisms in CYSLTR2 by direct sequencing. A transmission disequilibrium test with 137 Japanese asthmatic families revealed that the -1220A > C polymorphism is associated with the development of asthma (P = 0.0066). In addition, a polymorphism in the putative promoter region caused different promoter activities in vitro. CONCLUSION Our results suggest that CYSLTR2 is one of the genes that contributes to susceptibility to asthma in the Japanese population.
Collapse
Affiliation(s)
- Hiromi Fukai
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pillai SG, Cousens DJ, Barnes AA, Buckley PT, Chiano MN, Hosking LK, Cameron LA, Fling ME, Foley JJ, Green A, Sarau HM, Schmidt DB, Sprankle CS, Blumenthal MN, Vestbo J, Kennedy-Wilson K, Wixted WE, Wagner MJ, Anderson WH, Ignar DM. A coding polymorphism in the CYSLT2 receptor with reduced affinity to LTD4 is associated with asthma. ACTA ACUST UNITED AC 2005; 14:627-33. [PMID: 15475736 DOI: 10.1097/00008571-200409000-00007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cysteinyl leukotrienes (CYSLTR) are potent biological mediators in the pathophysiology of asthma for which two receptors have been characterized, CYSLTR1 and CYSLTR2. The leukotriene modifying agents currently used to control bronchoconstriction and inflammation in asthmatic patients are CYSLTR1-specific leukotriene receptor antagonists. In this report, we investigated a possible role for therapeutic modulation of CYSLTR2 in asthma by investigating genetic association with asthma and further characterization of the pharmacology of a coding polymorphism. METHODS The association of CYSLTR2 polymorphisms with asthma was assessed by transmission disequilibrium test in two family-based collections (359 families from Denmark and Minnesota, USA and 384 families from the Genetics of Asthma International Network). RESULTS A significant association of the coding polymorphism, 601A>G, with asthma was observed (P = 0.003). We replicated these findings in a collection of 384 families from the Genetics of Asthma International Network (P = 0.04). The G allele is significantly under-transmitted to asthmatics, indicating a possible role for this receptor in resistance to asthma. The potency of cysteinyl leukotrienes at the wild-type CYSLTR2 and the coding polymorphism 601A>G were assessed using a calcium mobilization assay. The potency of LTC4 and LTE4 was similar for both forms of the receptor and LTB4 was inactive, however, LTD4 was approximately five-fold less potent on 601A>G compared to wild-type CYSLTR2. CONCLUSIONS Since 601A>G alters the potency of LTD4 and this variant allele may be associated with resistance to asthma, it is possible that modulation of the CYSLTR2 may be useful in asthma pharmacotherapy.
Collapse
|
41
|
Abstract
The metabolism of arachidonic acid via the 5-lipoxygenase enzymatic pathway leads to the formation of the cysteinyl-leukotrienes and lipoxins, which have been implicated in several inflammatory reactions. While these lipid mediators are responsible for a variety of effects, their actions occur through the activation of 3 specific types of cloned receptors (i.e., CysLT(1), CysLT(2), and ALX). Although receptor activation can explain several biological actions associated with the mediators, there is some evidence to suggest that not all responses fit the well-known characteristics of these cloned receptors. Other receptor subtypes may also exist. Interestingly, the indirect evidence for support of this observation is principally derived from work performed on either blood elements and/or vascular smooth muscle. Because the initiating events associated with inflammation are essentially of vascular origin, further work at the molecular level may be necessary to confirm the data, which do not fit the well-known CysLT and ALX receptor profiles.
Collapse
Affiliation(s)
- Xavier Norel
- CNRS UMR7131, Hôpital Broussais, Bâtiment des Mariniers, 102 rue Didot, 75014 Paris, France
| | | |
Collapse
|
42
|
Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. THE JOURNAL OF IMMUNOLOGY 2004; 173:1503-10. [PMID: 15265876 DOI: 10.4049/jimmunol.173.3.1503] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs) are a family of potent bioactive lipids that act through two structurally divergent G protein-coupled receptors, termed the CysLT(1) and CysLT(2) receptors. The cloning and characterization of these two receptors has not only reconciled findings of previous pharmacologic profiling studies of contractile tissues, but also has uncovered their expression on a wide array of circulating and tissue-dwelling leukocytes. With the development of receptor-selective reagents, as well as mice lacking critical biosynthetic enzymes, transporter proteins, and the CysLT(1) receptor, diverse functions of cys-LTs and their receptors in immune and inflammatory responses have been identified. We review cys-LT biosynthesis; the molecular biology and distribution of the CysLT(1) and CysLT(2) receptors; the functions of cys-LTs and their receptors in the recruitment and activation of effector leukocytes and induction of adaptive immunity; and the development of fibrosis and airway remodeling in animal models of lung injury and allergic inflammation.
Collapse
Affiliation(s)
- Yoshihide Kanaoka
- Department of Medicine, Harvard University Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston MA 02115, USA
| | | |
Collapse
|
43
|
Thompson MD, Comings DE, Abu-Ghazalah R, Jereseh Y, Lin L, Wade J, Sakurai T, Tokita S, Yoshida T, Tanaka H, Yanagisawa M, Burnham WM, Moldofsky H. Variants of the orexin2/hcrt2 receptor gene identified in patients with excessive daytime sleepiness and patients with Tourette's syndrome comorbidity. Am J Med Genet B Neuropsychiatr Genet 2004; 129B:69-75. [PMID: 15274044 DOI: 10.1002/ajmg.b.30047] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The orexin-2/hypocretin-2 (OX2R) receptor gene is mutated in canine narcolepsy and disruption of the prepro-orexin/hypocretin ligand gene results in both an animal model of narcolepsy and sporadic cases of the human disease. This evidence suggests that the structure of the OX2R gene, and its homologue, the OX1R gene, both members of the G protein-coupled receptor (GPCR) family, and the gene encoding the peptide ligands, the prepro-orexin/hypocretin gene, may be variables in the etiology of sleep disorders. We report a single stranded conformational polymorphism (SSCP) analysis of the coding regions of these genes in idiopathic sleep disorder patients diagnosed with excessive daytime sleepiness (EDS) (n = 28), narcolepsy (n = 28), Tourette's syndrome/chronic vocal or motor tic disorder (n = 70), and control subjects (n = 110). Two EDS patients showed a Pro11Thr change. One Tourette's syndrome patient was found to have a Pro10Ser alteration. The Pro10Ser and Pro11Thr variants were not found in non-disease populations. Analysis of the ability of the mutant receptors to mobilize calcium compared to the wild-type receptor in response to orexin agonists indicated that they resulted in decreased potency at high (etaM) concentrations of orexin ligands. Further work is warranted to study the variability of the orexin/hypocretin system in a variety of disorders characterized by EDS.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|