1
|
Aranđelović J, Ivanović J, Batinić B, Mirković K, Matović BD, Savić MM. Sucrose binge-eating and increased anxiety-like behavior in Sprague-Dawley rats exposed to repeated LPS administration followed by chronic mild unpredictable stress. Sci Rep 2024; 14:22569. [PMID: 39343983 PMCID: PMC11439944 DOI: 10.1038/s41598-024-72450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Exposure to persistent mild stress is a frequently encountered chronic challenge in a rapidly evolving society. Depending on various factors including sex, the response to stressors varies and is closely linked to the phenomenon of resilience. Depression and anxiety can be considered maladaptive responses to such stress. In this rat study, we investigated the sex-dependent effects of low-grade systemic inflammation during 1 week in combination with chronic unpredictable mild stress during the following 4 weeks on anxiety-like behavior and episodic feeding behavior. Increased anxiety-like behavior and increased sucrose intake were identified in stressed compared to control animals regardless of sex. Interestingly, two nearly equally distributed subpopulations were found in the stressed groups within each sex at the end of the 5-week protocol of combined stress exposure: the resistant and the susceptible, which were characterized by unchanged and increased sucrose intake, respectively. This difference in susceptibility to protracted combined mild stress and ensuing response to a sucrose eating binge demonstrates the complexity of the underlying regulatory mechanisms associated with emotional hyperreactivity. This model carries the potential for further investigation of the molecular basis of resilience and susceptibility to combined stressors and for testing treatments with potential preventive or therapeutic effects.
Collapse
Affiliation(s)
- Jovana Aranđelović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Jana Ivanović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Bojan Batinić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Kristina Mirković
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Branka Divović Matović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia.
| |
Collapse
|
2
|
Conrad CD, Peay DN, Acuña AM, Whittaker K, Donnay ME. Corticosterone disrupts spatial working memory during retention testing when highly taxed, which positively correlates with depressive-like behavior in middle-aged, ovariectomized female rats. Horm Behav 2024; 164:105600. [PMID: 39003890 PMCID: PMC11330725 DOI: 10.1016/j.yhbeh.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Major Depressive Disorder affects 8.4 % of the U.S. population, particularly women during perimenopause. This study implemented a chronic corticosterone manipulation (CORT, a major rodent stress hormone) using middle-aged, ovariectomized female rats to investigate depressive-like behavior, anxiety-like symptoms, and cognitive ability. CORT (400 μg/ml, in drinking water) was administered for four weeks before behavioral testing began and continued throughout all behavioral assessments. Compared to vehicle-treated rats, CORT significantly intensified depressive-like behaviors: CORT decreased sucrose preference, enhanced immobility on the forced swim test, and decreased sociability on a choice task between a novel conspecific female rat and an inanimate object. Moreover, CORT enhanced anxiety-like behavior on a marble bury task by reducing time investigating tabasco-topped marbles. No effects were observed on novelty suppressed feeding or the elevated plus maze. For spatial working memory using an 8-arm radial arm maze, CORT did not alter acquisition but disrupted performance during retention. CORT enhanced the errors committed during the highest working memory load following a delay and during the last trial requiring the most items to remember; this cognitive metric positively correlated with a composite depressive-like score to reveal that as depressive-like symptoms increased, cognitive performance worsened. This protocol allowed for the inclusion of multiple behavioral assessments without stopping the CORT treatment needed to produce a MDD phenotype and to assess a battery of behaviors. Moreover, that when middle-age was targeted, chronic CORT produced a depressive-like phenotype in ovariectomized females, who also comorbidly expressed aspects of anxiety and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States.
| | - Dylan N Peay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Amanda M Acuña
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Kennedy Whittaker
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Megan E Donnay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| |
Collapse
|
3
|
Wang Y, Cai X, Ma Y, Yang Y, Pan CW, Zhu X, Ke C. Metabolomics on depression: A comparison of clinical and animal research. J Affect Disord 2024; 349:559-568. [PMID: 38211744 DOI: 10.1016/j.jad.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Depression is a major cause of suicide and mortality worldwide. This study aims to conduct a systematic review to identify metabolic biomarkers and pathways for major depressive disorder (MDD), a prevalent subtype of clinical depression. METHODS We searched for metabolomics studies on depression published between January 2000 and January 2023 in the PubMed and Web of Science databases. The reported metabolic biomarkers were systematically evaluated and compared. Pathway analysis was implemented using MetaboAnalyst 5.0. RESULTS We included 26 clinical studies on MDD and 78 metabolomics studies on depressive-like animal models. A total of 55 and 77 high-frequency metabolites were reported consistently in two-thirds of clinical and murine studies, respectively. In the comparison between murine and clinical studies, we identified 9 consistently changed metabolites (tryptophan, tyrosine, phenylalanine, methionine, fumarate, valine, deoxycholic acid, pyruvate, kynurenic acid) in the blood, 1 consistently altered metabolite (indoxyl sulfate) in the urine and 14 disturbed metabolic pathways in both types of studies. These metabolic dysregulations and pathways are mainly implicated in enhanced inflammation, impaired neuroprotection, reduced energy metabolism, increased oxidative stress damage and disturbed apoptosis, laying solid molecular foundations for MDD. LIMITATIONS Due to unavailability of original data like effect-size results in many metabolomics studies, a meta-analysis cannot be conducted, and confounding factors cannot be fully ruled out. CONCLUSIONS This systematic review delineated metabolic biomarkers and pathways related to depression in the murine and clinical samples, providing opportunities for early diagnosis of MDD and the development of novel diagnostic targets.
Collapse
Affiliation(s)
- Yibo Wang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Xinyi Cai
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuchen Ma
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yang Yang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaohong Zhu
- Suzhou Centers for Disease Control and Prevention, Suzhou, China.
| | - Chaofu Ke
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Okeowo OM, Oke OO, David GO, Ijomone OM. Caffeine Administration Mitigates Chronic Stress-Induced Behavioral Deficits, Neurochemical Alterations, and Glial Disruptions in Rats. Brain Sci 2023; 13:1663. [PMID: 38137111 PMCID: PMC10741929 DOI: 10.3390/brainsci13121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Prolonged exposure to stress has detrimental effects on health, and the consumption of caffeine, mostly contained in energy drinks, has become a widely adopted stress coping strategy. Currently, there is limited information regarding the effects of caffeine intake on chronic stress exposure. Thus, this study investigated the effects of caffeine administration on chronic stress-induced behavioral deficits, neurochemical alterations, and glial disruptions in experimental rats. Thirty male Wistar rats were randomly assigned to five groups (n = 6): non-stress control, stress control, and caffeine groups of doses 12.5, 25, and 50 mg/kg. The stress control and caffeine groups were subjected to an unpredictable chronic mild stress (UCMS) protocol daily for 14 days. The rats were evaluated for phenotypic and neurobehavioral assessments. Thereafter, the rat brains were processed for biochemical and immunohistochemical assays. Caffeine administration was found to ameliorate behavioral dysfunctions in rats exposed to UCMS. The UCMS-induced changes in brain levels of monoamines, cholinesterases, and some oxidative stress biomarkers were reversed by caffeine. Caffeine administration also produced mild protective effects against UCMS-induced changes in GFAP and Iba-1 expression in stress-specific brain regions. These results showed that low and moderate doses of caffeine reversed most of the stress-induced changes, suggesting its ameliorative potential against chronic stress-induced alterations.
Collapse
Affiliation(s)
- Oritoke M. Okeowo
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria; (O.M.O.); (O.O.O.)
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
| | - Olanrewaju O. Oke
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria; (O.M.O.); (O.O.O.)
| | - Gloria O. David
- Department of Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria;
| | - Omamuyovwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
- Department of Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure 340252, Ondo State, Nigeria;
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo 351101, Ondo State, Nigeria
| |
Collapse
|
5
|
Limón-Morales O, Morales-Quintero K, Arteaga-Silva M, Molina-Jiménez T, Cerbón M, Bonilla-Jaime H. Alterations of learning and memory are accompanied by alterations in the expression of 5-HT receptors, glucocorticoid receptor and brain-derived neurotrophic factor in different brain regions of an animal model of depression generated by neonatally male treatment with clomipramine in male rats. Behav Brain Res 2023; 455:114664. [PMID: 37714467 DOI: 10.1016/j.bbr.2023.114664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Depressive illness has been associated with impaired cognitive processes accompanied by reduced neurotrophin levels, especially brain-derived neurotrophic factor (BDNF), and dysfunctions in the hypothalamic-pituitary-adrenal (HPA) axis. In addition, depression is characterized by a decreased functioning of the serotonergic system due to changes in the activity or expression of its receptors including, most significantly, 5-HT1A, 5-HT2A, and 5-HT3 in brain regions that regulate mood, emotions, and memory, such as the prefrontal cortex, hippocampus, and amygdala. In this regard, rats treated with clomipramine (CMI) in the neonatal stage show depression-like behaviors that persist into adulthood; hence, this constitutes an adequate model of depression for exploring various molecular aspects associated with the etiology of this disorder. This, study, then, was designed to analyze the long-term effects of early postnatal exposure to CMI on the expression of 5-HT1A, 5-HT2A, and 5-HT3 receptors, as well as BDNF and GR in the following brain regions: PFC, amygdala, hippocampus, and hypothalamus, which could be related to alterations in memory and learning, as evaluated using the novel object recognition (NOR) and Morris water maze (MWM). Expression of the 5-HT1A, 5-HT2A, and 5-HT3 receptors, BDNF, and the glucocorticoid receptor (GR) was assessed by RT-qPCR in the four aforementioned brain regions, all of which play important roles in the control of memory and mood. Findings show that neonatal treatment with CMI causes alterations in memory and learning, as indicated by alterations in the results of the MWM and NOR tests. Expression of the 5-HT1A receptor increased in the hippocampus, amygdala, and hypothalamus, but decreased in the PFC, while the 5-HT2A and BDNF receptors decreased their expression in the PFC, amygdala, and hippocampus. There was no change in the expression of the 5-HT3 receptor. In addition, expression of GR in the hippocampus and PFC was low, but increased in the hypothalamus. Taken together, these data show that neonatal CMI treatment produces permanent molecular changes in brain regions related to learning and memory that could contribute to explaining the behavioral alterations observed in this model.
Collapse
Affiliation(s)
- Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico; Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Kenia Morales-Quintero
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria Xalapa, Veracruz, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| |
Collapse
|
6
|
Becker L, Mallien AS, Pfeiffer N, Brandwein C, Talbot SR, Bleich A, Palme R, Potschka H, Gass P. Evidence-based severity assessment of the forced swim test in the rat. PLoS One 2023; 18:e0292816. [PMID: 37824495 PMCID: PMC10569541 DOI: 10.1371/journal.pone.0292816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
The forced swim test (FST) is a traditional assay, which has been used for more than 40 years to assess antidepressant effects of novel drug candidates. In recent years, a debate about the test has focused on the assumption that the FST is highly aversive and burdening for the animals because of the earlier anthropomorphic interpretation and designation as a "behavioral despair test". The Directive 2010/63/EU and the German Animal Welfare law require a prospective severity classification of the planned experimental procedures. Still, an objective examination of the animals' burden in this test has not been performed yet. To fill this gap, we conducted an evidence-based severity assessment of the forced swim test in rats according to a 'standard protocol' with a water temperature of 25°C. We examined parameters representing the physiological and the affective state, and natural as well as locomotion-associated behaviors in three separate experiments to reflect as many dimensions as possible of the animal's condition in the test. Hypothermia was the only effect observed in all animals exposed to the FST when using this standard protocol. Additional adverse effects on body weight, food consumption, and fecal corticosterone metabolite concentrations occurred in response to administration of the antidepressant imipramine, which is frequently used as positive control when testing for antidepressant effects of new substances. We conclude that this version of the FST itself is less severe for the animals than assumed, and we suggest a severity classification of 'moderate' because of the acute and short-lasting effects of hypothermia. To refine the FST according to the 3Rs, we encourage confirming the predictive validity in warmer water temperatures to allow the rats to maintain physiological body temperature.
Collapse
Affiliation(s)
- Laura Becker
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne S. Mallien
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Brandwein
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven R. Talbot
- Hannover Medical School, Institute for Laboratory Animal Science, Hannover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hannover, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Oliveira MCN, Cavalcante IL, de Araújo AN, Ferreira dos Santos AM, de Menezes RPB, Herrera-Acevedo C, Ferreira de Sousa N, de Souza Aquino J, Barbosa-Filho JM, de Castro RD, Almeida RN, Scotti L, Scotti MT, Da Silva Stiebbe Salvadori MG. Methyleugenol Has an Antidepressant Effect in a Neuroendocrine Model: In Silico and In Vivo Evidence. Pharmaceuticals (Basel) 2023; 16:1408. [PMID: 37895879 PMCID: PMC10610402 DOI: 10.3390/ph16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/29/2023] Open
Abstract
Major depressive disorder is a severe mood disorder characterized by different emotions and feelings. This study investigated the antidepressant activity of the phenylpropanoid methyleugenol (ME) in adult female mice exposed to a stress model induced by dexamethasone. The animals were randomly divided into groups containing eight animals and were pre-administered with dexamethasone (64 μg/kg subcutaneously). After 165 and 180 min, they were treated with ME (25, 50 and 100 mg/kg intraperitoneally) or imipramine (10 mg/kg intraperitoneally) after 45 min and 30 min, respectively; they were then submitted to tests which were filmed. The videos were analyzed blindly. In the tail suspension test, ME (50 mg/kg) increased latency and reduced immobility time. In the splash test, ME (50 mg/kg) decreased grooming latency and increased grooming time. In the open field, there was no statistical difference for the ME groups regarding the number of crosses, and ME (50 mg/kg) increased the number of rearing and time spent in the center. Regarding in silico studies, ME interacted with dopaminergic D1 and α1 adrenergic pathway receptors and with tryptophan hydroxylase inhibitor. In the in vivo evaluation of the pathways of action, the antidepressant potential of ME (50 mg/kg) was reversed by SCH23390 (4 mg/kg intraperitoneally) dopaminergic D1 receptor, Prazosin (1 mg/kg intraperitoneally) α1 adrenergic receptor, and PCPA (4 mg/kg intraperitoneally) tryptophan hydroxylase inhibitor. Our findings indicate that ME did not alter with the locomotor activity of the animals and shows antidepressant activity in female mice with the participation of the D1, α1 and serotonergic systems.
Collapse
Affiliation(s)
- Mayara Cecile Nascimento Oliveira
- Laboratory of Psychopharmacology, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (A.M.F.d.S.); (R.D.d.C.)
| | - Ikla Lima Cavalcante
- Laboratory of Psychopharmacology, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (A.M.F.d.S.); (R.D.d.C.)
| | - Alana Natalícia de Araújo
- Laboratory of Psychopharmacology, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (A.M.F.d.S.); (R.D.d.C.)
| | - Aline Matilde Ferreira dos Santos
- Laboratory of Psychopharmacology, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (A.M.F.d.S.); (R.D.d.C.)
| | - Renata Priscila Barros de Menezes
- Laboratory of Cheminformatics, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Chonny Herrera-Acevedo
- Laboratory of Cheminformatics, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Natália Ferreira de Sousa
- Laboratory of Cheminformatics, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - José Maria Barbosa-Filho
- Department of Pharmaceutical Sciences, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Ricardo Dias de Castro
- Laboratory of Psychopharmacology, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (A.M.F.d.S.); (R.D.d.C.)
| | - Reinaldo Nóbrega Almeida
- Laboratory of Psychopharmacology, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (A.M.F.d.S.); (R.D.d.C.)
| | - Luciana Scotti
- Laboratory of Cheminformatics, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Mirian Graciela Da Silva Stiebbe Salvadori
- Laboratory of Psychopharmacology, Institute for Research in Drugs and Medicines, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (A.M.F.d.S.); (R.D.d.C.)
| |
Collapse
|
8
|
Hajishengallis G. Illuminating the oral microbiome and its host interactions: animal models of disease. FEMS Microbiol Rev 2023; 47:fuad018. [PMID: 37113021 PMCID: PMC10198557 DOI: 10.1093/femsre/fuad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis and caries are driven by complex interactions between the oral microbiome and host factors, i.e. inflammation and dietary sugars, respectively. Animal models have been instrumental in our mechanistic understanding of these oral diseases, although no single model can faithfully reproduce all aspects of a given human disease. This review discusses evidence that the utility of an animal model lies in its capacity to address a specific hypothesis and, therefore, different aspects of a disease can be investigated using distinct and complementary models. As in vitro systems cannot replicate the complexity of in vivo host-microbe interactions and human research is typically correlative, model organisms-their limitations notwithstanding-remain essential in proving causality, identifying therapeutic targets, and evaluating the safety and efficacy of novel treatments. To achieve broader and deeper insights into oral disease pathogenesis, animal model-derived findings can be synthesized with data from in vitro and clinical research. In the absence of better mechanistic alternatives, dismissal of animal models on fidelity issues would impede further progress to understand and treat oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104-6030, USA
| |
Collapse
|
9
|
Khan M, Baussan Y, Hebert-Chatelain E. Connecting Dots between Mitochondrial Dysfunction and Depression. Biomolecules 2023; 13:695. [PMID: 37189442 PMCID: PMC10135685 DOI: 10.3390/biom13040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Yann Baussan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
10
|
Bonifacino T, Mingardi J, Facchinetti R, Sala N, Frumento G, Ndoj E, Valenza M, Paoli C, Ieraci A, Torazza C, Balbi M, Guerinoni M, Muhammad N, Russo I, Milanese M, Scuderi C, Barbon A, Steardo L, Bonanno G, Popoli M, Musazzi L. Changes at glutamate tripartite synapses in the prefrontal cortex of a new animal model of resilience/vulnerability to acute stress. Transl Psychiatry 2023; 13:62. [PMID: 36806044 PMCID: PMC9938874 DOI: 10.1038/s41398-023-02366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/20/2023] Open
Abstract
Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC). We found that adult male rats subjected to FS can be deemed resilient (FS-R) or vulnerable (FS-V), based on their anhedonic phenotype 24 h after stress exposure, and that these two populations are phenotypically distinguishable up to two weeks afterwards. Basal presynaptic glutamate release was increased in the PFC of FS-V rats, while depolarization-evoked glutamate release and synapsin I phosphorylation at Ser9 were increased in both FS-R and FS-V. In FS-R and FS-V rats the synaptic expression of GluN2A and apical dendritic length of prelimbic PFC layers II-III pyramidal neurons were decreased, while BDNF expression was selectively reduced in FS-V. Depolarization-evoked (carrier-mediated) glutamate release from astroglia perisynaptic processes (gliosomes) was selectively increased in the PFC of FS-V rats, while GLT1 and xCt levels were higher and GS expression reduced in purified PFC gliosomes from FS-R. Overall, we show for the first time that the application of the sucrose intake test to rats exposed to acute FS led to the generation of a novel animal model of resilience/vulnerability to acute stress, which we used to identify early determinants of maladaptive response related to behavioral vulnerability to stress.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Jessica Mingardi
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberta Facchinetti
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Nathalie Sala
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Giulia Frumento
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Elona Ndoj
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marta Valenza
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Caterina Paoli
- grid.7563.70000 0001 2174 1754School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy ,grid.5602.10000 0000 9745 6549Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Ieraci
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy ,grid.449889.00000 0004 5945 6678Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Carola Torazza
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Michele Guerinoni
- grid.4708.b0000 0004 1757 2822Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Nadeem Muhammad
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Isabella Russo
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy ,Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Milanese
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Caterina Scuderi
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Alessandro Barbon
- grid.7637.50000000417571846Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Steardo
- grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
| | - Giambattista Bonanno
- grid.5606.50000 0001 2151 3065Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy ,grid.410345.70000 0004 1756 7871IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
11
|
Psychiatric vulnerability in animal models. Eur Neuropsychopharmacol 2023; 66:28-29. [PMID: 36345095 DOI: 10.1016/j.euroneuro.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
12
|
Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders. Front Psychiatry 2022; 13:828895. [PMID: 35774086 PMCID: PMC9237241 DOI: 10.3389/fpsyt.2022.828895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of the two canonical receptor subtypes; type-1 cannabinoid (CB1R) and type 2 receptor (CB2R), endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs. Recently, with the identification of additional lipid mediators, enzymes and receptors, the expanded ECS called the endocannabinoidome (eCBome) has been identified and recognized. Activation of CB1R is associated with a plethora of physiological effects and some central nervous system (CNS) side effects, whereas, CB2R activation is devoid of such effects and hence CB2Rs might be utilized as potential new targets for the treatment of different disorders including neuropsychiatric disorders. Previous studies suggested that CB2Rs were absent in the brain and they were considered as peripheral receptors, however, recent studies confirmed the presence of CB2Rs in different brain regions. Several studies have now focused on the characterization of its physiological and pathological roles. Studies done on the role of CB2Rs as a therapeutic target for treating different disorders revealed important putative role of CB2R in neuropsychiatric disorders that requires further clinical validation. Here we provide current insights and knowledge on the potential role of targeting CB2Rs in neuropsychiatric and neurodegenerative disorders. Its non-psychoactive effect makes the CB2R a potential target for treating CNS disorders; however, a better understanding of the fundamental pharmacology of CB2R activation is essential for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
13
|
Zhang S, Wu L, Zhang M, He K, Wang X, Lin Y, Li S, Chen J. Occlusal Disharmony-A Potential Factor Promoting Depression in a Rat Model. Brain Sci 2022; 12:brainsci12060747. [PMID: 35741632 PMCID: PMC9221239 DOI: 10.3390/brainsci12060747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Objectives: Patients with occlusal disharmony (OD) may be susceptible to depression. The hypothalamus−pituitary−adrenal axis, 5-HT and 5HT2AR in the prefrontal cortex (PFC), amygdala, and hippocampus are involved in the modulation of emotion and depression. This study investigated whether OD affects the HPA axis and 5-HT system and, subsequently, produces depression-like behaviors in rats. Materials and methods: OD was produced by removing 0.5 and 0.25 mm of hard tissue from the cusps of the maxillary molars in randomly selected sides of Sprague−Dawley rats. CUS involved exposure to 2 different stressors per day for 35 days. OD-, CUS-, and OD + CUS-treated groups and an untreated control group were compared in terms of behavior, endocrine status and brain histology. Results: There were significant differences among the four groups in the behavior tests (p < 0.05), especially in the sucrose preference test, where there was a significant decrease in the OD group compared to the control group. ACTH and CORT concentrations were significantly higher in the OD + CUS group than the control group (p < 0.05). Expression of GR and 5-HT2AR in the PFC, amygdala and hippocampal CA1 was significantly higher in the OD, CUS and OD + CUS groups than the control group (p < 0.05). Conclusion: OD promotes depression-like behaviors through peripheral and central pathways via the HPA axis, GR and 5-HT system.
Collapse
Affiliation(s)
- Sihui Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
| | - Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Mi Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Kaixun He
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Xudong Wang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
| | - Yuxuan Lin
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
| | - Shuxian Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (S.Z.); (L.W.); (M.Z.); (K.H.); (Y.L.)
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; (X.W.); (S.L.)
- Correspondence:
| |
Collapse
|
14
|
Liu CY, Chen JB, Liu YY, Zhou XM, Zhang M, Jiang YM, Ma QY, Xue Z, Zhao ZY, Li XJ, Chen JX. Saikosaponin D exerts antidepressant effect by regulating Homer1-mGluR5 and mTOR signaling in a rat model of chronic unpredictable mild stress. Chin Med 2022; 17:60. [PMID: 35610650 PMCID: PMC9128259 DOI: 10.1186/s13020-022-00621-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/08/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Many studies about depression have focused on the dysfunctional synaptic signaling in the hippocampus that drives the pathophysiology of depression. Radix Bupleuri has been used in China for over 2000 years to regulate liver-qi. Extracted from Radix Bupleuri, Saikosaponin D (SSD) is a pharmacologically active substance that has antidepressant effects. However, its underlying mechanism remains unknown. MATERIALS AND METHODS A chronic unpredictable mild stress (CUMS) paradigm was used as a rat model of depression. SD rats were randomly assigned to a normal control (NC) group or one exposed to a CUMS paradigm. Of the latter group, rats were assigned to four subgroups: no treatment (CUMS), fluoxetine-treated (FLU), high-dose and low-dose SSD-treated (SSDH and SSDL). SSD was orally administrated of 1.50 mg/kg and 0.75 mg/kg/days for three weeks in the SSDH and SSDL groups, respectively. Fluoxetine was administrated at a dose of 2.0 mg/kg/days. SSD's antidepressant effects were assessed using the open field test, forced swim test, and sucrose preference test. Glutamate levels were quantified by ELISA. Western blot and immunochemical analyses were conducted to quantify proteins in the Homer protein homolog 1 (Homer1)-metabotropic glutamate receptor 5 (mGluR5) and mammalian target of rapamycin (mTOR) pathways in the hippocampal CA1 region. To measure related gene expression, RT-qPCR was employed. RESULTS CUMS-exposed rats treated with SSD exhibited increases in food intake, body weight, and improvements in the time spent in the central are and total distance traveled in the OFT, and less pronounced pleasure-deprivation behaviors. SSD also decreased glutamate levels in CA1. In CA1 region of CUMS-exposed rats, SSD treatment increased mGluR5 expression while decreasing Homer1 expression. SSD also increased expressions of postsynaptic density protein 95 (PSD95) and synapsin I (SYP), and the ratios of p-mTOR/mTOR, p-p70S6k/p70S6k, and p-4E-BP1/4E-BP1 in the CA1 region in CUMS-exposed rats. CONCLUSIONS SSD treatment reduces glutamate levels in the CA1 region and promotes the expression of the synaptic proteins PSD-95 and SYP via the regulation of the Homer1-mGluR5 and downstream mTOR signaling pathways. These findings suggest that SSD could act as a natural neuroprotective agent in the prevention of depression.
Collapse
Affiliation(s)
- Chen-Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ming Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Haerbin, 150040, China
| | - Man Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zong-Yao Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Touchant M, Labonté B. Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Front Behav Neurosci 2022; 16:845491. [PMID: 35592639 PMCID: PMC9110970 DOI: 10.3389/fnbeh.2022.845491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions affecting several millions of people worldwide every year. Despite the importance of this disease and its impact on modern societies, still very little is known about the etiological mechanisms. Treatment strategies have stagnated over the last decades and very little progress has been made to improve the efficiency of current therapeutic approaches. In order to better understand the disease, it is necessary for researchers to use appropriate animal models that reproduce specific aspects of the complex clinical manifestations at the behavioral and molecular levels. Here, we review the current literature describing the use of mouse models to reproduce specific aspects of MDD and anxiety in males and females. We first describe some of the most commonly used mouse models and their capacity to display unique but also shared features relevant to MDD. We then transition toward an integral description, combined with genome-wide transcriptional strategies. The use of these models reveals crucial insights into the molecular programs underlying the expression of stress susceptibility and resilience in a sex-specific fashion. These studies performed on human and mouse tissues establish correlates into the mechanisms mediating the impact of stress and the extent to which different mouse models of chronic stress recapitulate the molecular changes observed in depressed humans. The focus of this review is specifically to highlight the sex differences revealed from different stress paradigms and transcriptional analyses both in human and animal models.
Collapse
Affiliation(s)
- Maureen Touchant
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
- *Correspondence: Benoit Labonté
| |
Collapse
|
16
|
Chen G, Yu D, Wu Y, Dong J, Hu L, Feng N. Dopamine D2 receptors in the nucleus accumbens modulate erectile function in a rat model of nonorganic erectile dysfunction. Andrology 2022; 10:808-817. [PMID: 35235251 PMCID: PMC9311273 DOI: 10.1111/andr.13171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
Abstract
Background The central molecular mechanisms of nonorganic erectile dysfunction remains unknown. Objective This study aimed to investigate the association of dopaminergic neurons projecting to the nucleus accumbens of male rats with nonorganic erectile dysfunction. Materials/methods Nonorganic erectile dysfunction was induced by chronic mild stress. The sucrose consumption test, sexual behavior test, and apomorphine test were carried out to select depression‐like rats with erectile dysfunction. These rats were considered as nonorganic erectile dysfunction model rats. Dopamine D1/D2 receptor agonist/antagonist was infused into the nucleus accumbens to observe the effect on sexual behavior. Dopaminergic projections to the nucleus accumbens were labeled with both the retrograde tracer FluoroGold injected into the nucleus accumbens and tyrosine hydroxylase. The expression level of tyrosine hydroxylase in dopaminergic neurons projecting to the nucleus accumbens in the ventral tegmental area was measured. The expression levels of dopamine D1/D2 receptors and tyrosine hydroxylase in the nucleus accumbens were also measured. Results Nonorganic erectile dysfunction was proved by the sucrose consumption test, sexual behavior test, and apomorphine test in model rats. After central infusion of the dopamine D2 receptor agonist into the nucleus accumbens, the recovery of erectile function, sexual arousal, and motivation were indicated by increased intromission ratio and decreased mount latency. Decreased expression levels of dopamine D2 receptors and tyrosine hydroxylase in the nucleus accumbens and decreased expression level of tyrosine hydroxylase in the dopaminergic neurons projecting to the nucleus accumbens were observed in model rats. Discussion These results suggest the impairment of dopaminergic neurons projecting to the nucleus accumbens and dopamine D2 signaling in the nucleus accumbens, causing the suppression of erectile function, sexual arousal, and motivation. Conclusion These results suggest that the impaired dopamine D2 receptor pathway in the nucleus accumbens may be one of the main pathway involved in the development of nonorganic erectile dysfunction in the present model.
Collapse
Affiliation(s)
- Guotao Chen
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Deshui Yu
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yunhong Wu
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jian Dong
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lei Hu
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
17
|
Ribeiro MA, Aguiar RP, Scarante FF, Fusse EJ, de Oliveira RMW, Guimaraes FS, Campos AC. Spontaneous Activity of CB2 Receptors Attenuates Stress-Induced Behavioral and Neuroplastic Deficits in Male Mice. Front Pharmacol 2022; 12:805758. [PMID: 35126139 PMCID: PMC8814367 DOI: 10.3389/fphar.2021.805758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
The monoaminergic theory of depression/anxiety disorders cannot fully explain the behavioral and neuroplastic changes observed after ADs chronic treatment. Endocannabinoid system, which comprises CB2 receptors, has been associated with the chronic effects of these drugs, especially in stressed mice. CB2-KO mice display more vulnerability to stressful stimuli. In the present study, we hypothesized that the behavioral and neuroplastic effects observed after repeated treatment with the AD escitalopram (Esc) in chronically stressed mice depend on CB2 receptor signaling. Male mice submitted to chronic unpredictable stress (CUS) paradigm (21 days) were treated daily with AM630 (0.01; 0.03 or 0.3 mg/kg, i.p) a CB2 receptor antagonist/inverse agonist. At e 19th day of the CUS protocol, mice were submitted to Open field test and Tail-suspension test to evaluate antidepressant-like behavior. At the end of the stress protocol, mice were submitted to Novel Suppressed Feeding test (day 22nd) to evaluate anxiety-like behavior. In a second series of experiments, male mice treated with Esc (10 mg/kg, daily, 21 days) in the presence or not of AM630 (0.30 mg/kg) were submitted to the same round of behavioral tests in the same conditions as performed in the dose-response curve protocol. Animals were then euthanized under deep anesthesia, and their brains/hippocampi removed for immunohistochemistry (Doublecortin-DCX) or Western Blot assay. Our results demonstrated that chronic treatment with AM630, a CB2 antagonist/inverse agonist, induces anxiolytic-like effects in stressed mice. Moreover, chronic reduction of CB2 receptor endogenous activity by AM630 attenuated the neuroplastic (potentiating stress-induced decreased expression of pro-BDNF, but enhanced pmTOR and DAGL expression in the hippocampus reduced in stressed mice), the antidepressant- but not the anxiolytic-like effects of Esc. AM630 alone or in combination with Esc decreased the expression of DCX + cell in both the subgranular and granular layers of the dentate gyrus (DG), indicating a general reduction of DCX + neuroblasts and a decrease in their migration through the DG layers. We suggest that the antidepressant-like behavior and the pro-neurogenic effect, but not the anxiolytic like behavior, promoted by Esc in stressed mice are, at least in part, mediated by CB2 receptors.
Collapse
Affiliation(s)
- Melissa A. Ribeiro
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Rafael P. Aguiar
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Franciele F. Scarante
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo J. Fusse
- Mental Health Graduate Program- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rubia M. W. de Oliveira
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Francisco S. Guimaraes
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Alline C Campos
- Pharmacology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Alline C Campos,
| |
Collapse
|
18
|
Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int J Mol Sci 2022; 23:975. [PMID: 35055161 PMCID: PMC8778243 DOI: 10.3390/ijms23020975] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is ubiquitous in most human tissues, and involved in the regulation of mental health. Consequently, its dysregulation is associated with neuropsychiatric and neurodegenerative disorders. Together, the ECS and the expanded endocannabinoidome (eCBome) are composed of genes coding for CB1 and CB2 cannabinoid receptors (CB1R, CB2R), endocannabinoids (eCBs), and the metabolic enzyme machinery for their synthesis and catabolism. The activation of CB1R is associated with adverse effects on the central nervous system (CNS), which has limited the therapeutic use of drugs that bind this receptor. The discovery of the functional neuronal CB2R raised new possibilities for the potential and safe targeting of the ECS for the treatment of CNS disorders. Previous studies were not able to detect CB2R mRNA transcripts in brain tissue and suggested that CB2Rs were absent in the brain and were considered peripheral receptors. Studies done on the role of CB2Rs as a potential therapeutic target for treating different disorders revealed the important putative role of CB2Rs in certain CNS disorders, which requires further clinical validation. This review addresses recent advances on the role of CB2Rs in neuropsychiatric and neurodegenerative disorders, including, but not limited to, anxiety, depression, schizophrenia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and addiction.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
19
|
Anderson EM, Loke S, Wrucke B, Engelhardt A, Demis S, O'Reilly K, Hess E, Wickman K, Hearing MC. Suppression of pyramidal neuron G protein-gated inwardly rectifying K+ channel signaling impairs prelimbic cortical function and underlies stress-induced deficits in cognitive flexibility in male, but not female, mice. Neuropsychopharmacology 2021; 46:2158-2169. [PMID: 34158613 PMCID: PMC8505646 DOI: 10.1038/s41386-021-01063-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Imbalance in prefrontal cortical (PFC) pyramidal neuron excitation:inhibition is thought to underlie symptomologies shared across stress-related disorders and neuropsychiatric disease, including dysregulation of emotion and cognitive function. G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate excitability of medial PFC pyramidal neurons, however, the functional role of these channels in mPFC-dependent regulation of affect, cognition, and cortical dynamics is unknown. We used a viral-cre approach in male and female mice harboring a "floxed" version of the kcnj3 (Girk1) gene, to disrupt GIRK1-containing channel expression in pyramidal neurons within the prelimbic cortex (PrL). In males, loss of pyramidal GIRK1-dependent signaling differentially impacted measures of affect and impaired working memory and cognitive flexibility. Unexpectedly, ablation of PrL GIRK1-dependent signaling did not impact affect or cognition in female mice. Additional studies used a model of chronic unpredictable stress (CUS) to determine the impact on PrL GIRK-dependent signaling and cognitive function. CUS exposure in male mice produced deficits in cognition that paralleled a reduction in PrL pyramidal GIRK-dependent signaling akin to viral approaches whereas CUS exposure in female mice did not alter cognitive flexibility performance. Stress-induced behavioral deficits in male mice were rescued by systemic injection of a novel, GIRK1-selective agonist, ML297. In conclusion, GIRK1-dependent signaling in male mice, but not females, is critical for maintaining optimal PrL function and behavioral control. Disruption of this inhibition may underlie stress-related dysfunction of the PrL and represent a therapeutic target for treating stress-induced deficits in affect regulation and impaired cognition that reduce quality of life.
Collapse
Affiliation(s)
- Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Steven Loke
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Benjamin Wrucke
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Annabel Engelhardt
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Skyler Demis
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Kevin O'Reilly
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Evan Hess
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
20
|
Kudryavtseva NN. Development of Mixed Anxiety/Depression-Like State as a Consequence of Chronic Anxiety: Review of Experimental Data. Curr Top Behav Neurosci 2021; 54:125-152. [PMID: 34622394 DOI: 10.1007/7854_2021_248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The review presents experimental data considered from the point of view of dynamic changes in the brain neurochemistry, physiology, and behavior of animals during the development of mixed anxiety/depression-like disorder caused by chronic social stress from norm to severe psychopathology. Evidences are presented to support the hypothesis that chronic anxiety rather than social defeat stress is an etiological factor in depression. The consequences of chronic anxiety for human health and social life are discussed.
Collapse
Affiliation(s)
- Natalia N Kudryavtseva
- Neurogenetics of Social Behavior Sector, Neuropathology Modeling Laboratory, FRC Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
21
|
Abstract
BACKGROUND Animal models are critical to improve our understanding of the neuronal mechanisms underlying nicotine withdrawal. Nicotine dependence in rodents can be established by repeated nicotine injections, chronic nicotine infusion via osmotic minipumps, oral nicotine intake, tobacco smoke exposure, nicotine vapor exposure, and e-cigarette aerosol exposure. The time course of nicotine withdrawal symptoms associated with these methods has not been reviewed in the literature. AIM The goal of this review is to discuss nicotine withdrawal symptoms associated with the cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure in rats and mice. Furthermore, age and sex differences in nicotine withdrawal symptoms are reviewed. RESULTS Cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure leads to nicotine withdrawal symptoms such as somatic withdrawal signs, changes in locomotor activity, anxiety- and depressive-like behavior, learning and memory deficits, attention deficits, hyperalgesia, and dysphoria. These withdrawal symptoms are most pronounced within the first week after cessation of nicotine exposure. Anxiety- and depressive-like behavior, and deficits in learning and memory may persist for several months. Adolescent (4-6 weeks old) rats and mice display fewer nicotine withdrawal symptoms than adults (>8 weeks old). In adult rats and mice, females show fewer nicotine withdrawal symptoms than males. The smoking cessation drugs bupropion and varenicline reduce nicotine withdrawal symptoms in rodents. CONCLUSION The nicotine withdrawal symptoms that are observed in rodents are similar to those observed in humans. Tobacco smoke and e-cigarette aerosol contain chemicals and added flavors that enhance the reinforcing properties of nicotine. Therefore, more valid animal models of tobacco and e-cigarette use need to be developed by using tobacco smoke and e-cigarette aerosol exposure methods to induce dependence.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, USA
| | - Vijayapandi Pandy
- Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Guntur, India
| | | |
Collapse
|
22
|
Erdil A, Demirsoy MS, Çolak S, Duman E, Sümbül O, Aygun H. The effect of dexketoprofen trometamol on WAG/Rij rats with absence epilepsy (dexketoprofen in absence epilepsy). Neurol Res 2021; 43:1116-1125. [PMID: 34278977 DOI: 10.1080/01616412.2021.1952510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM Epilepsy is one of the most common neurological diseases. Dexketoprofen (DEX) is a nonselective nonsteroidal anti-inflammatory drug that is used as an analgesic. The present study aimed to assess the efficiency of DEX on WAG/Rij rats by electrophysiologically and behaviorally. MATERIAL AND METHODS Twenty-eight male WAG/Rij rats were used. The effects of acute treatment with DEX (5, 25, and 50 mg/kg, i.p) on absence-like seizures, and related psychiatric comorbidity were assessed. The ECoG recording was taken for 180 min before and after drug injection. After drug injection and EcoG recording, anxiety-depression-like behavior was tested with the open field test for 5 min. RESULTS The 5 mg/kg DEX significantly reduced the number and duration of SWDs percentage (p < 0.05) between 120 and 180 min, but 25 and 50 mg/kg DEX significantly increased the number and duration of SWDs percentage between 0 and 30 min (p < 0.05), and after 30 min the increase stopped (p > 0.05). And also, the 5 mg/kg DEX decreased the number and duration of SWDs percentage (p < 0.05) for 180 min (p < 0.05), but 25 and 50 mg/kg DEX administration did not alter (p > 0.05). The 5, 25, and 50 mg/kg doses of DEX significantly increased the duration of grooming (p < 0.05) but did not change the number of squares crossed (p > 0.05). CONCLUSION Low dose DEX reduced absence-like seizures, but care should be taken when using high doses in absence epilepsy. Also, it may be beneficial for painful diseases accompanied by anxiety-depression.
Collapse
Affiliation(s)
- Aras Erdil
- TR Ministry of Health, Sivas Dental Health Hospital, Sivas, Turkey
| | - Mustafa Sami Demirsoy
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Sakarya University, Sakarya, Turkey
| | | | - Esra Duman
- Department of Veterinary Medicine, Laboratory and Veterinary Health Program Vocational School University of Gazi Osmanpasa, Tokat, Turkey
| | - Orhan Sümbül
- Department of Neurology, Faculty of Medicine University of Gaziosmanpasa, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
23
|
Zhou XM, Liu CY, Liu YY, Ma QY, Zhao X, Jiang YM, Li XJ, Chen JX. Xiaoyaosan Alleviates Hippocampal Glutamate-Induced Toxicity in the CUMS Rats via NR2B and PI3K/Akt Signaling Pathway. Front Pharmacol 2021; 12:586788. [PMID: 33912031 PMCID: PMC8075411 DOI: 10.3389/fphar.2021.586788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose: It is revealed that Xiaoyaosan could reduce glutamate level in the hippocampus of depressed rats, whose metabolism leads to the pathophysiology of depression. However, the underlying mechanism remains unclear. This study aims to explore the effect of Xiaoyaosan on glutamate metabolism, and how to regulate the excitatory injury caused by glutamate. Methods: Rats were induced by chronic unpredictable mild stress, then divided into control, vehicle (distilled water), Xiaoyaosan, fluoxetine, vehicle (DMSO), Xiaoyaosan + Ly294002 and Ly294002 groups. Ly294002 was microinjected into the lateral ventricular catheterization at 5 mM. Xiaoyaosan (2.224 g/kg) and fluoxetine (2.0 mg/kg) were orally administered for three weeks. The open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were used to assess depressive behavior. The glutamate and corticosterone (CORT) levels were detected by ELISA. Western blot, immunochemistry or immunofluorescence were used to detect the expressions of NR2B, MAP2, PI3K and P-AKT/Akt in the hippocampal CA1 region. The mRNA level of MAP2, NR2B and PI3K were detected by RT-qPCR. Results: Compared to the rats in control group, body weight and food intake of CUMS rats was decreased. CUMS rats also showed depression-like behavior as well as down regulate the NR2B and PI3K/Akt signaling pathway. Xiaoyaosan treatments could increase food intake and body weight as well as improved time spent in the central area, total distance traveled in the OFT. Xiaoyaosan could also decrease the immobility time as well as increase the sucrose preference in SPT. Moreover, xiaoyaosan decreased the level of glutamate in the hippocampal CA1 region and serum CORT in CUMS rats. Furthermore, xiaoyaosan improved the expression of MAP2 as well as increased the expression of NR2B, PI3K and the P-AKT/AKT ratio in the hippocampal CA1 region in the CUMS rats. Conclusion: Xiaoyaosan treatment can exert the antidepressant effect by rescuing hippocampal neurons loss induced by the glutamate-mediated excitotoxicity in CUMS rats. The underlying pathway maybe through NR2B and PI3K/Akt signaling pathways. These results may suggest the potential of Xiaoyaosan in preventing the development of depression.
Collapse
Affiliation(s)
- Xue-Ming Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Chen-Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| |
Collapse
|
24
|
Shabanov PD, Blazhenko AA, Devyashin AS, Khokhlov PP, Lebedev AA. In search of new brain biomarkers of stress. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.63326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim: of the study was to investigate the level of ghrelin in various brain structures during a stress response in Zebrafish to a predator, to evaluate this indicator as a potential biomarker of stress, and the effect of a benzodiazepine tranquilizer (phenazepam) on stress-induced changes
Materials and methods: The object of the study was Zebrafish, or Danio rerio wild type, which was subjected to stress by exposure to a predator Hypsophrys nicaraguensis from the cichlid family. In the tail tissue, the level of cortisol was determined, in the brain – the level of total (acylated and non-acylated) ghrelin by the method of enzyme-linked immunosorbent assay. The benzodiazepine anxiolytic phenazepam (1 mg/L), a ghrelin antagonist [D-Lys3]-GHRP-6 (0.333 mg/l) and corticotropin-releasing hormone (CRF; 0.4 mg/L) were used as the pharmacological agents.
Results and discussion: Exposure to a predator, just as administering CRF, more than doubled the level of cortisol in the tail tissue. [D-Lys3]-GHRP-6 and phenazepam prevented an increase in a tissue cortisol level. Simultaneously, in the medulla oblongata and cerebellum, the phylogenetically most ancient structures, rather than in the forebrain (telencephalon) or in the midbrain (corpora bigemia), the level of ghrelin was recorded about 500 pg/g of total protein. In response to exposure to a predator, the level of ghrelin increased in the forebrain and midbrain to nanogram concentrations and moderately decreased in the cerebellum. The effect was prevented by phenazepam and [D-Lys3]-GHRP-6.
Conclusion: Increases in ghrelin in the brain in response to stressful situations can be seen as a functional brain biomarker of stress, along with increased levels of tissue cortisol levels. Both of these effects are prevented by both the ghrelin antagonist and the benzodiazepine tranquilizer. The mechanism of action of the tranquilizer is a functional antagonism between the GABAergic system of the brain and the ghrelin system.
Collapse
|
25
|
Primary role for melatonin MT 2 receptors in the regulation of anhedonia and circadian temperature rhythm. Eur Neuropsychopharmacol 2021; 44:51-65. [PMID: 33451856 DOI: 10.1016/j.euroneuro.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
Circadian rhythms disturbance is widely observable in patients with major depression (MD) and is also associated with depression vulnerability. Of them, disturbed melatonin secretion rhythm is particularly relevant to MD and is strongly phase-locked to core body temperature (CBT) rhythm. Here we aim to study the specific role of each melatonin receptor (MT1 and MT2) subtype in melatonin regulation of circadian CBT and its possible relationship with depressive-like behaviors. MT1-/- , MT2-/- and WT (C57BL/6) mice were used. Anhedonia, using the sucrose intake test, circadian CBT, environmental place preference (EPP) conditioning and vulnerability to chronic social defeat stress (CSDS) procedure were studied. Moreover, the antidepressant effects of reboxetine (15 mg/kg/day, i.p.) for three weeks or ketamine (15 mg/kg i.p. every four days, 4 doses in total) were studied. Further, exposure to ultra-mild stress induced by individual housing for several weeks was also studied in these mice. MT2-/- mice showed anhedonia and lower CBT compared to WT and MT1-/-. In addition, while reward exposure raised nocturnal CBT in WT this increase did not take place in MT2-/- mice. Further, MT2-/- mice showed an enhanced vulnerability to stress-induced anhedonia and social avoidance as well as an impaired acquisition of novelty seeking behavior. Both reboxetine and ketamine reverted anhedonia and induced a clear anti-helpless behavior in the tail suspension test (TST). Reboxetine raised CBT in mice and reverted ultra-mild stress-induced anhedonia. Our findings show a primary role for MT2 receptors in the regulation of circadian CBT as well as anhedonia and suggest that these receptors could be involved in depressive disorders associated to disturbed melatonin function.
Collapse
|
26
|
Smethells JR, Burroughs D, Saykao A, Pentel PR, Rezvani AH, LeSage MG. The reinforcement threshold and elasticity of demand for nicotine in an adolescent rat model of depression. Drug Alcohol Depend 2021; 219:108433. [PMID: 33310485 PMCID: PMC7855441 DOI: 10.1016/j.drugalcdep.2020.108433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Food and Drug Administration (FDA) is considering setting a nicotine standard for tobacco products to reduce their addictiveness. Such a standard should account for the apparent greater vulnerability to nicotine addiction in some subpopulations, such as adolescents with depression. The present study examined whether the reinforcement threshold and elasticity of demand (i.e., reinforcing efficacy) for nicotine in a genetic inbred rat model of depression (Flinders Sensitive Line [FSL]) differs from an outbred control strain. METHODS Acquisition of nicotine self-administration (NSA) across a wide range of nicotine doses was measured in both FSL and Sprague-Dawley (SD) control adolescent rats. At the highest dose, elasticity of demand was also measured. Nicotine pharmacokinetics was examined to determine whether it might modulate NSA, as it does smoking in humans. RESULTS FSL rats acquired self-administration quicker and showed more inelastic demand (greater reinforcing efficacy) than SDs at the highest unit dose. However, there was no strain difference in the reinforcement threshold of nicotine. FSL rats exhibited faster nicotine clearance, larger volume of distribution, and lower plasma and brain nicotine concentrations. However, these differences were not consistently related to strain differences in NSA measures. CONCLUSION These findings are consistent with studies showing greater dependence and reinforcing efficacy of cigarettes in smokers with depression and those with relatively fast nicotine metabolism. However, these findings also suggest that a nicotine standard to reduce initiation of tobacco use should be similarly effective in both the general adolescent population and those with depression.
Collapse
Affiliation(s)
- John R. Smethells
- Hennepin Healthcare Research Institute, Minneapolis, MN,Departments of Medicine and Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | | | - Amy Saykao
- Hennepin Healthcare Research Institute, Minneapolis, MN
| | - Paul R. Pentel
- Hennepin Healthcare Research Institute, Minneapolis, MN,Departments of Medicine and Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Amir H. Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
| | - Mark G. LeSage
- Hennepin Healthcare Research Institute, Minneapolis, MN,Departments of Medicine and Pharmacology, University of Minnesota Medical School, Minneapolis, MN,Department of Psychology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
27
|
Huang Z, Yin L, Guan L, Li Z, Tan C. Novel piperazine-2,5-dione analogs bearing 1H-indole: Synthesis and biological effects. Bioorg Med Chem Lett 2020; 30:127654. [PMID: 33144244 DOI: 10.1016/j.bmcl.2020.127654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
In this work, a series of novel piperazine-2,5-dione derivatives bearing indole analogs (2a-2q) was designed and synthesized. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR spectroscopy, and ESI-MS. They were then evaluated for their anti-depressant, anti-inflammatory, and analgesic activities in vivo. The experimental results revealed that all the compounds showed clear anti-depressant, anti-inflammatory, and analgesic effects at a dose of 10 mg/kg. Among them, compounds 2e and 2q exhibited the best anti-depressant effects (the percent decreases in the duration of immobility were 70.2% and 71.2%, respectively), which were similar to that of fluoxetine (67.9%) in the forced swim test. Additionally, compounds 2e and 2q also displayed good anti-inflammatory and analgesic activities. Literature reports have highlighted the anti-inflammatory and analgesic effects of anti-depressant drugs, suggesting that they may have a similar mechanism of action. Therefore, further studies to investigate the possible mechanisms of action of compounds 2e and 2q are warranted.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Liquan Yin
- Rehabilitation Medicine Department, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Liping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Cheng Tan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
28
|
Long-term effects of pre-gestational stress and perinatal venlafaxine treatment on neurobehavioral development of female offspring. Behav Brain Res 2020; 398:112944. [PMID: 33017639 DOI: 10.1016/j.bbr.2020.112944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
Preclinical studies suggest that stress-related disorders even prior gestation can cause long-term changes at the level of neurobehavioral adaptations. Therefore, it is critical to consider undergoing antidepressant therapy which could reverse the negative consequences in the offspring. Venlafaxine is widely used in clinical practice; however insufficient amount of well-controlled studies verified the safety of venlafaxine therapy during gestation and lactation. The aim of this work was to investigate the effects of perinatal venlafaxine therapy on selected neurobehavioral variables in mothers and their female offspring using a model of maternal adversity. Pre-gestational stressed and non-stressed Wistar rat dams were treated with either venlafaxine (10 mg/kg/day) or vehicle during pregnancy and lactation. We have shown that pre-gestational stress decreased the number of pups with a significant reduction in the number of males but not females. Furthermore, we found that offspring of stressed and treated mothers exhibited anxiogenic behavior in juvenile and adolescent age. However, during adulthood pre-gestational stress significantly increased anxiety-like behavior of female, with venlafaxine treatment normalizing the state to control levels. Additionally, we found that even maternal stress prior gestation can have long-term impact on adult number of hippocampal immature neurons of the female offspring. A number of questions related to the best treatment options for maternal depression still remains, however present data may provide greater insight into the possible outcomes associated with perinatal venlafaxine therapy.
Collapse
|
29
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Mechanisms underlying remediation of depression-associated anxiety by chronic N-acetyl cysteine treatment. Psychopharmacology (Berl) 2020; 237:2967-2981. [PMID: 32572589 DOI: 10.1007/s00213-020-05585-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE Anxiety is one of the most comorbid conditions with major depressive disorder (MDD). Depression-associated anxiety often stems from the dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its altered regulation by the amygdala. Furthermore, MDD is associated with altered glutamatergic processing leading to anxiety and impaired regulation of the HPA axis. Recent studies have demonstrated that N-acetyl cysteine (NAC), a pleiotropic drug, exerts antidepressant-like effect by modulation of hippocampal functions, periterminal release of glutamate, and/or redox systems. However, the effects of NAC on depression-associated anxiety, HPA axis hyperactivity, and amygdalar dysfunctions are relatively unknown. OBJECTIVES Accordingly, we evaluated the effect of NAC on neonatal clomipramine (CLI)-induced adulthood anxiety and accompanying changes in plasma corticosterone levels, amygdalar volumes, neuronal/glial densities, levels of monoamines, and their metabolites in the amygdalar complex. RESULTS We found that chronic treatment with NAC reverses CLI-induced anhedonia and enhanced anxiety. Interestingly, attenuation of CLI-associated anxiety in NAC-treated rats were accompanied by a reversal of adrenal and spleen hypertrophy, and normalization of enhanced plasma corticosterone levels, indicating improved HPA axis functioning. Furthermore, NAC treatment was sufficient to reverse volumetric hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. The effects of NAC in the reversal of CLI-induced impairments were similar to that of fluoxetine (FLX). CONCLUSIONS We suggest that beneficial effects of NAC on antidepressive- and antianxiety-like behaviors are at least in part mediated via restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that NAC might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
30
|
Okoh L, Ajayi AM, Ben-Azu B, Akinluyi ET, Emokpae O, Umukoro S. D-Ribose-L-cysteine exhibits adaptogenic-like activity through inhibition of oxido-inflammatory responses and increased neuronal caspase-3 activity in mice exposed to unpredictable chronic mild stress. Mol Biol Rep 2020; 47:7709-7722. [PMID: 32959196 DOI: 10.1007/s11033-020-05845-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Adaptogens are substances that act nonspecifically to combat stress by regulating the key elements involved in stress-induced pathologies. D-Ribose-L-cysteine (DRLC), a potent glutathione (GSH) booster, has been recommended for relief of stress. Hence, we investigated its adaptogenic-like effect in mice subjugated to unpredictable chronic mild stress (UCMS). Thirty six male Swiss mice were assigned to 6 groups (n = 6): group 1 received saline (p.o, non-stress control), group 2 (stress-control) also had saline, groups 3 to 5 received DRLC (25, 50 and 100 mg/kg, p.o) whereas group 6 had ginseng (50 mg/kg, p.o). The animals in groups 2-6 were subjugated to UCMS 30 min later, daily for 21 days and afterwards, tested for memory and anxiety. Blood glucose, serum corticosterone concentrations and adrenal weight were determined. The brain tissues were processed for estimation of malondialdehyde (MDA), GSH, superoxide-dismutase (SOD), catalase, tumor necrosis factor-alpha (TNF-α), interleukin-6, acetyl-cholinesterase, and caspase-3 activities. The histomorphologic features and neuronal viability of the hippocampus, amygdala and prefrontal cortex were also determined. DRLC (25-100 mg/kg) reduces anxiety, memory deficit, adrenal gland enlargement, glucose, and corticosterone concentrations in UCMS-mice. The increased brain contents of MDA, TNF-α, interleukin-6, acetyl-cholinesterase and decreased antioxidant (GSH, SOD and catalase) status induced by UCMS were attenuated by DRLC. The DRLC increased caspase-3 activity and reduces histomorphological distortions of neuronal cells of the hippocampus, amygdala and prefrontal cortex of stressed-mice. These findings suggest that DRLC has adaptogenic-like effect which might be related to modulation of corticosterone-mediated oxido-inflammatory processes and altered caspase-3 activity.
Collapse
Affiliation(s)
- Love Okoh
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, River States, Nigeria
| | - Elizabeth T Akinluyi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| | - Osagie Emokpae
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
31
|
Lv M, Li J, Gao X, Hao Y, Zhao F. Decreased expression of microRNA-17 in hippocampal tissues and blood from mice with depression up-regulates the expression of PAI-1 mRNA and protein. Braz J Med Biol Res 2020; 53:e8826. [PMID: 32901686 PMCID: PMC7485310 DOI: 10.1590/1414-431x20208826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/22/2020] [Indexed: 01/19/2023] Open
Abstract
This study determined the expression of plasminogen activator inhibitor-1 (PAI-1) and microRNA (miR)-17 in a mouse depression model. Forty male mice were divided evenly into control and depression groups. A chronic unpredictable mild stress (CUMS) model was constructed. qRT-PCR was used to determine the expression of PAI-1 mRNA and miR-17. Western blotting and ELISA were used to determine expression of PAI-1 protein. Dual luciferase reporter assay was carried out to identify direct interaction between miR-17 and PAI-1 mRNA. The mice with depression had elevated PAI-1 mRNA and protein in hippocampal tissues and blood. Expression of miR-17 was decreased in hippocampal tissues and blood from mice with depression. miR-17 bound with the 3'-UTR of PAI-1 mRNA to regulate its expression. This study demonstrated that miR-17 expression in hippocampal tissues and blood from mice with depression was decreased while expression of PAI-1 mRNA and protein was up-regulated. miR-17 participated in depression in mice by regulating PAI-1.
Collapse
Affiliation(s)
- Min Lv
- Department of Psychology, The Second Children and Women's Healthcare of Jinan City, Jinan, China
| | - Jing Li
- Department of Gynecology, The Second Children and Women's Healthcare of Jinan City, Jinan, China
| | - Xinxue Gao
- Department of Psychiatry, Jining Psychiatry Hospital, Jining, China
| | - Yurong Hao
- Department of Psychiatry, Jining Psychiatry Hospital, Jining, China
| | - Fengxia Zhao
- Cardiac Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
32
|
Pesarico AP, Birmann PT, Pinto R, Padilha NB, Lenardão EJ, Savegnago L. Short- and Long-Term Repeated Forced Swim Stress Induce Depressive-Like Phenotype in Mice: Effectiveness of 3-[(4-Chlorophenyl)Selanyl]-1-Methyl-1H-Indole. Front Behav Neurosci 2020; 14:140. [PMID: 33192355 PMCID: PMC7481394 DOI: 10.3389/fnbeh.2020.00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023] Open
Abstract
Exposure to stress highly correlates with the emergence of mood-related illnesses. Therefore, the present study was designed to characterize the acute and chronic effects of 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) on depressive-like behavior induced by repeated forced swim stress (FSS) in male adult Swiss mice. In the repeated FSS, mice were placed in water to swim for a single trial during a 15-min period. Twenty-four hours after the first FSS, the animals were placed in water to swim through a series of four trials, and each of them swam for 6 min long; between each trial, mice were towel dried and returned to their home cage for 6 min. In addition, the oxidative stress in the prefrontal cortex and hippocampus and corticosterone levels of plasma of mice were investigated. The animals exposed to FSS were treated with CM in two different protocols. In protocol 1, CMI [1 and 10 mg/kg, intragastric (i.g.) route] or fluoxetine, a positive control (10 mg/kg, i.g. route), were administered 30 min before of sections of repeated FSS in both days of stress. After the last section of repeated FSS, the mice performed first the spontaneous locomotor activity and after the tail suspension test. In protocol 2, CMI or fluoxetine (1 mg/kg, i.g. route) was administered for 20 days after the exposition of repeated FSS. The spontaneous locomotor activity, tail suspension, and forced swimming tests were performed in this order after 24 h of last administration of CMI or fluoxetine. The euthanasia of animals was performed after the behavioral tests. CMI and fluoxetine abolished the depressive-like behavior induced by repeated FSS in mice in the two different treatments. CMI modulated the oxidative stress in the prefrontal cortices and hippocampi of mice subjected to repeated FSS. Mice subjected to repeated FSS had an increase in the corticosterone levels and CMI regulated the levels of this glucocorticoid. These findings demonstrate that CMI was effective to abolish the depressive-like behavior induced by repeated FSS, which was accompanied by changes in the corticosterone levels and oxidative stress of prefrontal cortices and hippocampi of mice.
Collapse
Affiliation(s)
- Ana Paula Pesarico
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| | - Paloma T Birmann
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| | - Rodrigo Pinto
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| | - Nathalia Batista Padilha
- Laboratory of Clean Organic Synthesis-LASOL, CCQFA, Federal University of Pelotas, Pelotas, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis-LASOL, CCQFA, Federal University of Pelotas, Pelotas, Brazil
| | - Lucielli Savegnago
- Research Group on Neurobiotechnology-GPN, CDTec, Federal University of Pelotas, UFPel, Pelotas, Brazil
| |
Collapse
|
33
|
A missing link between depression models: Forced swimming test, helplessness and passive coping in genetically heterogeneous NIH-HS rats. Behav Processes 2020; 177:104142. [DOI: 10.1016/j.beproc.2020.104142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/28/2020] [Accepted: 05/17/2020] [Indexed: 01/11/2023]
|
34
|
Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain 2020; 13:92. [PMID: 32546197 PMCID: PMC7296711 DOI: 10.1186/s13041-020-00627-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence implicates dysregulation of hippocampal synaptic plasticity in the pathophysiology of depression. However, the effects of ketamine on synaptic plasticity and their contribution to its mechanism of action as an antidepressant, are still unclear. We investigated ketamine's effects on in vivo dorsal hippocampal (dHPC) synaptic plasticity and their role in mediating aspects of antidepressant activity in the Wistar-Kyoto (WKY) model of depression. dHPC long-term potentiation (LTP) was significantly impaired in WKY rats compared to Wistar controls. Importantly, a single low dose (5 mg/kg, ip) of ketamine or its metabolite, (2R,6R)-HNK, rescued the LTP deficit in WKY rats at 3.5 h but not 30 min following injection, with residual effects at 24 h, indicating a delayed, sustained facilitatory effect on dHPC synaptic plasticity. Consistent with the observed dHPC LTP deficit, WKY rats exhibited impaired hippocampal-dependent long-term spatial memory as measured by the novel object location recognition test (NOLRT), which was effectively restored by pre-treatment with both ketamine or (2R,6R)-HNK. In contrast, in WKYs, which display abnormal stress coping, ketamine, but not (2R,6R)-HNK, had rapid and sustained effects in the forced swim test (FST), a commonly used preclinical screen for antidepressant-like activity. The differential effects of (2R,6R)-HNK observed here reveal a dissociation between drug effects on FST immobility and dHPC synaptic plasticity. Therefore, in the WKY rat model, restoring dHPC LTP was not correlated with ketamine's effects in FST, but importantly, may have contributed to the reversal of hippocampal-dependent cognitive deficits, which are critical features of clinical depression. Our findings support the theory that ketamine may reverse the stress-induced loss of connectivity in key neural circuits by engaging synaptic plasticity processes to "reset the system".
Collapse
Affiliation(s)
- Lily R Aleksandrova
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Daniels S, Horman T, Lapointe T, Melanson B, Storace A, Kennedy SH, Frey BN, Rizvi SJ, Hassel S, Mueller DJ, Parikh SV, Lam RW, Blier P, Farzan F, Giacobbe P, Milev R, Placenza F, Soares CN, Turecki G, Uher R, Leri F. Reverse translation of major depressive disorder symptoms: A framework for the behavioural phenotyping of putative biomarkers. J Affect Disord 2020; 263:353-366. [PMID: 31969265 DOI: 10.1016/j.jad.2019.11.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Reverse translating putative biomarkers of depression from patients to animals is complex because Major Depressive Disorder (MDD) is a highly heterogenous condition. This review proposes an approach to reverse translation based on relating relevant bio-behavioural functions in laboratory rodents to MDD symptoms. METHODS This systematic review outlines symptom clusters assessed by psychometric tests of MDD and antidepressant treatment response including the Montgomery-Åsberg Depression Rating Scale, the Hamilton Depression Rating Scale, and the Beck Depression Inventory. Symptoms were related to relevant behavioural assays in laboratory rodents. RESULTS The resulting battery of tests includes passive coping, anxiety-like behaviours, sleep, caloric intake, cognition, psychomotor functions, hedonic reactivity and aversive learning. These assays are discussed alongside relevant clinical symptoms of MDD, providing a framework through which reverse translation of a biomarker can be interpreted. LIMITATIONS Certain aspects of MDD may not be quantified by tests in laboratory rodents, and their biological significance may not always be of clinical relevance. CONCLUSIONS Using this reverse translation approach, it is possible to clarify the functional significance of a putative biomarker in rodents and hence translate its contribution to specific clinical symptoms, or clusters of symptoms.
Collapse
Affiliation(s)
- Stephen Daniels
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Thomas Lapointe
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Brett Melanson
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Alexandra Storace
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Sidney H Kennedy
- University of Toronto Health Network, Toronto, Ontario, Canada; St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Sakina J Rizvi
- University of Toronto Health Network, Toronto, Ontario, Canada; St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Daniel J Mueller
- The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - Raymond W Lam
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pierre Blier
- The Royal Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Faranak Farzan
- Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter Giacobbe
- University of Toronto Health Network, Toronto, Ontario, Canada
| | | | - Franca Placenza
- University of Toronto Health Network, Toronto, Ontario, Canada
| | | | | | - Rudolf Uher
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| |
Collapse
|
36
|
Macêdo-Souza C, Maisonnette SS, Filgueiras CC, Landeira-Fernandez J, Krahe TE. Cued Fear Conditioning in Carioca High- and Low-Conditioned Freezing Rats. Front Behav Neurosci 2020; 13:285. [PMID: 32038188 PMCID: PMC6992609 DOI: 10.3389/fnbeh.2019.00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/12/2019] [Indexed: 02/03/2023] Open
Abstract
Anxiety disorders (AD) comprise a broad range of psychiatric conditions, including general anxiety (GAD) and specific phobias. For the last decades, the use of animal models of anxiety has offered important insights into the understanding of the association between these psychopathologies. Here, we investigate whether Carioca high- and low-conditioned freezing rats (CHF and CLF, respectively), a GAD animal model of anxiety, show similar high- and low-freezing behavioral phenotypes for cued auditory fear conditioning. Adult CHF (n = 16), CLF (n = 16) and normal age-matched Wistar rats (control, CTL, n = 16) were tested in a classical auditory-cued fear conditioning paradigm over 3 days (Tone + Shock and Tone only groups, n = 8 per treatment). Freezing responses were measured and used as evidence of fear conditioning. Overall, both CHF and CLF rats, as well as CTL animals displayed fear conditioning to the auditory CS. However, CLF animals showed a rapid extinction to the auditory conditioned stimulus compared to CHF and CTL rats. We discuss these findings in the context of the behavioral and neuronal differences observed in rodent lines of high and low anxiety traits.
Collapse
Affiliation(s)
- Carolina Macêdo-Souza
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Chronic unpredictable intermittent restraint stress disrupts spatial memory in male, but not female rats. Behav Brain Res 2020; 383:112519. [PMID: 32006567 DOI: 10.1016/j.bbr.2020.112519] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Chronic stress leads to sex-dependent outcomes on spatial memory by producing deficits in males, but not in females. Recently it was reported that compared to daily restraint, intermittent restraint (IR) produced more robust stress and anxiety responses in male rats. Whether IR would be sufficiently robust to impair hippocampal-dependent spatial memory in both male and female rats was investigated. IR involved mixing restraint with non-restraint days over weeks before assessing spatial memory and anxiety profile on the radial arm water maze, object placement, novel object recognition, Y-maze, open field and novelty suppressed feeding. Experiments 1 and 2 used Sprague-Dawley male rats only and determined that IR for 6 h/d (IR6), but not 2 h/d, impaired spatial memory and that task order was important. In experiment 3, IR6 was extended for 6wks before spatial memory testing commenced using both sexes. Unexpectedly, an extended IR6 paradigm failed to impair spatial memory in either sex, suggesting that by 6wks IR6 may have become predictable. In experiment 4, an unpredictable IR (UIR) paradigm was implemented, in which restraint duration (30 or 60-min) combined with orbital shaking, time of day, and the days off from UIR were varied. UIR impaired spatial memory in males, but not in females. Together with other reports, these findings support the interpretation that chronic stress negatively impairs hippocampal-dependent function in males, but not in females. We interpret these findings to show that females are more resilient to chronic stress than are males as it pertains to spatial ability.
Collapse
|
38
|
Dixit PV, Sahu R, Mishra DK. Marble-burying behavior test as a murine model of compulsive-like behavior. J Pharmacol Toxicol Methods 2020; 102:106676. [PMID: 31954839 DOI: 10.1016/j.vascn.2020.106676] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/04/2023]
Abstract
Object burying by rodents is a popular screening tool for anxiolytic agents. However, modulation of marble-burying by serotonin reuptake inhibitors prompted its link to obsessive-compulsive disorder/compulsive-like behavior. The Marble-burying behavior test is an acute test; however, some investigators incorporate the sub-acute treatment regimen as an essential component for screening anti-compulsive agents. The test exhibits between-laboratory methodological differences and demonstrates positive treatment responses to an array of pharmacotherapies, creating doubts about its predictive validity and construct validity. Numerous reviews are available on marble-burying behavior test, which incorporates the test as a part of anti-compulsive behavior-like screens, but none has made it a sole subject-matter for discussion. This review attempts to provide a comprehensive account of the marble-burying test as a model of compulsive-like disorders. It envisages the model's scientific origins, the preclinical research done and its correlation with the clinical research outcomes, and a detailed discussion about its validity. In conclusion, there appears a need to address the issue of construct and predictive validity of the model authoritatively; or the paradigm may remain squandered in the field of obsessive-compulsive disorder research.
Collapse
Affiliation(s)
- Pankaj Vinod Dixit
- Indore Institute of Pharmacy, Rau-Pithampur Road, Opposite Indian Institute of Management, Rau, Indore, 453331, M.P., India.
| | - Rohit Sahu
- Indore Institute of Pharmacy, Rau-Pithampur Road, Opposite Indian Institute of Management, Rau, Indore, 453331, M.P., India
| | - Dinesh Kumar Mishra
- Indore Institute of Pharmacy, Rau-Pithampur Road, Opposite Indian Institute of Management, Rau, Indore, 453331, M.P., India
| |
Collapse
|
39
|
Validation of chronic mild stress in the Wistar-Kyoto rat as an animal model of treatment-resistant depression. Behav Pharmacol 2020; 30:239-250. [PMID: 30204592 DOI: 10.1097/fbp.0000000000000431] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recent review proposed four criteria for an animal model of treatment-resistant depression (TRD): a phenotypic resemblance to a risk factor for depression; enhanced response to stress; nonresponse to antidepressant drugs and response to treatments effective in TRD, such as deep brain stimulation (DBS) of the prefrontal cortex or ketamine. Chronic mild stress (CMS) provides a valid model of depression; the Wistar-Kyoto (WKY) rat is considered to be nonresponsive to antidepressant drugs. Here, we applied CMS to WKY rats. WKY and Wistar rats were exposed to CMS, then treated with saline, imipramine, citalopram or venlafaxine. After 5 weeks of CMS and 3 weeks of drug treatment, all WKY groups were implanted unilaterally with DBS electrodes in the prefrontal cortex, and examined in sucrose intake, elevated plus maze (EPM; decreased entries and time in the open arms) and novel object recognition (decreased exploration) tests, following 2×2 h of DBS. CMS decreased sucrose intake, open arm entries on the EPM, and object recognition. Relative to Wistars, WKY rats showed evidence of increased emotionality in the EPM and novel object recognition tests, and a greater impact of CMS on body weight gain and open arm entries. Wistars responded to drug treatment with an increase in sucrose intake but WKY were nonresponsive to drug treatment on all three behavioural tests. With one exception, DBS reversed the anhedonic, anxiogenic and dyscognitive effects of CMS in all groups of WKY rats. In a further experiment, subacute ketamine (10 mg/kg) also normalized behaviour on all three tests. We conclude that WKY rats subjected to CMS meet all four criteria for a valid model of TRD, and provide a basis for studying the mechanism of action of DBS.
Collapse
|
40
|
Kang J, Wang Y, Wang D. Endurance and resistance training mitigate the negative consequences of depression on synaptic plasticity through different molecular mechanisms. Int J Neurosci 2019; 130:541-550. [DOI: 10.1080/00207454.2019.1679809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Kang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Youhua Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Di Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Burke NN, Li Y, Deaver DR, Finn DP, Roche M, Eyerman DJ, Sanchez C, Kelly JP. Chronic administration of buprenorphine in combination with samidorphan produces sustained effects in olfactory bulbectomised rats and Wistar-Kyoto rats. J Psychopharmacol 2019; 33:1620-1627. [PMID: 31512988 DOI: 10.1177/0269881119872203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The combination of buprenorphine, a partial mu-opioid receptor agonist and a functional kappa-opioid receptor antagonist, with samidorphan, a functional mu-opioid receptor antagonist, is being developed as an adjunct therapy for major depressive disorder, in order to harness the mood-enhancing effects of opioids without unwanted side-effects such as a risk of addiction. Acute and subacute administration of the combination of buprenorphine and samidorphan is effective in reducing forced swim immobility in the Wistar-Kyoto rat, but the chronic effects have not been examined. AIMS AND METHODS The purpose of this study was to assess if chronic (14-day) administration of buprenorphine (0.1 mg/kg, subcutaneous) alone or in combination with samidorphan (0.3 mg/kg, subcutaneous) maintains antidepressant-like activity in the olfactory bulbectomised rat model and the Wistar-Kyoto rat, two models that exhibit ongoing behavioural deficits in tests commonly used to study effects of antidepressants. RESULTS Olfactory bulbectomised-induced hyperactivity was attenuated by chronic administration of buprenorphine alone and in combination with samidorphan, to that of sham control activity levels. Neither buprenorphine nor samidorphan altered stress-associated defecation in sham or olfactory bulbectomised rats in the open field. In Wistar-Kyoto rats, buprenorphine alone significantly reduced forced swim immobility and increased locomotor activity three hours post-final dosing. Buprenorphine plus samidorphan significantly reduced forced swim immobility without changing locomotor activity at this time point. Buprenorphine alone also significantly reduced forced swim immobility 24 h post-final dosing. CONCLUSION Chronic treatment of buprenorphine alone or buprenorphine plus samidorphan is effective in reversing behavioural deficits in distinct non-clinical paradigms. These non-clinical results complement the antidepressant effect of this combination observed in clinical studies.
Collapse
Affiliation(s)
- Nikita N Burke
- Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| | - Yan Li
- Alkermes Inc., Waltham, MA, USA
| | | | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - John P Kelly
- Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| |
Collapse
|
42
|
Neonatal treatment with clomipramine modifies the expression of estrogen receptors in brain areas of male adult rats. Brain Res 2019; 1724:146443. [DOI: 10.1016/j.brainres.2019.146443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
|
43
|
Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of Mesolimbic Brain-Derived Neurotrophic Factor in Depression. Biol Psychiatry 2019; 86:738-748. [PMID: 31327473 PMCID: PMC6814503 DOI: 10.1016/j.biopsych.2019.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted as being critical for neural and synaptic plasticity throughout the nervous system. Recent work has shown that BDNF in the mesolimbic dopamine (DA) circuit, originating in ventral tegmental area DA neurons that project to the nucleus accumbens, is crucial in the development of depressive-like behaviors following exposure to chronic social defeat stress in mice. Whereas BDNF modulates DA signaling in encoding responses to acute defeat stress, BDNF signaling alone appears to be responsible for the behavioral effects after chronic social defeat stress. Very different patterns are seen with another widely used chronic stress paradigm in mice, chronic mild stress (also known as chronic variable or unpredictable stress), where DA signaling, but not BDNF signaling, is primarily responsible for the behavioral effects observed. This review discusses the molecular, cellular, and circuit basis of this dramatic discrepancy, which appears to involve the nature of the stress, its severity and duration, and its effects on distinct cell types within the ventral tegmental area-to-nucleus accumbens mesolimbic circuit.
Collapse
Affiliation(s)
- Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Eric J. Nestler
- Departments of Pharmacological Sciences and of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Address correspondence to: Ming-Hu Han, Ph.D. and Eric J. Nestler, MD., Ph.D., Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; and
| |
Collapse
|
44
|
Casillas-Espinosa PM, Shultz SR, Braine EL, Jones NC, Snutch TP, Powell KL, O’Brien TJ. Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy. Prog Neurobiol 2019; 182:101677. [DOI: 10.1016/j.pneurobio.2019.101677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
|
45
|
Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev 2019; 105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
46
|
Hao Y, Ge H, Sun M, Gao Y. Selecting an Appropriate Animal Model of Depression. Int J Mol Sci 2019; 20:ijms20194827. [PMID: 31569393 PMCID: PMC6801385 DOI: 10.3390/ijms20194827] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Depression has become one of the most severe psychiatric disorders and endangers the health of living beings all over the world. In order to explore the molecular mechanism that underlies depression, different kinds of animal models of depression are used in laboratory experiments. However, a credible and reasonable animal model that is capable of imitating the pathologic mechanism of depression in mankind has yet to be found, resulting in a barrier to further investigation of depression. Nevertheless, it is possible to explain the pathologic mechanism of depression to a great extent by a rational modeling method and behavioral testing. This review aims to provide a reference for researchers by comparing the advantages and disadvantages of some common animal depression models.
Collapse
Affiliation(s)
- Yuanzhen Hao
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang 330006, China.
| | - Huixiang Ge
- Department of Physiology, The Basic Medical College of Nanchang University, Nanchang 330006, China.
| | - Mengyun Sun
- Department of Physiology, The Basic Medical College of Nanchang University, Nanchang 330006, China.
| | - Yun Gao
- Department of Physiology, The Basic Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
47
|
Aygun H, Ayyildiz M, Agar E. Effects of vitamin D and paricalcitol on epileptogenesis and behavioral properties of WAG/Rij rats with absence epilepsy. Epilepsy Res 2019; 157:106208. [PMID: 31581040 DOI: 10.1016/j.eplepsyres.2019.106208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/10/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
AIM Vitamin D (Vit D) has been considered as a neurosteroid and has a pivotal role in neuroprotection including epilepsy. Vit D regulator acts via a Vit D receptor (VDR). WAG/Rij rats have a genetically epileptic model of absence epilepsy with comorbidity of depression. The aim of the present study was to investigate the effect of Vit D and paricalcitol (PRC) on WAG/Rij rats. MATERIAL AND METHODS Sixty-three male WAG/Rij rats and seven male Wistar rats were used. The effects of acute and chronic treatment with Vit D (5.000 and 60.000 IU/kg, i.p) and PRC (0.5, 5 and 10 μg/kg, i.p) on absence seizures, and related psychiatric comorbidity were investigated in WAG/Rij rats. Depression-like behavior was assayed by using the forced swimming test (FST) and; anxiety-like behavior by using the open field test (OFT). RESULTS Acute Vit D treatments (5.000 and 60.000 IU/kg) similarly reduced the number and duration of spike-wave discharges (SWDs) and showed anxiolytic-antidepressive effect whereas there were no significant changes in other measured parameters between the daily and the bolus dose of Vit D. Acute administration of PRC (0.5, 5 and 10 μg/kg) showed anti-convulsive and anxiolytic-antidepressive effect. The dose (0.5 μg/kg) of PRC was the most effective dose. Chronic treatment was more effective than acute therapy in all parameters. CONCLUSION The results of the present study demonstrate that Vit D and PRC have antiepileptic and anxiolytic-antidepressive effects on the absence epilepsy in WAG/Rij rats.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey.
| | - Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Erdal Agar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
48
|
Liu Y, Ding XF, Wang XX, Zou XJ, Li XJ, Liu YY, Li J, Qian XY, Chen JX. Xiaoyaosan exerts antidepressant-like effects by regulating the functions of astrocytes and EAATs in the prefrontal cortex of mice. Altern Ther Health Med 2019; 19:215. [PMID: 31412844 PMCID: PMC6694586 DOI: 10.1186/s12906-019-2613-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Background Mounting evidence indicates that the cerebral cortex is an important physiological system of emotional activity, and its dysfunction may be the main cause of stress. Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS), which initiates rapid signal transmission in the synapse before its reuptake into the surrounding glia, specifically astrocytes (ASTs). The astrocytic excitatory amino acid transporters 1 (EAAT1) and 2 (EAAT2) are the major transporters that take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with depression. Therefore, we hypothesized that the underlying antidepressant-like mechanism of Xiaoyaosan (XYS), a Chinese herbal formula, may be related to the regulation of astrocytic EAATs. Therefore, we studied the antidepressant mechanism of XYS on the basis of EAAT dysfunction in ASTs. Methods Eighty adult C57BL/6 J mice were randomly divided into 4 groups: a control group, a chronic unpredictable mild stress (CUMS) group, a Xiaoyaosan (XYS) treatment group and a fluoxetine hydrochloride (Flu) treatment group. Except for the control group, mice in the other groups all received chronic unpredictable mild stress for 21 days. Mice in the control and CUMS groups received gavage administration with 0.5 mL of normal saline (NS) for 21 days, and mice in the XYS and Flu treatment groups were administered dosages of 0.25 g/kg/d and 2.6 mg/kg/d by gavage. The effects of XYS on the depressive-like behavioral tests, including the open field test (OFT), forced swimming test (FST) and sucrose preference test (SPT), were examined. The glutamate (Glu) concentrations of the prefrontal cortex (PFC) were detected with colorimetry. The morphology of neurons in the PFC was observed by Nissl staining. The expression of glial fibrillary acidic protein (GFAP), NeuN, EAAT1 and EAAT2 proteins in the PFC of mice was detected by using Western blotting and immunohistochemistry. Quantitative real-time PCR (qPCR) was used to detect the expression of the GFAP, NeuN, EAAT1 and EAAT2 genes in the PFC of mice. Results The results of behavioral tests showed that CUMS-induced mice exhibited depressive-like behavior, which could be improved in some tests with XYS and Flu treatment. Immunohistochemistry and Western blot analysis showed that the protein levels of GFAP, NeuN, EAAT1 and EAAT2 in the PFC of CUMS mice were significantly lower than those in the control group, and these changes could be reversed by XYS and Flu. The results of qPCR analysis showed that the expression of GFAP, NeuN, EAAT1 and EAAT2 mRNAs in the PFC of CUMS mice was not significantly changed, with the exception of EAAT2, compared with that of the control group, while the expression of the above mRNAs was significantly higher in the XYS and Flu groups than that in the CUMS group. Conclusion XYS may exert antidepressant-like effects by improving the functions of AST and EAATs and attenuating glutamate-induced neuronal damage in the frontal cortex.
Collapse
|
49
|
Kulikova EA, Kulikov AV. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 2019; 23:655-667. [PMID: 31216212 DOI: 10.1080/14728222.2019.1634691] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders. Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy. Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Kulikova
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| | - Alexander V Kulikov
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| |
Collapse
|
50
|
Swimming exercise decreases the absence-like epileptic activity in WAG/Rij rats. Behav Brain Res 2019; 363:145-148. [DOI: 10.1016/j.bbr.2019.01.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/03/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022]
|