1
|
Tang Y, Qin Q, Xing Y, Guo D, Di L, Jia J. AARS2 leukoencephalopathy: A new variant of mitochondrial encephalomyopathy. Mol Genet Genomic Med 2019; 7:e00582. [PMID: 30706699 PMCID: PMC6465728 DOI: 10.1002/mgg3.582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 01/27/2023] Open
Abstract
Background Mutations in the mitochondrial alanyl‐transfer (t)RNA synthetase 2 (AARS2,OMIM:612035) have been linked to leukoencephalopathy recently. Till now, there have been 19 cases reported so far. However, the clinical and genetic characteristics of this disease are not fully understood. We reported an adult‐onset male leukoencephalopathy patient related to novel AARS2 gene mutations and reviewed all previous cases regarding the clinical and genetic features of AARS2 leukoencephalopathy. Methods The spectrum of clinical symptoms and the genetic analysis of the presented patient were identified and investigated. Besides this case, we assessed previously reported cases with AARS2 gene mutations. Results Here, we present a 30‐year‐old man with progressive motor deficits in the right lower limb and severe cerebellar ataxia for one year. MRI revealed extensive white matter lesions in periventricular regions and along the corticospinal tract. Genetic analysis revealed two new heterogeneous missense mutations in AARS2: c.179C>A and c.1703_1704del. We described the ragged red fiber (RRF) for the first time, suggesting that AARS2‐related leukoencephalopathy be a new variant of mitochondrial encephalomyopathy. Gradual improvement in motor function was observed with intravenous coenzyme complex treatment. We also summarized our case and all previously reported cases to provide an overview of AARS2‐related late‐onset leukoencephalopathy. Then, we compared clinical and neuroimaging features of AARS2‐related leukoencephalopathy with three other frequently diagnosed types of adult‐onset leukoencephalopathy to provide insight into diagnostic strategies. Conclusion The characteristic MRI abnormalities and clinical symptoms described here may help to distinguish AARS2‐related leukoencephalopathy from other adult‐onset leukoencephalopathies. The combination of encephalopathy and myopathy strongly suggest that AARS2‐related leukoencephalopathy is a new variant of mitochondrial encephalomyopathy. The response to coenzyme complex will shed light on future therapy investigation.
Collapse
Affiliation(s)
- Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yi Xing
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Dongmei Guo
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Geriatric Cognitive Disorders, Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing, China
| |
Collapse
|
2
|
Kim BK, Lee HS, Sohn KH, Lee SY, Cho SH, Park HW. Different Biological Pathways Are Up-regulated in the Elderly With Asthma: Sputum Transcriptomic Analysis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:104-115. [PMID: 30479081 PMCID: PMC6267191 DOI: 10.4168/aair.2019.11.1.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Elderly asthma (EA) is increasing, but the pathogenesis is unclear. This study aimed to identify EA-related biological pathways by analyzing genome-wide gene expression profiles in sputum cells. METHODS A total of 3,156 gene probes with significantly differential expressions between EA and healthy elderly controls were used for a hierarchical clustering of genes to identify gene clusters. Gene set enrichment analysis provided biological information, with replication from Gene Expression Omnibus expression profiles. RESULTS Fifty-five EA patients and 10 elderly control subjects were enrolled. Two distinct gene clusters were found. Cluster 1 (n = 35) showed a lower eosinophil proportion in sputum and less severe airway obstruction compared to cluster 2 (n = 20). The replication data set also identified 2 gene clusters (clusters 1' and 2'). Among 5 gene sets significantly enriched in cluster 1 and 3 gene sets significantly enriched in cluster 2, we confirmed that 2 were significantly enriched in the replication data set (OXIDATIVE_PHOSPHORYLATION gene set in cluster 1 and EPITHELIAL MESENCHYMAL TRANSITION gene set in cluster 2'). CONCLUSIONS The findings of 2 distinct gene clusters in EA and different biological pathways in each gene cluster suggest 2 different pathogenesis mechanisms underlying EA.
Collapse
Affiliation(s)
- Byung Keun Kim
- Department of Internal Medicine, Korea University Medical Center Anam Hospital, Seoul, Korea
| | - Hyun Seung Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Kyoung Hee Sohn
- Department of Internal Medicine, KyungHee University Medical center, Seoul, Korea
| | - Suh Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Sang Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Heung Woo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
3
|
Addo MG, Cossard R, Pichard D, Obiri-Danso K, Rötig A, Delahodde A. Caenorhabditis elegans, a pluricellular model organism to screen new genes involved in mitochondrial genome maintenance. Biochim Biophys Acta Mol Basis Dis 2010; 1802:765-73. [PMID: 20580819 DOI: 10.1016/j.bbadis.2010.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The inheritance of functional mitochondria depends on faithful replication and transmission of mitochondrial DNA (mtDNA). A large and heterogeneous group of human disorders is associated with mitochondrial genome quantitative and qualitative anomalies. Several nuclear genes have been shown to account for these severe OXPHOS disorders. However, in several cases, the disease-causing mutations still remain unknown. Caenorhabditis elegans has been largely used for studying various biological functions because this multicellular organism has short life cycle and is easy to grow in the laboratory. Mitochondrial functions are relatively well conserved between human and C.elegans, and heteroplasmy exists in this organism as in human. C. elegans therefore represents a useful tool for studying mtDNA maintenance. Suppression by RNA interference of genes involved in mtDNA replication such as polg-1, encoding the mitochondrial DNA polymerase, results in reduced mtDNA copy number but in a normal phenotype of the F1 worms. By combining RNAi of genes involved in mtDNA maintenance and EtBr exposure, we were able to reveal a strong and specific phenotype (developmental larval arrest) associated to a severe decrease of mtDNA copy number. Moreover, we tested and validated the screen efficiency for human orthologous genes encoding mitochondrial nucleoid proteins. This allowed us to identify several genes that seem to be closely related to mtDNA maintenance in C. elegans. This work reports a first step in the further development of a large-scale screening in C. elegans that should allow to identify new genes of mtDNA maintenance whose human orthologs will obviously constitute new candidate genes for patients with quantitative or qualitative mtDNA anomalies.
Collapse
Affiliation(s)
- Matthew Glover Addo
- Université Paris-Sud, CNRS, UMR 8621, Institut de Génétique et Microbiologie, Orsay, F-91405, France
| | | | | | | | | | | |
Collapse
|
4
|
Nicotera P, Leist M, Fava E, Berliocchi L, Volbracht C. Energy requirement for caspase activation and neuronal cell death. Brain Pathol 2006; 10:276-82. [PMID: 10764047 PMCID: PMC8098258 DOI: 10.1111/j.1750-3639.2000.tb00261.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Recent work has shown that execution of the apoptotic program involves a relatively limited number of pathways. According to a general view, these would converge to activate the caspase family of proteases. However, there is increasing evidence that apoptotic-like features can be found also when cells are treated with inhibitors of caspases as the cell permeable tripeptide, Z-Val-Ala-Asp-fluoro-methyl-ketone (Z-VAD-fmk), or analogous compounds. This has posed the question as to whether apoptosis may occur in a caspase independent way, and whether caspase inhibitors may then be used to treat diseases characterised by an excess apoptosis. It is also becoming clear, that ATP depletion during the early phases of apoptosis can preclude caspase activation, and consequently switch execution of cell death towards necrosis. In vivo, a block or partial inhibition of the typical apoptotic demise may have profound implications, as persistence of damaged but "undead" cells within the nervous system, followed by delayed lysis may favour neuroinflammatory reactions. In this review, we discuss some recent findings, which suggest that cells may use diverging execution pathways, with different implications in neuropathology and therapy.
Collapse
Affiliation(s)
- P Nicotera
- Faculty of Biology, University of Konstanz, Germany.
| | | | | | | | | |
Collapse
|
5
|
Minieri M, Zingarelli M, Shubeita H, Vecchini A, Binaglia L, Carotenuto F, Fantini C, Fiaccavento R, Masuelli L, Coletti A, Simonelli L, Modesti A, Di Nardo P. Identification of a new missense mutation in the mtDNA of hereditary hypertrophic, but not dilated cardiomyopathic hamsters. Mol Cell Biochem 2004; 252:73-81. [PMID: 14577578 DOI: 10.1023/a:1025542731335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cardiomyopathic hamster is characterized by a naturally occurring deletion in the delta-sarcoglycan gene generating either the hypertrophic or the dilatative phenotype of cardiomyopathy. This evidence suggests that other genetic or environmental factors might concur to the pathogenesis of cardiomyopathy. The aim of the present study was to investigate on the possibility that other genes are involved in the pathogenesis of hamster cardiomyopathy. For this purpose, a series of genes of cardiomyopathic and healthy hamsters were compared by the differential display technique. The hamster cytochrome c oxidase mitochondrial subunit III (COIII) gene has been sequenced and identified as the gene upregulated in brain and skeletal muscle. The gene sequencing and restriction analysis demonstrated that a missense mutation is present in the COIII gene of hamsters exhibiting hypertrophic cardiomyopathy while no mutations were present in dilatative cardiomyopathic hamsters. The mutation was heteroplasmic and the heteroplasmy level was increased with age in skeletal muscle and heart. The ultrastructural analysis of cardiac tissue showed severe damage in the mitochondrial structure of hypertrophic but not dilatative hamster hearts. These results suggest that the pathogenesis of the cardiac damage in hypertrophic cardiomyopathic hamster may be sustained by multiple mutations exerting a cumulative effect on both structure and function of cardiac muscle.
Collapse
Affiliation(s)
- Marilena Minieri
- Laboratorio di Cardiologia Molecolare e Cellulare, Dipartimento di Medicina Interna, Università di Roma 'Tor Vergata', Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ling F, Shibata T. Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells. Mol Biol Cell 2004; 15:310-22. [PMID: 14565971 PMCID: PMC307549 DOI: 10.1091/mbc.e03-07-0508] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Revised: 09/08/2003] [Accepted: 09/24/2003] [Indexed: 11/11/2022] Open
Abstract
Mitochondria carry many copies of mitochondrial DNA (mtDNA), but mt-alleles quickly segregate during mitotic growth through unknown mechanisms. Consequently, all mtDNA copies are often genetically homogeneous within each individual ("homoplasmic"). Our previous study suggested that tandem multimers ("concatemers") formed mainly by the Mhr1p (a yeast nuclear gene-encoded mtDNA-recombination protein)-dependent pathway are required for mtDNA partitioning into buds with concomitant monomerization. The transmission of a few randomly selected clones (as concatemers) of mtDNA into buds is a possible mechanism to establish homoplasmy. The current study provides evidence for this hypothesis as follows: the overexpression of MHR1 accelerates mt-allele-segregation in growing heteroplasmic zygotes, and mhr1-1 (recombination-deficient) causes its delay. The mt-allele-segregation rate correlates with the abundance of concatemers, which depends on Mhr1p. In G1-arrested cells, concatemeric mtDNA was labeled by [14C]thymidine at a much higher density than monomers, indicating concatemers as the immediate products of mtDNA replication, most likely in a rolling circle mode. After releasing the G1 arrest in the absence of [14C]thymidine, the monomers as the major species in growing buds of dividing cells bear a similar density of 14C as the concatemers in the mother cells, indicating that the concatemers in mother cells are the precursors of the monomers in buds.
Collapse
Affiliation(s)
- Feng Ling
- Cellular and Molecular Biology Laboratory, RIKEN, Saitama 351-0198, Japan
| | | |
Collapse
|
7
|
Abstract
The metabolic myopathies are a heterogeneous group of disorders inherited by a variety of modes that include gene defects in both the nuclear and mitochondrial genomes. Many factors impact on the expression of the pathogenic mutations that cause these disorders including genetic background, environmental factors, and coexisting disorders. Molecular technology has greatly improved the ability to make definitive diagnoses in many of the metabolic myopathies in the last decade and particularly has demonstrated that the wide diversity in the severity of mutations contributes to understanding genotype-phenotype correlations. In some cases, molecular testing obviates the necessity to perform an invasive muscle biopsy. However, it is also clear that the diagnostic yield from molecular testing is incomplete and particularly low among the mitochondrial myopathies as a group, ranging from approximately 6% to 19% in well-classified high-risk groups. Therefore, it is often essential to combine clinical, biochemical, histopathologic, and molecular data for each patient in order to arrive at a definitive diagnosis. The approach to the laboratory diagnosis of metabolic myopathies is described emphasizing both noninvasive and invasive testing, highlighting the molecular methodologies with the benefits and disadvantages of each technology, and documenting how to determine whether patients have coexisting disorders.
Collapse
Affiliation(s)
- Georgirene D Vladutiu
- Departments of Pediatrics, Neurology, and Pathology, Division of Genetics, School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Department of Pediatrics, The Children's Hospital of Buffalo, 936 Delaware Avenue, Buffalo, New York, 14209, USA
| |
Collapse
|
8
|
Nicotera P. Apoptosis and age-related disorders: role of caspase-dependent and caspase-independent pathways. Toxicol Lett 2002; 127:189-95. [PMID: 12052658 DOI: 10.1016/s0378-4274(01)00500-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The execution of the apoptotic program involves a relatively limited number of pathways that converge on the activation of the caspase family of proteases. However, there is increasing evidence that other protease families may contribute to produce apoptotic-like features. This has posed the question as to whether caspase inhibitors may then be used to treat diseases characterised by an excess apoptosis. In several neurodegenerative diseases including acute neuronal loss as in stroke or slowly developing diseases at least two major events contribute to neurodegeneration: the loss of neuronal connectivity and cell loss. In many of these conditions, mitochondrial dysfunction and the resulting ATP depletion may preclude caspase activation, and consequently switch execution of cell death towards necrosis. A block or partial inhibition of the typical apoptotic demise may have profound implications in vivo, as persistence within the nervous system of damaged, but 'undead' cells, followed by delayed lysis may favour neuroinflammatory reactions. Furthermore, caspases may be involved in loss of neurons, but not in the loss of connectivity that seems to initiate degenerative processes in the nervous system. Some recent findings, which suggest that degenerating neurons may use multiple execution pathways will be discussed.
Collapse
Affiliation(s)
- Pierluigi Nicotera
- Chair of Molecular Toxicology, Faculty of Biology, University of Konstanz, P.O. Box X911, Germany.
| |
Collapse
|
9
|
Ikegaya Y, Kim JA, Baba M, Iwatsubo T, Nishiyama N, Matsuki N. Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. J Cell Sci 2001; 114:4083-93. [PMID: 11739640 DOI: 10.1242/jcs.114.22.4083] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Postsynaptic neuronal dendrites undergo functional and morphological changes in response to pathologically excessive synaptic activation. Although rapid formation of segmental focal swelling (varicosity) is the most prominent hallmark in such excitotoxic injury, little is known about the pathophysiological function of these structural alterations. We used cultured rat hippocampal slices to evaluate the relationship between the formation of varicosities and subsequent neuronal death. Substantial numbers of segmental dendritic varicosities were observed all over the hippocampus within 5 minutes of exposure to 30 μM NMDA, although neuronal death was detected only in the CA1 region 24 hours after NMDA exposure. Sublethal NMDA concentrations (1-10 μM) induced reversible focal swelling in all hippocampal subregions. NMDA-induced neuronal death was prevented either by NMDA receptor antagonists or by the use of Ca2+-free medium, whereas varicosity formation was virtually independent of Ca2+ influx. Rather, the Ca2+-free conditions per se produced dendritic focal swelling. Also, NMDA-induced varicosity formation was dependent on extracellular Na+ concentration. Thus, we believe that varicosity formation is not causally related to neuronal injury and that the two phenomena are separable and involve distinct mechanisms. Interestingly, dendrite swelling was accompanied by AMPA receptor internalization and a rapid, long-lasting depression in synaptic transmission. Moreover, low Na+ conditions or treatment with ethacrynic acid or proteinase inhibitors, which effectively prevent varicosity formation, aggravated NMDA-induced excitotoxicity, and eliminated the regional specificity of the toxicity. Therefore, the pathological changes in dendrite morphology and function may be associated with an early, self-protective response against excitotoxicity.
Collapse
Affiliation(s)
- Y Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001; 2:342-52. [PMID: 11331900 DOI: 10.1038/35072063] [Citation(s) in RCA: 484] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mitochondrial oxidative phosphorylation (OXPHOS) system is the final biochemical pathway in the production of ATP. The OXPHOS system consists of five multiprotein complexes, the individual subunits of which are encoded either by the mitochondrial or by the nuclear genome. Defects in the OXPHOS system result in devastating, mainly multisystem, diseases, and recent years have seen the description of the underlying genetic mutations in mitochondrial and nuclear genes. Advances in this arena have profited from progress in various genome projects, as well as improvements in our ability to create relevant animal models.
Collapse
Affiliation(s)
- J Smeitink
- Nijmegen Centre for Mitochondrial Disorders, Department of Paediatrics, University Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | |
Collapse
|
11
|
Sjaastad O, Lindboe CF, Schaanning J, Brodtkorb E, Kearney M, Hovig T, Salvesen R, Haugnes T, Rokseth R, Smethurst HB, Sand T, Dale LG, Bathen J. Familial mydriasis, cardiac arrhythmia, respiratory failure, muscular weakness and hypohidrosis. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2001; 174:3-31. [PMID: 11140938 DOI: 10.1111/j.1600-0404.2000.tb05864.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To describe a family with some sort of progressive autonomic failure in one generation (2 affected of a sibship of 7 sisters). The main features were: mydriasis, cardiac arrhythmia, cardiomegaly, hypohidrosis, respiratory failure, and muscular weakness. METHODS Pupillometry, evaporimetry, and isokinetic power measurements were carried out. RESULTS The autonomic dysfunction pattern (mainly cardiac abnormalities, mydriasis) seems to differ somewhat from that of progressive autonomic failure (Shy-Drager syndrome). "Lewy body-like" inclusions were present, in particular in substantia nigra, but also in locus ceruleus and raphe nuclei (cell loss only in locus ceruleus). There were no oligodendroglial, cytoplasmatic inclusions, apparently a marker in multiple system atrophy. Proper Lewy bodies were also present. Differences seemed to prevail vs the Shy-Drager syndrome. Various traits: muscular weakness pattern (e.g. preferential peroneal distribution), minor elbow contractures, and arrhythmia were reminiscent of Emery-Dreifuss muscle dystrophy (E-D). Distinguishing features included: hereditary pattern, mydriasis, and hypohidrosis. CONCLUSION Conceivably, this disorder is close to, but still not identical with E-D.
Collapse
Affiliation(s)
- O Sjaastad
- Department of Neurology and the Laboratory for the study of autonomic disorders, Trondheim University Hospital, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
De Kremer RD, Paschini-Capra A, Bacman S, Argaraña C, Civallero G, Kelley RI, Guelbert N, Latini A, Noher de Halac I, Giner-Ayala A, Johnston J, Proujansky R, Gonzalez I, Depetris-Boldini C, Oller-Ramírez A, Angaroni C, Theaux RA, Hliba E, Juaneda E. Barth's syndrome-like disorder: a new phenotype with a maternally inherited A3243G substitution of mitochondrial DNA (MELAS mutation). AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 99:83-93. [PMID: 11241464 DOI: 10.1002/1096-8628(2001)9999:9999<::aid-ajmg1136>3.0.co;2-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An Argentine male child died at 4.5 years of age of a lethal mitochondrial disease associated with a MELAS mutation and a Barth syndrome-like presentation. The child had severe failure to thrive from the early months and for approximately two years thereafter. In addition, the patient had severely delayed gross motor milestones, marked muscle weakness, and dilated cardiomyopathy that progressed to congestive heart failure. He also had persistently elevated urinary levels of 3-methylglutaconic and 2-ethylhydracrylic acids and low blood levels of cholesterol. Detailed histopathologic evaluation of the skeletal muscle biopsy showed high activity of succinate dehydrogenase, a generalized decrease of COX activity, and abundant ragged-red fibers. Electron microscopic studies revealed multiple mitochondrial abnormalities in lymphocytes and monocytes, in the striated muscle, and in the postmortem samples (muscle, heart, liver, and brain). Biochemical analysis showed a pronounced and constant lactic acidosis, and abnormal urinary organic acid excretion (unchanged in the fasting and postprandial states). In addition, in CSF there was a marked increase of lactate and beta-hydroxybutyrate (beta-HOB) and also a high systemic ratio beta-HOB/acetoacetate. Enzymatic assay of the respiratory chain in biopsied muscle showed 10% of complex I activity and 24% of complex IV activity compared with controls. Molecular studies of the mitochondrial genome revealed an A to G mutation at nucleotide pair 3243 in mitochondrial DNA, a well-known pathogenetic mutation (MELAS mutation) in all the patient's tissues and also in the blood specimens of the probands mother and sibs (4 of 5). The diagnosis of MELAS mutation was reinforced by the absence of an identifiable mutation in the X-linked G4.5 gene of the propositus. The present observation gives additional evidence of the variable clinical expression of mtDNA mutations in humans and demonstrates that all clinical variants deserve adequate investigation to establish a primary defect. It also suggests adding Barth-like syndrome to the list of phenotypes with the MELAS mutation.
Collapse
Affiliation(s)
- R D De Kremer
- Centro de Estudio de las Metabolopatías Congénitas, Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Hospital de Niños, Córdoba, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dey R, Tengan CH, Morita MP, Kiyomoto BH, Moraes CT. A novel myopathy-associated mitochondrial DNA mutation altering the conserved size of the tRNA(Gln) anticodon loop. Neuromuscul Disord 2000; 10:488-92. [PMID: 10996779 DOI: 10.1016/s0960-8966(00)00125-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report a novel mitochondrial DNA alteration in a 12-year-old boy with myopathy. We identified a single nucleotide insertion (an adenine) in the mitochondrial tRNA-glutamine gene. This addition of an additional adenine in a polyadenine stretch (at mitochondrial DNA positions 4366-4369), alters the length of the evolutionary conserved anticodon loop from seven to eight bases. The nt-4370 addition was heteroplasmic and was abundant in the patient's muscle. Lower proportions of mutated mitochondrial DNA were observed in skin fibroblasts, but were below detectable levels in white blood cells. A muscle biopsy of the patient showed ragged red fibers and an unusually high percentage of cytochrome c oxidase-deficient fibers (89%). The pathogenicity of the mutation was also evident by the fact that fibers harboring lower levels of the mutation showed normal cytochrome c oxidase activity. The insertion in the anticodon loop of tRNA(Gln) gene identified in our patient may provide a unique tool to study protein synthesis in human mitochondria.
Collapse
Affiliation(s)
- R Dey
- Department of Neurology, University of Miami, School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The metabolic myopathies are distinguished by extensive clinical and genetic heterogeneity within and between individual disorders. There are a number of explanations for the variability observed that go beyond single gene mutations or degrees of heteroplasmy in the case of mitochondrial DNA mutations. Some of the contributing factors include protein subunit interactions, tissue-specificity, modifying genetic factors, and environmental triggers. Advances in the molecular analysis of metabolic myopathies during the last decade have not only improved the diagnosis of individual disorders but also helped to characterize the contributing factors that make these disorders so complex.
Collapse
Affiliation(s)
- G D Vladutiu
- Associate Professor, Departments of Pediatrics, Neurology, and Pathology, Division of Genetics, School of Medicine and Biomedical Studies, State University of New York at Buffalo, 14209, USA.
| |
Collapse
|
15
|
Nicotera P, Leist M, Single B, Volbracht C. Execution of apoptosis: converging or diverging pathways? Biol Chem 1999; 380:1035-40. [PMID: 10543440 DOI: 10.1515/bc.1999.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that apoptosis and necrosis represent only two of several possible ways for cells to die. These two types of demise can occur simultaneously in tissues or cell cultures exposed to the same stimulus, and often local metabolic conditions and the intensity of the same initial insult decide the prevalence of either apoptosis or necrosis. Recent work has shown that execution of the apoptotic programme involves a relatively limited number of pathways. According to a general view, these would converge to activate the caspase family of proteases. However, there is increasing evidence that apoptotic-like features can be observed also in cells where caspases are inhibited by cell-permeable tripeptides, such as z-VaD-Ala-Asp-fluoromethyl ketone (z-VAD-fmk), or analogous compounds. This has posed the question as to whether apoptosis may or may not occur in a caspase independent way, and whether caspase inhibitors may be effective in the treatment of disease. Also relevant is the understanding that low intracellular energy levels during apoptosis can preclude caspase activation, and consequently decide the occurrence and mode of demise in damaged cells. In vivo, incomplete execution of damaged cells by apoptosis may have profound implications, as their persistence within a tissue, followed by delayed lysis, may elicit delayed pro-inflammatory reactions. In this minireview, we discuss some recent findings suggesting that cells may use diverging execution pathways, with different implications in pathology and therapy.
Collapse
Affiliation(s)
- P Nicotera
- Molecular Toxicology, Faculty of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|