1
|
Andoh A, Kawahara M, Imai T, Tatsumi G, Inatomi O, Kakuta Y. Thiopurine pharmacogenomics and pregnancy in inflammatory bowel disease. J Gastroenterol 2021; 56:881-890. [PMID: 34287682 DOI: 10.1007/s00535-021-01805-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/04/2023]
Abstract
The thiopurine drugs azathioprine and 6-mercaptopurine are widely used for the maintenance of clinical remission in steroid-dependent inflammatory bowel disease (IBD). Thiopurines are recommended to be continued throughout pregnancy in IBD patients, but conclusive safety data in pregnant patients remain still insufficient. On the other hand, a strong association between a genetic variant of nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15 p.Arg139Cys) and thiopurine-induced myelotoxicity has been identified. Pharmacokinetic studies have revealed that thiopurine metabolism is altered in pregnant IBD patients and suggested that the fetus may be exposed to the active-thiopurine metabolite, 6-thioguaninetriphosphate, in the uterus. A recent study using knock-in mice harboring the p.Arg138Cys mutation which corresponds to human p.Arg139Cys showed that oral administration of 6-MP at clinical dose induces a severe toxic effect on the fetus harboring the homozygous or heterozygous risk allele. This suggests that NUDT15 genotyping may be required in both women with IBD who are planning pregnancy (or pregnant) and their partner to avoid adverse outcomes for their infant. The risk to the fetus due to maternal thiopurine use is minimal but there are some concerns that are yet to be clarified. In particular, a pharmacogenomic approach to the fetus is considered necessary.
Collapse
Affiliation(s)
- Akira Andoh
- Division of Gastroenterology and Hematology, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Masahiro Kawahara
- Division of Gastroenterology and Hematology, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Takayuki Imai
- Division of Gastroenterology and Hematology, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Goichi Tatsumi
- Division of Gastroenterology and Hematology, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Osamu Inatomi
- Division of Gastroenterology and Hematology, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
2
|
Tatsumi G, Kawahara M, Imai T, Nishishita-Asai A, Nishida A, Inatomi O, Yokoyama A, Kakuta Y, Kito K, Andoh A. Thiopurine-mediated impairment of hematopoietic stem and leukemia cells in Nudt15 R138C knock-in mice. Leukemia 2019; 34:882-894. [PMID: 31645647 DOI: 10.1038/s41375-019-0583-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/09/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023]
Abstract
Thiopurines are widely used as antileukemia agents and immunosuppressants. Recent large-scale clinical studies revealed a strong association between the NUDT15 p.Arg139Cys (NUDT15R139C) polymorphism and severe thiopurine-induced leukocytopenia. We established knock-in mice harboring p.Arg138Cys (Nudt15R138C), which corresponds to the human polymorphism. A clinically relevant dose of mercaptopurine (MP) induced lethal cytopenia in Nudt15R138C-harboring mice. MP dose reduction attenuated the hematopoietic toxicity, phenocopying clinical observations and providing Nudt15 genotype-based tolerable doses of MP. High-dose MP induced acute damage to hematopoietic stem and progenitor cells (HSPCs) in Nudt15R138C/R138C mice. A competitive transplantation assay revealed that not only Nudt15R138C/R138C HSPCs, but also Nudt15+/R138C HSPCs suffered stronger damage than Nudt15+/+ HSPCs, even by lower-dose MP, after long-term administration. In a Nudt15 genotype-based posttransplantation leukemia recurrence model generated by bone marrow replacement with congenic wild-type cells and a small number of leukemia stem cells, MP prolonged the survival of mice with posttransplantation Nudt15R138C/R138C leukemia recurrence. In conclusion, our model will facilitate NUDT15 genotype-based precision medicine by providing safer estimates for MP dosing, and our findings highlighted the high susceptibility of hematopoietic stem cells to MP and suggested that exploiting thiopurine toxicity might be a novel treatment approach for leukemia in NUDT15R139C-harboring patients.
Collapse
Affiliation(s)
- Goichi Tatsumi
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Kawahara
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan.
| | - Takayuki Imai
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Ai Nishishita-Asai
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Atsushi Nishida
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Osamu Inatomi
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Katsuyuki Kito
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
3
|
Kalra S, Zhang Y, Knatko EV, Finlayson S, Yamamoto M, Dinkova-Kostova AT. Oral azathioprine leads to higher incorporation of 6-thioguanine in DNA of skin than liver: the protective role of the Keap1/Nrf2/ARE pathway. Cancer Prev Res (Phila) 2011; 4:1665-74. [PMID: 21803983 DOI: 10.1158/1940-6207.capr-11-0137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Azathioprine is a widely used anti-inflammatory, immunosuppressive, and anticancer agent. However, chronic treatment with this drug is associated with a profoundly increased risk (in certain cases by more than 100-fold) of developing squamous cell carcinoma of the skin. Incorporation of its ultimate metabolite, thio-dGTP, in DNA results in partial substitution of guanine with 6-thioguanine which, combined with exposure to UVA radiation, creates a source of synergistic mutagenic damage to DNA. We now report that oral treatment with azathioprine leads to a much greater incorporation of 6-thioguanine in DNA of mouse skin than liver. These higher levels of 6-thioguanine, together with the fact that the skin is constantly exposed to UV radiation from the sun, may be responsible, at least in part, for the increased susceptibility of this organ to tumor development. Genetic upregulation of the Keap1/Nrf2/ARE pathway, a major cellular regulator of the expression of a network of cytoprotective genes, reduces the incorporation of 6-thioguanine in DNA of both skin and liver following treatment with azathioprine. Similarly, pharmacologic activation of the pathway by the potent inducer sulforaphane results in lower 6-thioguanine incorporation in DNA and protects 6-thioguanine-treated cells against oxidative stress following exposure to UVA radiation. Protection is accompanied by increased levels of glutathione and induction of multidrug resistance-associated protein 4, an organic anion efflux pump that also exports nucleoside monophosphate analogues. Our findings suggest that activation of the Keap1/Nrf2/ARE pathway could reduce the risk for skin cancer in patients receiving long-term azathioprine therapy.
Collapse
Affiliation(s)
- Sukirti Kalra
- Biomedical Research Institute, University of Dundee, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
4
|
McCarthy SD, Waters SM, Kenny DA, Diskin MG, Fitzpatrick R, Patton J, Wathes DC, Morris DG. Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach. Physiol Genomics 2010; 42A:188-99. [PMID: 20716645 PMCID: PMC3008362 DOI: 10.1152/physiolgenomics.00118.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In high-yielding dairy cows the liver undergoes extensive physiological and biochemical changes during the early postpartum period in an effort to re-establish metabolic homeostasis and to counteract the adverse effects of negative energy balance (NEB). These adaptations are likely to be mediated by significant alterations in hepatic gene expression. To gain new insights into these events an energy balance model was created using differential feeding and milking regimes to produce two groups of cows with either a mild (MNEB) or severe NEB (SNEB) status. Cows were slaughtered and liver tissues collected on days 6–7 of the first follicular wave postpartum. Using an Affymetrix 23k oligonucleotide bovine array to determine global gene expression in hepatic tissue of these cows, we found a total of 416 genes (189 up- and 227 downregulated) to be altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with widespread changes in gene expression classified into 36 gene networks including those associated with lipid metabolism, connective tissue development and function, cell signaling, cell cycle, and metabolic diseases, the three most significant of which are discussed in detail. SNEB cows displayed reduced expression of transcription activators and signal transducers that regulate the expression of genes and gene networks associated with cell signaling and tissue repair. These alterations are linked with increased expression of abnormal cell cycle and cellular proliferation associated pathways. This study provides new information and insights on the effect of SNEB on gene expression in high-yielding Holstein Friesian dairy cows in the early postpartum period.
Collapse
Affiliation(s)
- S D McCarthy
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, County Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Pharmacogenomics is the study of the impact of genetic variation on drug effects, with the ultimate goal of achieving "personalised medicine". Since the completion of the Human Genome Project, great strides have been made towards the goal of personalised dosing of drugs in people, as exemplified by the development of gene-guided dosing of the anticoagulant drug, warfarin. Although the pharmacogenomics of domestic animals is still at an early stage of development, there is great potential for advances in the coming years as the direct result of complete genome sequences currently being derived for many of the species of significance to veterinary and comparative medicine. This sequence information is being used to discover sequence variants in candidate genes associated with altered drug response, as well as to develop whole genome high density single nucleotide polymorphism arrays for genotype-phenotype linkage analysis. This review summarises the current state of veterinary pharmacogenomics research, including drug response variability phenotypes with either known genetic aetiology or strong circumstantial evidence for genetic involvement. Polymorphisms and rarer gene variants affecting drug disposition (pharmacokinetics) and drug effect (pharmacodynamics) are discussed. In addition to providing the veterinary clinician with useful information for the practise of therapeutics, it is envisaged that the increasing knowledge base will also provide a resource for individuals involved in veterinary and comparative biomedical research.
Collapse
Affiliation(s)
- Carrie M Mosher
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
6
|
Duplex pyrosequencing of the TPMT⁎3C and TPMT⁎6 alleles in Korean and Vietnamese populations. Clin Chim Acta 2008; 398:82-5. [DOI: 10.1016/j.cca.2008.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/15/2008] [Accepted: 08/18/2008] [Indexed: 11/22/2022]
|
7
|
Hartford C, Vasquez E, Schwab M, Edick MJ, Rehg JE, Grosveld G, Pui CH, Evans WE, Relling MV. Differential Effects of Targeted Disruption of Thiopurine Methyltransferase on Mercaptopurine and Thioguanine Pharmacodynamics. Cancer Res 2007; 67:4965-72. [PMID: 17510427 DOI: 10.1158/0008-5472.can-06-3508] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recessive deficiency in thiopurine methyltransferase (TPMT), caused by germ-line polymorphisms in TPMT, can cause severe toxicity after mercaptopurine. However, the significance of heterozygosity and the effect of the polymorphism on thioguanine or in the absence of thiopurines is not known. To address these issues, we created a murine knockout of Tpmt. Pharmacokinetic and pharmacodynamic studies of mercaptopurine and thioguanine were done in Tpmt(-/-), Tpmt(+/-), and Tpmt(+/+) mice and variables were compared among genotypes. Methylated thiopurine and thioguanine nucleotide metabolites differed among genotypes after treatment with mercaptopurine (P < 0.0001 and P = 0.044, respectively) and thioguanine (P = 0.011 and P = 0.002, respectively). Differences in toxicity among genotypes were more pronounced following treatment with 10 daily doses of mercaptopurine at 100 mg/kg/d (0%, 68%, and 100% 50-day survival; P = 0.0003) than with thioguanine at 5 mg/kg/d (0%, 33%, and 50% 15-day survival; P = 0.07) in the Tpmt(-/-), Tpmt(+/-), and Tpmt(+/+) genotypes, respectively. Myelosuppression and weight loss exhibited a haploinsufficient phenotype after mercaptopurine, whereas haploinsufficiency was less prominent with thioguanine. In the absence of drug challenge, there was no apparent phenotype. The murine model recapitulates many clinical features of the human polymorphism; indicates that mercaptopurine is more affected by the TPMT polymorphism than thioguanine; and provides a preclinical system for establishing safer regimens of genetically influenced antileukemic drug therapy.
Collapse
Affiliation(s)
- Christine Hartford
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, University of Tennessee, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Watters JW, McLeod HL. Candidate gene selection in pharmacogenomics: biology leads the way. Pharmacogenomics 2004; 5:1019-22. [PMID: 15584871 DOI: 10.1517/14622416.5.8.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|