1
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2024:revneuro-2024-0093. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
2
|
Parent MB. Using Postmeal Measures and Manipulations to Investigate Hippocampal Mnemonic Control of Eating Behavior. Neuroscience 2022; 497:228-238. [PMID: 34998891 PMCID: PMC9256844 DOI: 10.1016/j.neuroscience.2021.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Episodic meal-related memories provide the brain with a powerful mechanism for tracking and controlling eating behavior because they contain a detailed record of recent energy intake that likely outlasts the physiological signals generated by feeding bouts. This review briefly summarizes evidence from human participants showing that episodic meal-related memory limits later eating behavior and then describes our research aimed at investigating whether hippocampal neurons mediate the inhibitory effects of meal-related memory on subsequent feeding. Our approach has been inspired by pioneering work conducted by Ivan Izquierdo and others who used posttraining manipulations to investigate memory consolidation. This review describes the rationale and value of posttraining manipulations, how Izquierdo used them to demonstrate that dorsal hippocampal (dHC) neurons are critical for memory consolidation, and how we have adapted this strategy to investigate whether dHC neurons are necessary for mnemonic control of energy intake. I describe our evidence showing that ingestion activates the molecular processes necessary for synaptic plasticity and memory during the early postprandial period, when the memory of the meal would be undergoing consolidation, and then summarize our findings showing that neural activity in dHC neurons is critical during the early postprandial period for limiting future intake. Collectively, our evidence supports the hypothesis that dHC neurons mediate the inhibitory effects of ingestion-related memory on future intake and demonstrates that post-experience memory modulation is not confined to artificial laboratory memory tasks.
Collapse
Affiliation(s)
- M B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303, USA.
| |
Collapse
|
3
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
4
|
Significance of GABA A Receptor for Cognitive Function and Hippocampal Pathology. Int J Mol Sci 2021; 22:ijms222212456. [PMID: 34830337 PMCID: PMC8623595 DOI: 10.3390/ijms222212456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
The hippocampus is a primary area for contextual memory, known to process spatiotemporal information within a specific episode. Long-term strengthening of glutamatergic transmission is a mechanism of contextual learning in the dorsal cornu ammonis 1 (CA1) area of the hippocampus. CA1-specific immobilization or blockade of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor delivery can impair learning performance, indicating a causal relationship between learning and receptor delivery into the synapse. Moreover, contextual learning also strengthens GABAA (gamma-aminobutyric acid) receptor-mediated inhibitory synapses onto CA1 neurons. Recently we revealed that strengthening of GABAA receptor-mediated inhibitory synapses preceded excitatory synaptic plasticity after contextual learning, resulting in a reduced synaptic excitatory/inhibitory (E/I) input balance that returned to pretraining levels within 10 min. The faster plasticity at inhibitory synapses may allow encoding a contextual memory and prevent cognitive dysfunction in various hippocampal pathologies. In this review, we focus on the dynamic changes of GABAA receptor mediated-synaptic currents after contextual learning and the intracellular mechanism underlying rapid inhibitory synaptic plasticity. In addition, we discuss that several pathologies, such as Alzheimer’s disease, autism spectrum disorders and epilepsy are characterized by alterations in GABAA receptor trafficking, synaptic E/I imbalance and neuronal excitability.
Collapse
|
5
|
Briggs SB, Ware CB, Sharma K, Davis SC, Lalumiere RT, Parent MB. Postmeal optogenetic inhibition of dorsal hippocampal principal neurons increases future intake in a time-dependent manner. Neurobiol Learn Mem 2021; 183:107478. [PMID: 34116139 DOI: 10.1016/j.nlm.2021.107478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Research involving human participants indicates that memories of recently eaten meals limit how much is eaten during subsequent eating episodes; yet, the brain regions that mediate the inhibitory effects of ingestion-related memory on future intake are largely unknown. We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memories of personal experiences, mediate the inhibitory effects of ingestion-related memory on future intake. Our research program aimed at testing this hypothesis has been influenced in large part by our mentor James McGaugh and his research on posttraining manipulations. In the present study, we used an activity-guided optogenetic approach to test the prediction that if dHC glutamatergic neurons limit future intake through a process that requires memory consolidation, then inhibition should increase subsequent intake when given soon after the end of a meal but delayed inhibition should have no effect. Viral vectors containing CaMKIIα-eArchT3.0-eYFP and fiber optic probes were placed in the dHC of male Sprague-Dawley rats. Compared to intake on a day when no inhibition was given, postmeal inhibition of dHC glutamatergic neurons given for 10 min after the end of a saccharin meal increased the likelihood that rats would consume a second meal 90 min later and significantly increased the amount of saccharin solution consumed during that next meal when the neurons were no longer inhibited. Importantly, delayed inhibition given 80 min after the end of the saccharin meal did not affect subsequent intake of saccharin. Given that saccharin has minimal postingestive gastric consequences, these effects are not likely due to the timing of interoceptive visceral cues generated by the meal. These data show that dHC glutamatergic neural activity is necessary during the early postprandial period for limiting future intake and suggest that these neurons inhibit future intake by consolidating the memory of the preceding meal.
Collapse
Affiliation(s)
- S B Briggs
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - C B Ware
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - K Sharma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - S C Davis
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - R T Lalumiere
- Department of Psychological and Brain Sciences and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - M B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA; Department of Psychology, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
6
|
Marcondes LA, Nachtigall EG, Zanluchi A, de Carvalho Myskiw J, Izquierdo I, Furini CRG. Involvement of medial prefrontal cortex NMDA and AMPA/kainate glutamate receptors in social recognition memory consolidation. Neurobiol Learn Mem 2020; 168:107153. [DOI: 10.1016/j.nlm.2019.107153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/28/2022]
|
7
|
Sakimoto Y, Kida H, Mitsushima D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons. FASEB J 2019; 33:14382-14393. [PMID: 31689120 PMCID: PMC6894079 DOI: 10.1096/fj.201801893rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although contextual learning requires plasticity at both excitatory and inhibitory (E/I) synapses in cornu ammonis 1 (CA1) neurons, the temporal dynamics across the neuronal population are poorly understood. Using an inhibitory avoidance task, we analyzed the dynamic changes in learning-induced E/I synaptic plasticity. The training strengthened GABAA receptor–mediated synapses within 1 min, peaked at 10 min, and lasted for over 60 min. The intracellular loop (Ser408−409) of GABAA receptor β3 subunit was also phosphorylated within 1 min of training. As the results of strengthening of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor–mediated synapses, CA1 pyramidal neurons exhibited broad diversity of E/I synaptic currents within 5 min. Moreover, presynaptic glutamate release probability at basal dendrites also increased within 5 min. To further quantify the diversified E/I synaptic currents, we calculated self-entropy (bit) for individual neurons. The neurons showed individual levels of the parameter, which rapidly increased within 1 min of training and maintained for over 60 min. These results suggest that learning-induced synaptic plasticity is critical immediately following encoding rather than during the retrieval phase of the learning. Understanding the temporal dynamics along with the quantification of synaptic diversity would be necessary to identify a failure point for learning-promoted plasticity in cognitive disorders.—Sakimoto, Y., Kida, H., Mitsushima, D. Temporal dynamics of learning-promoted synaptic diversity in CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroyuki Kida
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Dai Mitsushima
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
8
|
Şahin TD, Karson A, Balcı F, Yazır Y, Bayramgürler D, Utkan T. TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav Brain Res 2015; 292:233-40. [DOI: 10.1016/j.bbr.2015.05.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
|
9
|
Transport of animals between rooms: A little-noted aspect of laboratory procedure that may interfere with memory. Behav Processes 2011; 88:12-9. [DOI: 10.1016/j.beproc.2011.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022]
|
10
|
Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Proc Natl Acad Sci U S A 2011; 108:12503-8. [PMID: 21746893 DOI: 10.1073/pnas.1104558108] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hippocampus plays a central role in learning and memory. Although synaptic delivery of AMPA-type glutamate receptors (AMPARs) contributes to experience-dependent synaptic strengthening, its role in hippocampus-dependent learning remains elusive. By combining viral-mediated in vivo gene delivery with in vitro patch-clamp recordings, we found that the inhibitory avoidance task, a hippocampus-dependent contextual fear-learning paradigm, delivered GluR1-containing AMPARs into CA3-CA1 synapses of the dorsal hippocampus. To block the synaptic delivery of endogenous AMPARs, we expressed a fragment of the GluR1-cytoplasmic tail (the 14-aa GluR1 membrane-proximal region with two serines mutated to phospho-mimicking aspartates: MPR-DD). MPR-DD prevented learning-driven synaptic AMPAR delivery in CA1 neurons. Bilateral expression of MPR-DD in the CA1 region of the rat impaired inhibitory avoidance learning, indicating that synaptic GluR1 trafficking in the CA1 region of the hippocampus is required for encoding contextual fear memories. The fraction of CA1 neurons that underwent synaptic strengthening positively correlated with the performance in the inhibitory avoidance fear memory task. These data suggest that the robustness of a contextual memory depends on the number of hippocampal neurons that participate in the encoding of a memory trace.
Collapse
|
11
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|
12
|
Buffalari DM, Grace AA. Anxiogenic modulation of spontaneous and evoked neuronal activity in the basolateral amygdala. Neuroscience 2009; 163:1069-77. [PMID: 19589368 DOI: 10.1016/j.neuroscience.2009.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 01/21/2023]
Abstract
The amygdala has a well-established role in stress, anxiety, and aversive learning, and anxiolytic and anxiogenic agents are thought to exert their behavioral actions via the amygdala. However, despite extensive behavioral data, the effects of noradrenergic anxiogenic drugs on neuronal activity within the amygdala have not been examined. The present experiments examined how administration of the anxiogenic drug yohimbine affects spontaneous and evoked neuronal activity in the basolateral amygdala (BLA) of rats. Yohimbine produced both excitatory and inhibitory effects on neurons of the BLA, with an increase in spontaneous activity being the predominant response in the lateral and basomedial nuclei of the BLA. Furthermore, yohimbine tended to facilitate neuronal responses evoked by electrical stimulation of the entorhinal cortex, with this facilitation seen more often in lateral and basomedial nuclei of the BLA. These data are the first to examine the effects of the anxiogenic agent yohimbine on BLA neuronal activity, and suggest that neurons in specific subnuclei of the amygdala exhibit unique responses to administration of such pharmacological agents.
Collapse
Affiliation(s)
- D M Buffalari
- Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
13
|
The molecular cascades of long-term potentiation underlie memory consolidation of one-trial avoidance in the CA1 region of the dorsal hippocampus, but not in the basolateral amygdala or the neocortex. Neurotox Res 2008; 14:273-94. [DOI: 10.1007/bf03033816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Izquierdo I, Cammarota M, Silva WCD, Bevilaqua LR, Rossato JI, Bonini JS, Mello P, Benetti F, Costa JC, Medina JH. The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. AN ACAD BRAS CIENC 2008; 80:115-27. [DOI: 10.1590/s0001-37652008000100007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/13/2007] [Indexed: 01/06/2023] Open
Abstract
Long-term potentiation (LTP) is the enhancement of postsynaptic responses for hours, days or weeks following the brief repetitive afferent stimulation of presynaptic afferents. It has been proposed many times over the last 30 years to be the basis of long-term memory. Several recent findings finally supported this hypothesis: a) memory formation of one-trial avoidance learning depends on a series of molecular steps in the CA1 region of the hippocampus almost identical to those of LTP in the same region; b)hippocampal LTP in this region accompanies memory formation of that task and of another similar task. However, CA1 LTP and the accompanying memory processes can be dissociated, and in addition plastic events in several other brain regions(amygdala, entorhinal cortex, parietal cortex) are also necessary for memory formation of the one-trial task, and perhaps of many others.
Collapse
Affiliation(s)
- Iván Izquierdo
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | | | | | | - Pamela Mello
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | |
Collapse
|
15
|
Feyder M, Wiedholz L, Sprengel R, Holmes A. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors. Front Behav Neurosci 2007; 1:4. [PMID: 18958186 PMCID: PMC2525858 DOI: 10.3389/neuro.08.004.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 12/12/2007] [Indexed: 11/13/2022] Open
Abstract
There is compelling evidence that l-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO) exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO) or partial loss (heterozygous mutant, HET) of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdala-mediated forms of learning and memory.
Collapse
Affiliation(s)
- Michael Feyder
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | | | | | | |
Collapse
|
16
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
17
|
Simonyi A, Serfozo P, Shelat PB, Dopheide MM, Coulibaly AP, Schachtman TR. Differential roles of hippocampal metabotropic glutamate receptors 1 and 5 in inhibitory avoidance learning. Neurobiol Learn Mem 2007; 88:305-11. [PMID: 17548216 PMCID: PMC2040325 DOI: 10.1016/j.nlm.2007.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/17/2007] [Accepted: 04/26/2007] [Indexed: 11/19/2022]
Abstract
Group I metabotropic glutamate receptors (mGlu1 and 5) have been implicated in synaptic plasticity and learning and memory. However, much of our understanding of how these receptors in different brain regions contribute to distinct memory stages in different learning tasks remains incomplete. The present study investigated the effects of the mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and mGlu1 receptor antagonist, (S)-(+)-alpha-amino-4-carboxy-2-methylbenzene-acetic acid (LY 367385) in the dorsal hippocampus on the consolidation and extinction of memory for inhibitory avoidance learning. Male, Sprague-Dawley rats were trained in a single-trial step-down inhibitory avoidance task. MPEP, LY 367385 or saline were infused bilaterally into the CA1 region immediately after training or immediately after the first retention test which was given 24h after training. Rats receiving MPEP (1.5 or 5.0 microg/side) or LY 367385 (0.7 or 2.0 microg/side) infusion exhibited a dose-dependent decrease in retention when tested 24h later. MPEP was ineffective while LY 367385 significantly attenuated extinction when injected after the first retention test using an extinction procedure. These findings indicate a selective participation of hippocampal group I mGlu receptors in memory processing in this task.
Collapse
Affiliation(s)
- A Simonyi
- Department of Biochemistry, University of Missouri-Columbia, M743 Medical Sciences Building, Columbia, MO 65212, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Deyama S, Yamamoto J, Machida T, Tanimoto S, Nakagawa T, Kaneko S, Satoh M, Minami M. Inhibition of glutamatergic transmission by morphine in the basolateral amygdaloid nucleus reduces pain-induced aversion. Neurosci Res 2007; 59:199-204. [PMID: 17675178 DOI: 10.1016/j.neures.2007.06.1473] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/23/2007] [Accepted: 06/26/2007] [Indexed: 11/22/2022]
Abstract
We examined the role of glutamatergic transmission within the basolateral amygdaloid nucleus (BLA) in pain-induced aversion using a conditioned place paradigm and an in vivo microdialysis technique in rats. Microinjection of MK-801 (1 or 10 nmol/side) into the bilateral BLA 5 min before intraplantar injection of formalin dose-dependently attenuated formalin-induced conditioned place aversion (F-CPA) without affecting nociceptive behaviors, such as lifting, licking, and biting. On the contrary, microinjection of neither CNQX (30 nmol/side) nor AP-3 (30 nmol/side) showed any significant effect on F-CPA. Microdialysis experiments revealed that intraplantar injection of formalin induced an increase in the extracellular glutamate level within the BLA. This increase in glutamate was suppressed by morphine perfusion (100 microM) via the microdialysis probe. Moreover, intra-BLA injection of morphine (10 microg/side) 5 min before formalin injection attenuated F-CPA without affecting nociceptive behaviors. These results suggest that glutamatergic transmission via NMDA receptors in the BLA plays a crucial role in the pain-induced aversion, and that in addition to the well-characterized effects on the sensory component of pain, morphine also influences the affective component of pain through an inhibitory effect on intra-BLA glutamatergic transmission.
Collapse
Affiliation(s)
- Satoshi Deyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rossato JI, Zinn CG, Furini C, Bevilaqua LRM, Medina JH, Cammarota M, Izquierdo I. A link between the hippocampal and the striatal memory systems of the brain. AN ACAD BRAS CIENC 2007; 78:515-23. [PMID: 16936940 DOI: 10.1590/s0001-37652006000300011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/03/2006] [Indexed: 11/22/2022] Open
Abstract
Two major memory systems have been recognized over the years (Squire 1987): the declarative memory system, which is under the control of the hippocampus and related temporal lobe structures, and the procedural or habit memory system, which is under the control of the striatum and its connections. Most if not all learning tasks studied in animals, however, involve either the performance or the suppression of movement; this, if learned well, may be viewed as having become a habit. It is agreed that memory rules change from their first association to those that take place when the task is mastered. Does this change of rules involve a switch from one memory system to another? Here we will comment on: 1) reversal learning in the Morris water maze (MWM), in which the declarative or spatial component of a task is changed but the procedural component (to swim to safety) persists and needs to be re-linked with a different set of spatial cues; and 2) a series of observations on an inhibitory avoidance task that indicate that the brain systems involved change with further learning.
Collapse
Affiliation(s)
- Janine I Rossato
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
20
|
Coitinho AS, Freitas ARO, Lopes MH, Hajj GNM, Roesler R, Walz R, Rossato JI, Cammarota M, Izquierdo I, Martins VR, Brentani RR. The interaction between prion protein and laminin modulates memory consolidation. Eur J Neurosci 2006; 24:3255-64. [PMID: 17156386 DOI: 10.1111/j.1460-9568.2006.05156.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular prion protein (PrPc) has a pivotal role in prion diseases. PrPc is a specific receptor for laminin (LN) gamma1 peptide and several lines of evidence indicate that it is also involved in neural plasticity. Here we investigated whether the interaction between PrPc and LN plays a role in rat memory formation. We found that post-training intrahippocampal infusion of PrPc-derived peptides that contain the LN binding site (PrPc163-182 and PrPc173-192) or of anti-PrPc or anti-LN antibodies that inhibit PrPc-LN interaction impaired inhibitory avoidance memory retention. The amnesic effect of anti-PrPc antibodies and PrPc173-192 peptide was reversed by co-infusion of a LN gamma1 chain-derived peptide containing the PrPc-binding site, suggesting that PrPc-LN interaction is indeed crucial for memory consolidation. In addition, PrPc173-192 peptide and anti-PrPc or anti-LN antibodies also inhibited the activation of hippocampal cAMP-dependent protein kinase A (PKA) and extracellular regulated kinase (ERK1/2), two kinases that mediate the up-regulation of signaling pathways needed for consolidation of inhibitory avoidance memory. Our findings show that, through its interaction with LN, hippocampal PrPc plays a critical role in memory processing and suggest that this role is mediated by activation of both PKA and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Adriana S Coitinho
- Centro Universitário Feevale, Instituto de Ciências da Saúde, RS 239, 2755, 93352-000, Novo Hamburgo, RS, and Centro de Cirurgia de Epilepsia do Estado de Santa Catarina, Hospital Governador Celso Ramos, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Medina JH, Cammarota M. Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 2006; 29:496-505. [PMID: 16872686 DOI: 10.1016/j.tins.2006.07.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/01/2006] [Accepted: 07/14/2006] [Indexed: 11/25/2022]
Abstract
To understand cognition, it is important to understand how a learned response becomes a long-lasting memory. This process of memory consolidation has been modeled extensively using one-trial avoidance learning, in which animals (or humans) establish a conditioned response by learning to avoid danger in just one trial. This relies on molecular events in the CA1 region of the hippocampus that resemble those involved in CA1 long-term potentiation (LTP), and it also requires equivalent events to occur with different timings in the basolateral amygdala and the entorhinal, parietal and cingulate cortex. Many of these steps are modulated by monoaminergic pathways related to the perception of and reaction to emotion, which at least partly explains why strong and resistant consolidation is typical of emotion-laden memories. Thus memory consolidation involves a complex network of brain systems and serial and parallel molecular events, even for a task as deceptively simple as one-trial avoidance. We propose that these molecular events might also be involved in many other memory types in animals and humans.
Collapse
Affiliation(s)
- Iván Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Hospital Sao Lucas, Av. Ipiranga 6690, 2 Andar, (90610-000) Porto Alegre, RS, Brasil.
| | | | | | | | | | | |
Collapse
|
22
|
Izquierdo I, Bevilaqua LRM, Rossato JI, Bonini JS, Da Silva WC, Medina JH, Cammarota M. The connection between the hippocampal and the striatal memory systems of the brain: A review of recent findings. Neurotox Res 2006; 10:113-21. [PMID: 17062373 DOI: 10.1007/bf03033240] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two major memory systems have been recognized over the years (Squire, in Memory and Brain, 1987): the declarative memory system, which is under the control of the hippocampus and related temporal lobe structures, and the procedural or habit memory system, which is under the control of the striatum and its connections (Mishkin et al., in Neurobiology of Learning by G Lynch et al., 1984; Knowlton et al., Science 273:1399, 1996). Most if not all learning tasks studied in animals, however, involve either the performance or the suppression of movement. Animals acquire connections between environmental or discrete sensory cues (conditioned stimuli, CSs) and emotionally or otherwise significant stimuli (unconditioned stimuli, USs). As a result, they learn to perform or to inhibit the performance of certain motor responses to the CS which, when learned well, become what can only be called habits (Mishkin et al., 1984): to regularly walk or swim to a place or away from a place, or to inhibit one or several forms of movement. These responses can be viewed as conditioned responses (CRs) and may sometimes be very complex. This is of course also seen in humans: people learn how to play on a keyboard in response to a mental or written script and perform the piano or write a text; with practice, the performance improves and eventually reaches a high criterion and becomes a habit, performed almost if not completely without awareness. Commuting to school in a big city in the shortest possible time and eschewing the dangers is a complex learning that children acquire to the point of near-perfection. It is agreed that the rules that connect the perception of the CS and the expression of the CR change from their first association to those that take place when the task is mastered. Does this change of rules involve a switch from one memory system to another? Are different brain systems used the first time one plays a sonata or goes to school as compared with the 100th time? Here we will comment on: 1) reversal learning in the Morris water maze (MWM), in which the declarative or spatial component of a task is changed but the procedural component (to swim) persists and needs to be re-linked with a different set of spatial cues; and 2) a series of observations on an inhibitory avoidance task that indicate that the brain systems involved change with further learning.
Collapse
Affiliation(s)
- I Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Andar (90610-000) Porto Alegre, RS, Brasil
| | | | | | | | | | | | | |
Collapse
|
23
|
Schiapparelli L, Simón AM, Del Río J, Frechilla D. Opposing effects of AMPA and 5-HT1A receptor blockade on passive avoidance and object recognition performance: correlation with AMPA receptor subunit expression in rat hippocampus. Neuropharmacology 2006; 50:897-907. [PMID: 16620883 DOI: 10.1016/j.neuropharm.2006.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/26/2006] [Accepted: 02/10/2006] [Indexed: 11/26/2022]
Abstract
It has been suggested that antagonists at serotonin 5-HT1A receptors may exert a procognitive effect by facilitating glutamatergic neurotransmission. Here we further explored this issue by looking for the ability of a 5-HT1A antagonist to prevent the learning deficit induced by AMPA receptor blockade in two behavioural procedures in rats, and for concomitant molecular changes presumably involved in memory formation in the hippocampus. Pretraining administration of the competitive AMPA receptor antagonist, NBQX, produced a dose-related retention impairment in a passive avoidance task 24h later, and also impaired retention in a novel object recognition test when an intertrial interval of 3h was selected. Pretreatment with the selective 5-HT1A receptor antagonist, WAY-100635, prevented the learning deficit induced by NBQX in the two behavioural procedures. In biochemical studies performed on rat hippocampus after the retention tests, we found that learning increased the membrane levels of AMPA receptor GluR1 and GluR2/3 subunits, as well as the phosphorylated forms of GluR1, effects that were abolished by NBQX administration before the training session. Pretreatment with WAY-100635 counteracted the NBQX effects and restored the initial learning-specific increase in Ca2+/calmodulin-dependent protein kinase II (CaMKII) function and the later increase in GluR2/3 and phosphorylated GluR1 surface expression. Moreover, administration of WAY-100635 before object recognition training improved recognition memory 24h later and potentiated the learning-associated increase in AMPA receptor subunits. The results support the proposed utility of 5-HT1A antagonists in the treatment of cognitive disorders.
Collapse
Affiliation(s)
- L Schiapparelli
- Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Av. Pio XII, 55, 31080-Pamplona, Spain
| | | | | | | |
Collapse
|
24
|
Alonso M, Bekinschtein P, Cammarota M, Vianna MRM, Izquierdo I, Medina JH. Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learn Mem 2006; 12:504-10. [PMID: 16204202 PMCID: PMC1240062 DOI: 10.1101/lm.27305] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory consolidation in the neocortex. Brain-derived neurotrophic factor (BDNF) modulates both short-term synaptic function and activity-dependent synaptic plasticity in hippocampal and cortical neurons. We have recently demonstrated that endogenous BDNF in the hippocampus is involved in memory formation. Here we examined the role of BDNF in the parietal cortex (PCx) in short-term (STM) and long-term memory (LTM) formation of a one-trial fear-motivated learning task in rats. Bilateral infusions of function-blocking anti-BDNF antibody into the PCx impaired both STM and LTM retention scores and decreased the phosphorylation state of cAMP response element-binding protein (CREB). In contrast, intracortical administration of recombinant human BDNF facilitated LTM and increased CREB activation. Moreover, inhibitory avoidance training is associated with a rapid and transient increase in phospho-CREB/total CREB ratio in the PCx. Thus, our results indicate that endogenous BDNF is required for both STM and LTM formation of inhibitory avoidance learning, possibly involving CREB activation-dependent mechanisms. The present data support the idea that early sensory areas constitute important components of the networks subserving memory formation and that information processing in neocortex plays an important role in memory formation.
Collapse
Affiliation(s)
- Mariana Alonso
- Department of Neuroscience, Perception and Memory Laboratory, Pasteur Institute, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Hernandez PJ, Andrzejewski ME, Sadeghian K, Panksepp JB, Kelley AE. AMPA/kainate, NMDA, and dopamine D1 receptor function in the nucleus accumbens core: a context-limited role in the encoding and consolidation of instrumental memory. Learn Mem 2005; 12:285-95. [PMID: 15930507 PMCID: PMC1142457 DOI: 10.1101/lm.93105] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of learning (acquisition or consolidation) these receptors are recruited, nor is it known what role AMPA/kainate receptors have in these processes. Here we show that pre-trial intra-NAc core administration of the NMDA, AMPA/KA, and D1 receptor antagonists AP-5 (1 microg/0.5 microL), LY293558 (0.01 or 0.1 microg/0.5 microL), and SCH23390 (1 microg/0.5 microL), respectively, impaired acquisition of a lever-pressing response, whereas post-trial administration left memory consolidation unaffected. An analysis of the microstructure of behavior while rats were under the influence of these drugs revealed that glutamatergic and dopaminergic signals contribute differentially to critical aspects of the initial, randomly emitted behaviors that enable reinforcement learning. Thus, glutamate and dopamine receptors are activated in a time-limited fashion-only being required while the animals are actively engaged in the learning context.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Benzazepines/pharmacology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dopamine Antagonists/administration & dosage
- Dopamine Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/administration & dosage
- Excitatory Amino Acid Antagonists/pharmacology
- Isoquinolines/pharmacology
- Male
- Memory/drug effects
- Memory/physiology
- Microinjections
- Nucleus Accumbens/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/physiology
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Tetrazoles/pharmacology
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719, USA.
| | | | | | | | | |
Collapse
|
26
|
Cammarota M, Bevilaqua LRM, Rossato JI, Ramirez M, Medina JH, Izquierdo I. Relationship between short- and long-term memory and short- and long-term extinction. Neurobiol Learn Mem 2005; 84:25-32. [PMID: 15936680 DOI: 10.1016/j.nlm.2005.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 03/04/2005] [Accepted: 03/06/2005] [Indexed: 02/04/2023]
Abstract
Both the acquisition and the extinction of memories leave short- and long-term mnemonic traces. Here, we show that in male Wistar rats, the short-term memory for a step-down inhibitory avoidance task (IA) is resistant to extinction, and that its expression does not influence retrieval or extinction of long-term memory. It has been known for some time that short- and long-term inhibitory avoidance memory involve separate and parallel processes. Here we show that, instead, short-term extinction of IA long-term memory is the first step towards its long-term extinction, and that this link requires functional NMDA receptors and protein synthesis in the CA1 region of the dorsal hippocampus at the time of the first CS-no US presentation.
Collapse
Affiliation(s)
- Martín Cammarota
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Gould TJ, Lewis MC. Coantagonism of glutamate receptors and nicotinic acetylcholinergic receptors disrupts fear conditioning and latent inhibition of fear conditioning. Learn Mem 2005; 12:389-98. [PMID: 16077017 PMCID: PMC1183257 DOI: 10.1101/lm.89105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/23/2005] [Indexed: 01/18/2023]
Abstract
The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-d-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the nAChR antagonist mecamylamine administered alone, the AMPAR antagonist NBQX administered alone, and the NMDAR antagonist MK-801 administered alone on cued fear conditioning, contextual fear conditioning, and latent inhibition of cued fear conditioning were examined. In addition, the effects of coadministration of either mecamylamine and NBQX or mecamylamine and MK-801 on these behaviors were examined. Consistent with previous studies, neither mecamylamine nor NBQX administered alone disrupted any of the tasks. However, coadministration of mecamylamine and NBQX disrupted both contextual fear conditioning and latent inhibition of cued fear conditioning. In addition, coadministration of mecamylamine with a dose of MK-801 subthreshold for disrupting either task disrupted both contextual fear conditioning and latent inhibition of cued fear conditioning. Coadministration of mecamylamine and NBQX, and coadministration of mecamylamine with a dose of MK-801 subthreshold for disrupting fear conditioning had little effect on cued fear conditioning. These results suggest that nAChRs and glutamate receptors may support similar processes mediating acquisition of contextual fear conditioning and latent inhibition of fear conditioning.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University, Psychology Department/Neuroscience Program, Philadelphia, PA 19122, USA.
| | | |
Collapse
|
28
|
Pereira GS, Rossato JI, Sarkis JJF, Cammarota M, Bonan CD, Izquierdo I. Activation of adenosine receptors in the posterior cingulate cortex impairs memory retrieval in the rat. Neurobiol Learn Mem 2005; 83:217-23. [PMID: 15820857 DOI: 10.1016/j.nlm.2004.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/15/2004] [Accepted: 12/29/2004] [Indexed: 10/25/2022]
Abstract
Adenosine A1 and A2A receptor agonists and antagonists have been reported to alter learning and memory. The aim of our study was to investigate the involvement of adenosinergic system in memory retrieval into posterior cingulate cortex (PCC) of Wistar rats. To clarify this question, we tested specifics agonist and antagonists of adenosine A1 and A2A receptors in rats submitted to a one-trial inhibitory avoidance task. The stimulation of adenosine A1 and A2A receptors by CPA and CGS21680, respectively, impaired memory retrieval for inhibitory avoidance task, into PCC. These findings provide behavioral evidence for the role of adenosinergic system in the memory retrieval into PCC.
Collapse
Affiliation(s)
- Grace Schenatto Pereira
- Instituto de Pesquisas Biomédicas, Pontifícia universidade Católica do Rio Grande do Sul, Porto Alegre, Rs,
| | | | | | | | | | | |
Collapse
|
29
|
Kerr DS, Bevilaqua LRM, Bonini JS, Rossato JI, Köhler CA, Medina JH, Izquierdo I, Cammarota M. Angiotensin II blocks memory consolidation through an AT2 receptor-dependent mechanism. Psychopharmacology (Berl) 2005; 179:529-35. [PMID: 15551065 DOI: 10.1007/s00213-004-2074-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES Several studies suggest that the brain renin-angiotensin system is involved in memory consolidation. However, the participation of angiotensin II (AII) in this process is controversial. This is probably due to the fact that many of the studies carried out to elucidate this matter employed multitrial learning paradigms together with pretraining intracerebroventricular infusions, and therefore were unable to distinguish between consolidation and retrieval related events and lacked anatomical specificity. To circumvent this problem, we analyzed the role played in memory consolidation by AII using the hippocampal-dependent, one-trial, step-down inhibitory avoidance task (IA) in combination with stereotaxically localized intrahippocampal infusion of drugs. METHODS AND RESULTS Rats bilaterally implanted with infusion cannulae into the CA1 region of the dorsal hippocampus (CA1) were trained in IA and tested for memory retention 24 h later. We found that when infused into CA1 immediately or 30 min after training but not later, AII produced a dose-dependent amnesic effect without altering locomotor activity, exploratory behavior or anxiety state. The amnesic effect of AII was not mimicked by angiotensin IV (AIV) and was totally blocked by the AII-type 2 receptor (AT2) antagonist, PD123319, but not by the AII-type 1 receptor (AT1) antagonist, losartan. Importantly, when infused alone, neither PD123319 nor losartan produced any effect on memory retention. CONCLUSIONS Our data indicate that, when given into CA1, AII blocks memory formation through a mechanism involving activation of AT2 receptors; however, endogenous AII does not seem to participate in the consolidation of IA long-term memory.
Collapse
Affiliation(s)
- Daniel S Kerr
- Center for Memory Research, ICBS, Department of Biochemistry, Federal University of Rio Grande do Sul, Ramiro Barcelos 2600-Anexo, Porto Alegre, 90035-003, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cammarota M, Bevilaqua LRM, Medina JH, Izquierdo I. Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn Mem 2005; 11:572-8. [PMID: 15466311 PMCID: PMC523075 DOI: 10.1101/lm.76804] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been suggested that retrieval during a nonreinforced test induces reconsolidation instead of extinction of the mnemonic trace. Reconsolidation would preserve the original memory from the labilization induced by its nonreinforced recall through a hitherto uncharacterized mechanism requiring protein synthesis. Given the importance that such a process would have in terms of maintaining, as part of the animal behavioral repertoire, a learned response that has been devalued by experience, we analyzed its existence for the memory associated with a one-trial, step-down inhibitory avoidance task (IA), a memory whose consolidation and extinction require protein synthesis in the CA1 region of the dorsal hippocampus (CA1) and involve the participation of the basolateral amygdala (BLA) and entorhinal cortex (ENT). Rats were trained in IA, and 24 h later they were submitted either to a pure reactivation session (retrieval without stepping down), which was unable by itself to initiate extinction of the avoidance response, or to a second training session. Fifteen minutes before or 3 h after either the reactivation or the retraining sessions, animals were infused with the protein synthesis inhibitor anisomycin (ANI) into CA1, BLA, or ENT. Contrary to the prediction of the reconsolidation hypothesis, none of these treatments affected subsequent memory retention. Because reconsolidation is regarded to be a direct consequence of retrieval, one would expect that, when given before a retention test or a pure reactivation session, enhancers of memory expression should permanently improve retention and, therefore, facilitate retrieval both in that and in subsequent sessions. Using two well-known retrieval enhancers, noradrenaline and adrenocorticotropin(1-24), we could not find any evidence suggestive of reconsolidation. Hence, our results indicate that there is no retrieval-induced, protein synthesis-dependent process that would cause reconsolidation of IA memory.
Collapse
Affiliation(s)
- Martín Cammarota
- Memory Research Laboratory, Institute for Cell Biology and Neuroscience Prof. Dr. Eduardo de Robertis, School of Medicine, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, CP 1121, Argentina
| | | | | | | |
Collapse
|
31
|
Cammarota M, Bevilaqua LRM, Köhler C, Medina JH, Izquierdo I. Learning twice is different from learning once and from learning more. Neuroscience 2005; 132:273-9. [PMID: 15802182 DOI: 10.1016/j.neuroscience.2005.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2005] [Indexed: 11/29/2022]
Abstract
The rat hippocampus plays a crucial role in the consolidation of a variety of memories, including that for a one trial inhibitory avoidance learning task in which stepping down from a platform is associated with a footshock. Here we show that this is the case regardless of the intensity of the footshock used and hence, of the strength of the learned response. However, additional learning produced by a second training session in this task does not involve the hippocampus but, instead, the striatum. Memory consolidation of the second trial requires glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, N-methyl-D-aspartate and metabotropic receptors, activation of signaling pathways, gene expression and protein synthesis in the striatum, as are required in the hippocampus during memory consolidation of the first trial.
Collapse
Affiliation(s)
- M Cammarota
- Laboratorio de Neuroreceptores, Instituto de Biología Celular y Neurociencias Prof. Dr. Eduardo de Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Ciudad Autónoma de Buenos Aires CP 1121, Argentina
| | | | | | | | | |
Collapse
|
32
|
Szénási G, Hársing LG. Pharmacology and prospective therapeutic usefulness of negative allosteric modulators of AMPA receptors. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ddstr.2004.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Abstract
Converging findings of animal and human studies provide compelling evidence that the amygdala is critically involved in enabling us to acquire and retain lasting memories of emotional experiences. This review focuses primarily on the findings of research investigating the role of the amygdala in modulating the consolidation of long-term memories. Considerable evidence from animal studies investigating the effects of posttraining systemic or intra-amygdala infusions of hormones and drugs, as well as selective lesions of specific amygdala nuclei, indicates that (a) the amygdala mediates the memory-modulating effects of adrenal stress hormones and several classes of neurotransmitters; (b) the effects are selectively mediated by the basolateral complex of the amygdala (BLA); (c) the influences involve interactions of several neuromodulatory systems within the BLA that converge in influencing noradrenergic and muscarinic cholinergic activation; (d) the BLA modulates memory consolidation via efferents to other brain regions, including the caudate nucleus, nucleus accumbens, and cortex; and (e) the BLA modulates the consolidation of memory of many different kinds of information. The findings of human brain imaging studies are consistent with those of animal studies in suggesting that activation of the amygdala influences the consolidation of long-term memory; the degree of activation of the amygdala by emotional arousal during encoding of emotionally arousing material (either pleasant or unpleasant) correlates highly with subsequent recall. The activation of neuromodulatory systems affecting the BLA and its projections to other brain regions involved in processing different kinds of information plays a key role in enabling emotionally significant experiences to be well remembered.
Collapse
Affiliation(s)
- James L McGaugh
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine 92697-3800,
| |
Collapse
|
34
|
Rossato JI, Bonini JS, Coitinho AS, Vianna MRM, Medina JH, Cammarota M, Izquierdo I. Retrograde Amnesia Induced by Drugs Acting on Different Molecular Systems. Behav Neurosci 2004; 118:563-8. [PMID: 15174933 DOI: 10.1037/0735-7044.118.3.563] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gamma aminobutyric acid-A (GABA-sub(A)) agonist, muscimol, the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoic acid (AP5), and the inhibitor of the extracellularly regulated kinases (ERKs), UO 126, cause retrograde amnesia when administered to the hippocampus. In the present study, the authors found that they all cause retrograde amnesia for 1-trial inhibitory avoidance, not only when infused into the dorsal CA1 region of the hippocampus, but also when infused into the basolateral amygdala or the entorhinal, parietal, and posterior cingulate cortices. The posttraining time course of the effect of each drug was, however, quite different across brain structures. Thus, in all of them, NMDA receptors and the ERK pathway are indispensable for memory consolidation, and GABA-sub(A) receptor activation inhibits memory consolidation: but in each case, their influence is interwoven differently.
Collapse
Affiliation(s)
- Janine I Rossato
- Centro de Memoria, Departamento de Bioquimica, Institute de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul, Ramiro Barcellos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Bevilaqua LRM, Rossato JI, Medina JH, Izquierdo I, Cammarota M. Src kinase activity is required for avoidance memory formation and recall. Behav Pharmacol 2003; 14:649-52. [PMID: 14665982 DOI: 10.1097/00008877-200312000-00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine (PP2), a specific inhibitor of the Src family of tyrosine kinases, here we show a direct involvement of these enzymes in memory formation and recall. When infused into the CA1 region of the dorsal hippocampus, immediately or 30 min after training rats in a one-trial inhibitory avoidance task, PP2 but not its inactive analog 4-amino-7-phenylpyrazol[3,4-D]pyrimidine (PP3), blocked short- (STM) and long-term memory (LTM) formation, as tested 2 or 24 h post-training, respectively. PP2 had no effect on STM when given at 60 min post-training or on LTM when administered at 60, 120 or 180 min after the training session, but blocked memory recall when infused into CA1 15 min before a LTM expression test. Hence, activity of the Src family of tyrosine kinases is required in the CA1 region of the rat dorsal hippocampus for the normal formation and retrieval of one-trial inhibitory avoidance memory.
Collapse
Affiliation(s)
- L R M Bevilaqua
- Centro de Memória, Departmento de Bioquimica, Instituto de Ciêcias Básicas de Saudé, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|