1
|
Smyth D, Kramarz C, Carr AS, Rossor AM, Lunn MP. Toxic neuropathies: a practical approach. Pract Neurol 2023; 23:120-130. [PMID: 36697225 DOI: 10.1136/pn-2022-003444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
Toxic neuropathies result from exogenous substances damaging the peripheral nerves. There are numerous causes, including prescribed and recreational drugs, heavy metals, industrial agents and biological toxins. Timely recognition of these neuropathies gives better outcomes, as they usually improve or stabilise once the toxin is removed. Most toxic neuropathies are axonal, length-dependent and sensory predominant, although some have significant motor involvement or can present acutely or subacutely. Here, we outline our clinical approach and discuss the major causes of toxic neuropathy, while emphasising the clinical and neurophysiological features and the neuropathy phenotype. We also include an update on newer medications that can cause neuropathy, including immune checkpoint inhibitors and BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Duncan Smyth
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Caroline Kramarz
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Aisling S Carr
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander M Rossor
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael P Lunn
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
2
|
Lu HJ, Fu YY, Wei QQ, Zhang ZJ. Neuroinflammation in HIV-Related Neuropathic Pain. Front Pharmacol 2021; 12:653852. [PMID: 33959022 PMCID: PMC8093869 DOI: 10.3389/fphar.2021.653852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
In the management of human immunodeficiency virus (HIV) infection around the world, chronic complications are becoming a new problem along with the prolonged life expectancy. Chronic pain is widespread in HIV infected patients and even affects those with a low viral load undergoing long-term treatment with antiviral drugs, negatively influencing the adherence to disease management and quality of life. A large proportion of chronic pain is neuropathic pain, which defined as chronic pain caused by nervous system lesions or diseases, presenting a series of nervous system symptoms including both positive and negative signs. Injury caused by HIV protein, central and peripheral sensitization, and side effects of antiretroviral therapy lead to neuroinflammation, which is regarded as a maladaptive mechanism originally serving to promote regeneration and healing, constituting the main mechanism of HIV-related neuropathic pain. Gp120, as HIV envelope protein, has been found to be the major toxin that induces neuropathic pain. Particularly, the microglia, releasing numerous pro-inflammatory substances (such as TNFα, IL-1β, and IL-6), not only sensitize the neurons but also are the center part of the crosstalk bridging the astrocytes and oligodendrocytes together forming the central sensitization during HIV infection, which is not discussed detailly in recent reviews. In the meantime, some NRTIs and PIs exacerbate the neuroinflammation response. In this review, we highlight the importance of clarifying the mechanism of HIV-related neuropathic pain, and discuss about the limitation of the related studies as future research directions.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Yuan-Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Zhi-Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
3
|
Review of the neurological aspects of HIV infection. J Neurol Sci 2021; 425:117453. [PMID: 33895464 DOI: 10.1016/j.jns.2021.117453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
There are almost 40 million people in the world who live with the human immunodeficiency virus (HIV). The neurological manifestations associated with HIV contribute to significant morbidity and mortality despite the advances made with anti-retroviral therapy (ART). This review presents an approach to classification of neurological disorders in HIV, differentiating diseases due to the virus itself and those due to opportunistic infection. The effects of antiretroviral therapy are also discussed. The emphasis is on the developing world where advanced complications of HIV itself and infections such as tuberculosis (TB), toxoplasmosis and cryptococcal meningitis remain prevalent.
Collapse
|
4
|
A modulator of the low-voltage-activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies. Pain 2021; 161:2551-2570. [PMID: 32541387 DOI: 10.1097/j.pain.0000000000001955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The voltage-gated calcium channels CaV3.1-3.3 constitute the T-type subfamily, whose dysfunctions are associated with epilepsy, psychiatric disorders, and chronic pain. The unique properties of low-voltage-activation, faster inactivation, and slower deactivation of these channels support their role in modulation of cellular excitability and low-threshold firing. Thus, selective T-type calcium channel antagonists are highly sought after. Here, we explored Ugi-azide multicomponent reaction products to identify compounds targeting T-type calcium channel. Of the 46 compounds tested, an analog of benzimidazolonepiperidine-5bk (1-{1-[(R)-{1-[(1S)-1-phenylethyl]-1H-1,2,3,4-tetrazol-5-yl}(thiophen-3-yl)methyl]piperidin-4-yl}-2,3-dihydro-1H-1,3-benzodiazol-2-one) modulated depolarization-induced calcium influx in rat sensory neurons. Modulation of T-type calcium channels by 5bk was further confirmed in whole-cell patch clamp assays in dorsal root ganglion (DRG) neurons, where pharmacological isolation of T-type currents led to a time- and concentration-dependent regulation with a low micromolar IC50. Lack of an acute effect of 5bk argues against a direct action on T-type channels. Genetic knockdown revealed CaV3.2 to be the isoform preferentially modulated by 5bk. High voltage-gated calcium, as well as tetrodotoxin-sensitive and -resistant sodium, channels were unaffected by 5bk. 5bk inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, 5bk did not bind human mu, delta, or kappa opioid receptors. 5bk reversed mechanical allodynia in rat models of HIV-associated neuropathy, chemotherapy-induced peripheral neuropathy, and spinal nerve ligation-induced neuropathy, without effects on locomotion or anxiety. Thus, 5bk represents a novel T-type modulator that could be used to develop nonaddictive pain therapeutics.
Collapse
|
5
|
Živković SA, Gruener G, Narayanaswami P. Doctor-Should I get the COVID-19 vaccine? Infection and immunization in individuals with neuromuscular disorders. Muscle Nerve 2021; 63:294-303. [PMID: 33471383 PMCID: PMC8013955 DOI: 10.1002/mus.27179] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
The clinical course of neuromuscular disorders (NMDs) can be affected by infections, both in immunocompetent individuals, and in those with reduced immunocompetence due to immunosuppressive/immunomodulating therapies. Infections and immunizations may also trigger NMDs. There is a potential for reduced efficacy of immunizations in patients with reduced immunocompetence. The recent vaccination program for coronavirus disease-2019 (COVID-19) raises several questions regarding the safety and efficacy of this vaccine in individuals with NMDs. In this Practice Topic article, we address the role of vaccine-preventable infections in NMDs and the safety and efficacy of immunization in individuals with NMDs, with emphasis on vaccination against COVID-19.
Collapse
Affiliation(s)
- Sasha A. Živković
- Department of NeurologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Gregory Gruener
- Department of Neurology, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| | - Pushpa Narayanaswami
- Department of NeurologyHarvard Medical School/Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | | |
Collapse
|
6
|
Bellampalli SS, Ji Y, Moutal A, Cai S, Wijeratne EMK, Gandini MA, Yu J, Chefdeville A, Dorame A, Chew LA, Madura CL, Luo S, Molnar G, Khanna M, Streicher JM, Zamponi GW, Gunatilaka AAL, Khanna R. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain 2019; 160:117-135. [PMID: 30169422 DOI: 10.1097/j.pain.0000000000001385] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Federal Pain Research Strategy recommended development of nonopioid analgesics as a top priority in its strategic plan to address the significant public health crisis and individual burden of chronic pain faced by >100 million Americans. Motivated by this challenge, a natural product extracts library was screened and identified a plant extract that targets activity of voltage-gated calcium channels. This profile is of interest as a potential treatment for neuropathic pain. The active extract derived from the desert lavender plant native to southwestern United States, when subjected to bioassay-guided fractionation, afforded 3 compounds identified as pentacyclic triterpenoids, betulinic acid (BA), oleanolic acid, and ursolic acid. Betulinic acid inhibited depolarization-evoked calcium influx in dorsal root ganglion (DRG) neurons predominantly through targeting low-voltage-gated (Cav3 or T-type) and CaV2.2 (N-type) calcium channels. Voltage-clamp electrophysiology experiments revealed a reduction of Ca, but not Na, currents in sensory neurons after BA exposure. Betulinic acid inhibited spontaneous excitatory postsynaptic currents and depolarization-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices. Notably, BA did not engage human mu, delta, or kappa opioid receptors. Intrathecal administration of BA reversed mechanical allodynia in rat models of chemotherapy-induced peripheral neuropathy and HIV-associated peripheral sensory neuropathy as well as a mouse model of partial sciatic nerve ligation without effects on locomotion. The broad-spectrum biological and medicinal properties reported, including anti-HIV and anticancer activities of BA and its derivatives, position this plant-derived small molecule natural product as a potential nonopioid therapy for management of chronic pain.
Collapse
Affiliation(s)
- Shreya S Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Yingshi Ji
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lindsey A Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, United States.,Department of Neuroscience Graduate Interdisciplinary Program, College of Medicine, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Roda RH, Hoke A. Mitochondrial dysfunction in HIV-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:67-82. [PMID: 31208527 DOI: 10.1016/bs.irn.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria play an essential role in cellular energy production and calcium homeostasis. Abnormalities in mitochondrial homeostasis and function are seen in several acquired as well as genetic neuropathies, emphasizing their prominent role in neuronal cell activities. Chronic infection with HIV, even when appropriately treated, is a risk factor for developing peripheral neuropathy. In this chapter, we discuss the way in which HIV infection, the resultant toxic viral products that are generated, and some of the viral inhibitors used in its treatment may lead to abnormal mitochondrial function. Of importance are the effects on mitochondrial DNA replication and the neurotoxic effects of the viral gp120 protein. One aspect of mitochondrial dysfunction that remains unexplored is the role of the interaction between mitochondria and the endoplasmic reticulum as a possible target of disruption in HIV neuropathy.
Collapse
Affiliation(s)
- Ricardo H Roda
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ahmet Hoke
- Solomon H. Snyder Department of Neuroscience and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Cai S, Bellampalli SS, Yu J, Li W, Ji Y, Wijeratne EMK, Dorame A, Luo S, Shan Z, Khanna M, Moutal A, Streicher JM, Gunatilaka AAL, Khanna R. (-)-Hardwickiic Acid and Hautriwaic Acid Induce Antinociception via Blockade of Tetrodotoxin-Sensitive Voltage-Dependent Sodium Channels. ACS Chem Neurosci 2019; 10:1716-1728. [PMID: 30525440 DOI: 10.1021/acschemneuro.8b00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For an affliction that debilitates an estimated 50 million adults in the United States, the current chronic pain management approaches are inadequate. The Centers for Disease Control and Prevention have called for a minimization in opioid prescription and use for chronic pain conditions, and thus, it is imperative to discover alternative non-opioid based strategies. For the realization of this call, a library of natural products was screened in search of pharmacological inhibitors of both voltage-gated calcium channels and voltage-gated sodium channels, which are excellent targets due to their well-established roles in nociceptive pathways. We discovered (-)-hardwickiic acid ((-)-HDA) and hautriwaic acid (HTA) isolated from plants, Croton californicus and Eremocarpus setigerus, respectively, inhibited tetrodotoxin-sensitive sodium, but not calcium or potassium, channels in small diameter, presumptively nociceptive, dorsal root ganglion (DRG) neurons. Failure to inhibit spontaneous postsynaptic excitatory currents indicated a preferential targeting of voltage-gated sodium channels over voltage-gated calcium channels by these extracts. Neither compound was a ligand at opioid receptors. Finally, we identified the potential of both (-)-HDA and HTA to reverse chronic pain behavior in preclinical rat models of HIV-sensory neuropathy, and for (-)-HDA specifically, in chemotherapy-induced peripheral neuropathy. Our results illustrate the therapeutic potential for (-)-HDA and HTA for chronic pain management and could represent a scaffold, that, if optimized by structure-activity relationship studies, may yield novel specific sodium channel antagonists for pain relief.
Collapse
Affiliation(s)
| | | | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, P.R. China
| | | | - Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | | | | | | | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People’s Hospital & Second Clinical Medical College of Jinan University, Shenzhen 518020, P.R. China
| | - May Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | | | | | | | - Rajesh Khanna
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
9
|
Abstract
Neurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels. Because neurofibromin, the protein product of the Nf1 gene, binds to and inhibits CRMP2, the neurofibromin-CRMP2 signaling cascade will likely affect Ca channel activity and regulate nociceptive neurotransmission and in vivo responses to noxious stimulation. Here, we investigated the function of neurofibromin-CRMP2 interaction on Cav2.2. Mapping of >275 peptides between neurofibromin and CRMP2 identified a 15-amino acid CRMP2-derived peptide that, when fused to the tat transduction domain of HIV-1, inhibited Ca influx in dorsal root ganglion neurons. This peptide mimics the negative regulation of CRMP2 activity by neurofibromin. Neurons treated with tat-CRMP2/neurofibromin regulating peptide 1 (t-CNRP1) exhibited a decreased Cav2.2 membrane localization, and uncoupling of neurofibromin-CRMP2 and CRMP2-Cav2.2 interactions. Proteomic analysis of a nanodisc-solubilized membrane protein library identified syntaxin 1A as a novel CRMP2-binding protein whose interaction with CRMP2 was strengthened in neurofibromin-depleted cells and reduced by t-CNRP1. Stimulus-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices was inhibited by t-CNRP1. Intrathecal administration of t-CNRP1 was antinociceptive in experimental models of inflammatory, postsurgical, and neuropathic pain. Our results demonstrate the utility of t-CNRP1 to inhibit CRMP2 protein-protein interactions for the potential treatment of pain.
Collapse
|
10
|
Abstract
With the introduction of combination antiretroviral therapy, human immunodeficiency virus (HIV)-infected individuals are living longer, and are commonly confronted with chronic neuromuscular complications. The spectrum of neuromuscular disorders in patients living with HIV infection is wide, and is caused by HIV per se and its products, particular antiretroviral drugs, or a combination of both. The purpose of this chapter is to review peripheral nervous system disorders in the setting of HIV infection, and to provide a general approach to diagnosis and management of these disorders. The early identification of these conditions may help with early intervention and management, allow prevention of morbidities associated with these disorders, and contribute to future research efforts in the field of HIV.
Collapse
Affiliation(s)
- Michelle Kaku
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - David M Simpson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
11
|
Moutal A, Li W, Wang Y, Ju W, Luo S, Cai S, François-Moutal L, Perez-Miller S, Hu J, Dustrude ET, Vanderah TW, Gokhale V, Khanna M, Khanna R. Homology-guided mutational analysis reveals the functional requirements for antinociceptive specificity of collapsin response mediator protein 2-derived peptides. Br J Pharmacol 2017; 175:2244-2260. [PMID: 28161890 DOI: 10.1111/bph.13737] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE N-type voltage-gated calcium (Cav 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Cav 2.2 channel antagonists are recommended as first-line treatment for neuropathic pain, calcium-current blocking gabapentinoids inadequately alleviate chronic pain symptoms and often exhibit numerous side effects. Collapsin response mediator protein 2 (CRMP2) targets Cav 2.2 channels to the sensory neuron membrane and allosterically modulates their function. A 15-amino-acid peptide (CBD3), derived from CRMP2, disrupts the functional protein-protein interaction between CRMP2 and Cav 2.2 channels to inhibit calcium influx, transmitter release and acute, inflammatory and neuropathic pain. Here, we have mapped the minimal domain of CBD3 necessary for its antinociceptive potential. EXPERIMENTAL APPROACH Truncated as well as homology-guided mutant versions of CBD3 were generated and assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons, binding between CRMP2 and Cav 2.2 channels, whole-cell voltage clamp electrophysiology and behavioural effects in two models of experimental pain: post-surgical pain and HIV-induced sensory neuropathy induced by the viral glycoprotein 120. KEY RESULTS The first six amino acids within CBD3 accounted for all in vitro activity and antinociception. Spinal administration of a prototypical peptide (TAT-CBD3-L5M) reversed pain behaviours. Homology-guided mutational analyses of these six amino acids identified at least two residues, Ala1 and Arg4, as being critical for antinociception in two pain models. CONCLUSIONS AND IMPLICATIONS These results identify an antinociceptive scaffold core in CBD3 that can be used for development of low MW mimetics of CBD3. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Wennan Li
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Yue Wang
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Weina Ju
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China.,Department of Pharmacology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Shizhen Luo
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Song Cai
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | | | - Jackie Hu
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Erik T Dustrude
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Vijay Gokhale
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - May Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA.,Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Moodley K, Bill PLA, Patel VB. A comparative study of CIDP in a cohort of HIV-infected and HIV-uninfected patients. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 4:e315. [PMID: 28054000 PMCID: PMC5182055 DOI: 10.1212/nxi.0000000000000315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate differences in clinical presentation, electrodiagnostic measures, CSF changes, and treatment outcome measures in HIV-infected and HIV-uninfected patients with chronic inflammatory demyelinating polyneuropathy (CIDP). METHODS A retrospective analysis of medical records of all patients meeting the European Federation of Neurology diagnostic criteria for idiopathic CIDP was performed in 2 neuromuscular units in Kwa-Zulu Natal between 2003 and 2015. RESULTS Eighty-four patients were included in the study; 39 were HIV-infected and 45 were HIV-uninfected. Among the HIV-infected patients, the majority were younger, were female, and had a monophasic progressive illness. Eighty-six percent (86%) were corticosteroid-responsive and 76% were in remission within 6-12 months requiring no further treatment. Among the HIV- uninfected patients, the majority were older, were male, and had a relapsing-remitting course. Twenty-seven percent (27%) were corticosteroid-responsive, 95% required combination therapy, and 33% were not in remission by 18 months on therapy. CONCLUSION This study shows that HIV-infected patients with CIDP were younger, were more often female, displayed a monophasic progressive course, were highly steroid-responsive, and went into remission within 12 months of corticosteroid initiation.
Collapse
Affiliation(s)
- Kaminie Moodley
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Pierre L A Bill
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Vinod Bhagu Patel
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Marwaha L, Bansal Y, Singh R, Saroj P, Sodhi RK, Kuhad A. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain. Inflammopharmacology 2016; 24:319-334. [PMID: 27757590 DOI: 10.1007/s10787-016-0285-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/27/2022]
Abstract
TRP channels have been discovered as a specialized group of somatosensory neurons involved in the detection of noxious stimuli. Desensitization of TRPV1 located on dorsal root and trigeminal ganglia exhibits analgesic effect and makes it potential therapeutic target for treatment of neuropathic pain. With this background, the present study was aimed to investigate the protective effect of niflumic acid, a TRPV1 modulator, on stavudine (STV)-induced neuropathic pain in rats. Stavudine (50 mg/kg) was administered intravenously via tail vein in rats to induce neuropathic pain. Various behavioral tests were performed to access neuropathic pain (hyperalgesia and allodynia) on 7th, 14th, 21st, and 28th days. Electrophysiology (motor nerve conduction velocity; MNCV) and biochemical estimations were conducted after 28th day. Niflumic acid (10, 15, and 20 mg/kg) was administered intraperitoneally and evaluated against behavioral, electrophysiological (MNCV), and biochemical alterations in stavudine-treated rats. Pregabalin (30 mg/kg) was taken as reference standard and administered intraperitoneally. Four weeks after stavudine injection, rats developed behavioral, electrophysiological (MNCV), and biochemical (oxidative, nitrosative stress, and inflammatory cytokines, TRPV1) alterations. Niflumic acid restored core and associated symptoms of peripheral neuropathy by suppressing oxidative-nitrosative stress, inflammatory cytokines (TNF-α, IL-1β) and TRPV1 level in stavudine-induced neuropathic pain in rats. Pharmacological efficacy of niflumic acid (20 mg/kg) was equivalent to pregabalin (30 mg/kg). In conclusion, niflumic acid attenuates STV-induced behavioral, electrophysiological and biochemical alterations by manipulating TRP channel activity in two manners: (1) direct antagonistic action against TRPV1 channels and (2) indirect inhibition of TRP channels by blocking oxidative and inflammatory surge. Therefore, NA can be developed as a potential pharmacotherapeutic adjunct for antiretroviral drug-induced neuropathy.
Collapse
Affiliation(s)
- Lovish Marwaha
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Raghunath Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Priyanka Saroj
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Punjab University, Chandigarh, 160 014, India.
| |
Collapse
|
14
|
Kanao M, Kanda H, Huang W, Liu S, Yi H, Candiotti KA, Lubarsky DA, Levitt RC, Hao S. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats. Anesth Analg 2015; 120:1394-404. [PMID: 25851180 DOI: 10.1213/ane.0000000000000729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. METHODS The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. RESULTS In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. CONCLUSIONS Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.
Collapse
Affiliation(s)
- Megumi Kanao
- From the *Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida; †Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan; ‡Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, Florida; and §Veterans Affairs Medical Center, Miami, Florida
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A study of the adverse effects of antiretroviral therapy for HIV infection. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2015. [DOI: 10.1016/j.injms.2015.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Zheng W, Huang W, Liu S, Levitt RC, Candiotti KA, Lubarsky DA, Hao S. IL-10 mediated by herpes simplex virus vector reduces neuropathic pain induced by HIV gp120 combined with ddC in rats. Mol Pain 2014; 10:49. [PMID: 25078297 PMCID: PMC4126348 DOI: 10.1186/1744-8069-10-49] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/02/2014] [Indexed: 11/21/2022] Open
Abstract
Background HIV-associated sensory neuropathy affects over 50% of HIV patients and is a common peripheral nerve complication of HIV infection and highly active antiretroviral therapy (HAART). Evidence shows that painful HIV sensory neuropathy is influenced by neuroinflammatory events that include the proinflammatory molecules, MAP Kinase, tumor necrosis factor-α (TNFα), stromal cell-derived factor 1-α (SDF1α), and C-X-C chemokine receptor type 4 (CXCR4). However, the exact mechanisms of painful HIV sensory neuropathy are not known, which hinders our ability to develop effective treatments. In this study, we investigated whether inhibition of proinflammatory factors reduces the HIV-associated neuropathic pain state. Results Neuropathic pain was induced by peripheral HIV coat protein gp120 combined with 2′,3′-dideoxycytidine (ddC, one of the nucleoside reverse transcriptase inhibitors (NRTIs)). Mechanical threshold was tested using von Frey filament fibers. Non-replicating herpes simplex virus (HSV) vectors expressing interleukin 10 (IL10) were inoculated into the hindpaws of rats. The expression of TNFα, SDF1α, and CXCR4 in the lumbar spinal cord and L4/5 dorsal root ganglia (DRG) was examined using western blots. IL-10 expression mediated by the HSV vectors resulted in a significant elevation of mechanical threshold. The anti-allodynic effect of IL-10 expression mediated by the HSV vectors lasted more than 3 weeks. The area under the effect-time curves (AUC) in mechanical threshold in rats inoculated with the HSV vectors expressing IL-10, was increased compared with the control vectors, indicating antinociceptive effect of the IL-10 vectors. The HSV vectors expressing IL-10 also concomitantly reversed the upregulation of p-p38, TNFα, SDF1α, and CXCR4 induced by gp120 in the lumbar spinal dorsal horn and/or the DRG at 2 and/or 4 weeks. Conclusion The blocking of the signaling of these proinflammatory molecules is able to reduce HIV-related neuropathic pain, which provide a novel mechanism-based approach to treating HIV-associated neuropathic pain using gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, 1550 NW 10th Ave, Fox BLDG, Rm 304C, Miami, FL 33136, USA.
| |
Collapse
|
17
|
Abstract
The use of animal models in the study of HIV and AIDS has advanced our understanding of the underlying pathophysiologic mechanisms of infection. Of the multitude of HIV disease manifestations, peripheral neuropathy remains one of the most common long-term side effects. Several of the most important causes of peripheral neuropathy in AIDS patients include direct association with HIV infection with or without antiretroviral medication and infection with opportunistic agents. Because the pathogeneses of these diseases are difficult to study in human patients, animal models have allowed for significant advancement in the understanding of the role of viral infection and the immune system in disease genesis. This review focuses on rodent, rabbit, feline and rhesus models used to study HIV-associated peripheral neuropathies, focusing specifically on sensory neuropathy and antiretroviral-associated neuropathies.
Collapse
Affiliation(s)
- Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Huang W, Zheng W, Ouyang H, Yi H, Liu S, Zeng W, Levitt RC, Candiotti KA, Lubarsky DA, Hao S. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by herpes simplex virus vector through the SDF1α/CXCR4 system in rats. Anesth Analg 2014; 118:671-80. [PMID: 24557113 DOI: 10.1213/ane.0000000000000079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In the human immunodeficiency virus (HIV)-associated sensory neuropathy, neuropathic pain associated with the use of nucleoside reverse transcriptase inhibitors (NRTIs) in patients with HIV/acquired immunodeficiency syndrome is clinically common. While evidence demonstrates that neuropathic pain is influenced by neuroinflammatory events that include the proinflammatory molecules, tumor necrosis factor-α (TNF-α), stromal cell-derived factor 1-α (SDF1-α), and C-X-C chemokine receptor type 4 (CXCR4), the detailed mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In this study, we investigated the role of these proinflammatory molecules in the dorsal root ganglion (DRG) and the spinal dorsal horn in NRTIs-mediated neuropathic pain state. METHODS Neuropathic pain was induced by intraperitoneal administration of 2',3'-dideoxycytidine (ddC, one of the NRTIs). Mechanical threshold was tested using von Frey filament fibers. Nonreplicating herpes simplex virus (HSV) vectors expressing p55 TNF soluble receptor (p55TNFSR) were inoculated into hindpaw of rats. The expression of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG was examined using Western blots. Intrathecal CXCR4 antagonist was administered. RESULTS The present study demonstrated that (1) systemic ddC induced upregulation of TNF-α, SDF1-α, and CXCR4 in both the lumbar spinal cord and the L4/5 DRG; (2) p55TNFSR mediated by a nonreplicating HSV vector reversed mechanical allodynia induced by systemic ddC; (3) intrathecal administration of the CXCR4 antagonist AMD3100 increased mechanical threshold; and (4) HSV vector expressing p55TNFSR reversed upregulation of TNF-α, SDF1-α, and CXCR4 induced by ddC in the lumbar spinal dorsal horn and the DRG. CONCLUSIONS Our studies demonstrate that TNF-α through the SDF1/CXCR4 system is involved in the NRTIs-related neuropathic pain state and that blocking the signaling of these proinflammatory molecules is able to reduce NRTIs-related neuropathic pain. These results provide a novel mechanism-based approach (gene therapy) to treating HIV-associated neuropathic pain.
Collapse
Affiliation(s)
- Wan Huang
- From the *Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida; †Department of Anesthesiology, State Key Laboratory of Oncology on Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China; ‡Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan; §Hussman Institute of Human Genomics, University of Miami Miller School of Medicine; and ‖Veterans Affairs Medical Center, Miami, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hao S. The Molecular and Pharmacological Mechanisms of HIV-Related Neuropathic Pain. Curr Neuropharmacol 2014; 11:499-512. [PMID: 24403874 PMCID: PMC3763758 DOI: 10.2174/1570159x11311050005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
Infection of the nervous system with the human immunodeficiency virus (HIV-1) can lead to cognitive, motor and sensory disorders. HIV-related sensory neuropathy (HIV-SN) mainly contains the HIV infection-related distal sensory polyneuropathy (DSP) and antiretroviral toxic neuropathies (ATN). The main pathological features that characterize DSP and ATN include retrograde ("dying back") axonal degeneration of long axons in distal regions of legs or arms, loss of unmyelinated fibers, and variable degree of macrophage infiltration in peripheral nerves and dorsal root ganglia (DRG). One of the most common complaints of HIV-DSP is pain. Unfortunately, many conventional agents utilized as pharmacologic therapy for neuropathic pain are not effective for providing satisfactory analgesia in painful HIV-related distal sensory polyneuropathy, because the molecular mechanisms of the painful HIV-SDP are not clear in detail. The HIV envelope glycoprotein, gp120, appears to contribute to this painful neuropathy. Recently, preclinical studies have shown that glia activation in the spinal cord and DRG has become an attractive target for attenuating chronic pain. Cytokines/chemokines have been implicated in a variety of painful neurological diseases and in animal models of HIV-related neuropathic pain. Mitochondria injured by ATN and/or gp120 may be also involved in the development of HIV-neuropathic pain. This review discusses the neurochemical and pharmacological mechanisms of HIV-related neuropathic pain based on the recent advance in the preclinical studies, providing insights into novel pharmacological targets for future therapy.
Collapse
Affiliation(s)
- Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL33136
| |
Collapse
|
20
|
Galantino ML, Belthoff C, Bessemer E, Carey W, Grow L, Homan G, Kietrys D. Screening Tools for Distal Sensory Polyneuropathy Associated with HIV Disease. REHABILITATION ONCOLOGY 2013. [DOI: 10.1097/01893697-201331030-00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Dorsal root ganglia damage in SIV-infected rhesus macaques: an animal model of HIV-induced sensory neuropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1362-9. [PMID: 22322298 DOI: 10.1016/j.ajpath.2011.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/03/2011] [Accepted: 12/02/2011] [Indexed: 11/24/2022]
Abstract
HIV-associated sensory neuropathy (HIV-SN) is currently the most common neurological complication of chronic HIV infection and continues to substantially affect patient quality of life. Mechanisms underlying the neuronal damage and loss observed in sensory ganglia of HIV-infected individuals have not been sufficiently studied. The present study aimed to develop and characterize a model of HIV-SN using SIV-infected CD8 T-lymphocyte-depleted rhesus macaques (Macaca mulatta). Uninfected controls (n = 5), SIV-infected CD8-depleted (n = 4), and SIV-infected non-CD8-depleted (n = 6) animals were used. Of the six non-CD8-depleted animals, three were conventional progressors (progressing to AIDS >1 year after infection) and three were rapid progressors (AIDS within 6 months). Dorsal root ganglia (DRG) were examined for histological hallmarks of HIV-SN, including satellitosis, presence of Nageotte nodules, and neuronophagia, as well as increased numbers of CD68(+) macrophages and abundant viral replication. In contrast to non-CD8-depleted animals, which had mild to moderate DRG pathology, the CD8-depleted SIV-infected animals had moderate to severe DRG damage, with increased numbers of CD68(+) satellite cells. Additionally, there was marked active viral replication in the affected DRG. These findings confirm that many features of HIV-SN can be recapitulated in the CD8-depleted SIV-infected rhesus macaque model within a short time frame and illustrate the importance of this model for study of sensory neuropathy.
Collapse
|
22
|
Ghosh S, Chandran A, Jansen JP. Epidemiology of HIV-related neuropathy: a systematic literature review. AIDS Res Hum Retroviruses 2012; 28:36-48. [PMID: 21902585 DOI: 10.1089/aid.2011.0116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We sought to identify and summarize the incidence and prevalence of neuropathy among HIV patients and subgroups. A systematic search of the literature was performed using MEDLINE and EMBASE. The relevant literature was identified based on predefined criteria. Prevalence data were collected from cross-sectional and cohort studies. Incidence data were collected from cohort and case-control studies. Thirty-seven studies were included of which there were 23 cohort studies, 13 cross-sectional studies, and one case-control study. The prevalence of neuropathy among HIV patients derived from 25 studies varied from 1.2% to 69.4%. Regarding the development of neuropathy among HIV-positive patients, standardized by study duration, the rates per 100 person-years ranged from 0.7 to 39.7. Among older patients there is a greater risk of neuropathy. The same seems to be the case for patients with more severe disease. Currently available studies providing information on the incidence and prevalence of neuropathy among HIV patients suggest a significant burden, but there is a great variation in results across studies. There is no definitive explanation for the variation. However, it underscores the fact that complexity of the disease, along with absence of standardized diagnostic criteria, has considerably influenced the methodologies and outcomes of the studies.
Collapse
|
23
|
Crone C, Krarup C. Diagnosis of acute neuropathies. J Neurol 2007; 254:1151-69. [DOI: 10.1007/s00415-007-0532-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/03/2006] [Accepted: 01/16/2007] [Indexed: 12/27/2022]
|
24
|
|
25
|
Kawasoe T, Yamamoto Y, Okumura Y, Iwase H. A case report of paraneoplastic neurological syndrome associated with occult breast cancer. Breast Cancer 2006; 13:202-4. [PMID: 16755118 DOI: 10.2325/jbcs.13.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Paraneoplastic syndromes are the rarest neurological complications in patients with breast cancer. Here, we present a case of occult breast cancer presenting as paraneoplastic sensory neuropathy. A 47-year-old woman developed progressive upper and lower extremity weaknesses with paresthesia and gait ataxia. Multiple cerebrospinal fluid (CSF) analyses and magnetic resonance image (MRI) scans of her brain and spine offered no diagnosis. Although no paraneoplastic antibodies were found, paraneoplastic neurological syndrome was suspected after examination by the neurologist eliminated other possibilities. Her mammogram demonstrated pleomorphic calcifications. Although local and systemic therapies were given, no significant improvement in the neurologic condition was found.
Collapse
Affiliation(s)
- Teru Kawasoe
- Department of Breast and Endocrine Surgery, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Japan.
| | | | | | | |
Collapse
|
26
|
Ferrari S, Vento S, Monaco S, Cavallaro T, Cainelli F, Rizzuto N, Temesgen Z. Human immunodeficiency virus-associated peripheral neuropathies. Mayo Clin Proc 2006; 81:213-9. [PMID: 16471077 DOI: 10.4065/81.2.213] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peripheral neuropathy has emerged as the most common neurologic complication of human immunodeficiency virus (HIV) infection. It will continue to play an Important role in HIV Infection given the fact that HIV-infected Individuals are living longer, are at risk of long-term metabolic complications, and face an Increasing exposure to potentially neurotoxic antiretroviral drugs. We review the various types of peripheral neuropathy that have been associated with HIV infection, including distal symmetrical polyneuropathy, toxic neuropathy from antiretroviral drugs, diffuse infiltrative lymphocytosis syndrome, inflammatory demyelinating polyneuropathies, multifocal mononeuropathies, and progressive polyradiculopathy.
Collapse
Affiliation(s)
- Sergio Ferrari
- Department of Neurological and Visual Sciences, Section of Neurology, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Peruzzi F, Bergonzini V, Aprea S, Reiss K, Sawaya BE, Rappaport J, Amini S, Khalili K. Cross talk between growth factors and viral and cellular factors alters neuronal signaling pathways: implication for HIV-associated dementia. ACTA ACUST UNITED AC 2005; 50:114-25. [PMID: 15936090 DOI: 10.1016/j.brainresrev.2005.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/10/2005] [Accepted: 05/02/2005] [Indexed: 12/14/2022]
Abstract
HIV-associated dementia (HAD) is a serious neurological disorder affecting about 7% of people with AIDS. In the brain, HIV-1 infects a restricted number of cell types, being primarily present in macrophages and microglial cells, less abundant in astrocytes, and rarely seen in oligodendrocytes and neurons. Lack of a productive HIV-1 infection of neuronal cells suggests the presence of an indirect pathway by which the virus may determine the brain pathology and neuronal dysfunction seen in AIDS patients. Among the participants in this event, viral proteins including gp120 and Tat, along with host factors including cytokines, chemokines, and several signaling pathways have received considerable attention. In this article, we discuss the most recent concepts pertaining to the mechanisms of HIV-1-induced neuronal dysfunction by highlighting the interplay between signal transduction pathways activated by viral and host factors and their consequences in neuronal cell function.
Collapse
Affiliation(s)
- Francesca Peruzzi
- Center for Neurovirology and Cancer Biology, Temple University, 1900 12th North Street, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Neuropathic pain is associated with numerous systemic illnesses, including HIV infection. The diagnosis and management of peripheral neuropathy presents diagnostic and therapeutic challenges. Among various forms of HIV-associated peripheral neuropathies, distal symmetrical polyneuropathy (DSP) is the most common. DSP may be caused or exacerbated by neurotoxic antiretrovirals, particularly the dideoxynucleoside analogues (d-drugs). Selection of appropriate pharmacologic intervention for peripheral neuropathy should be based on efficacy, safety, ease of administration, and cost. We review treatment options for painful HIV neuropathy, including experimental agents studied in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Susama Verma
- Department of Neurology, Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Neuropathic pain is associated with numerous systemic illnesses, including HIV infection. The diagnosis and management of peripheral neuropathy presents diagnostic and therapeutic challenges. Among various forms of HIV-associated peripheral neuropathies, distal symmetrical polyneuropathy (DSP) is the most common. DSP may be caused or exacerbated by neurotoxic antiretrovirals, particularly the dideoxynucleoside analogues (d-drugs). Selection of appropriate pharmacologic intervention for peripheral neuropathy should be based on efficacy, safety, ease of administration, and cost. We review treatment options for painful HIV neuropathy, including experimental agents studied in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Susama Verma
- Department of Neurology, Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Peripheral nerve pathology encompasses a complex array of disease processes that are poorly understood. This article provides a substrate for communication between pathologists and radiologists who are involved in the diagnosis and treatment of patients with peripheral neuropathy. The article is organized into sections on normal histology, routine morphologic techniques used in the study of peripheral nerve, and the basic disease patterns, followed by a brief discussion of selected neuropathies.
Collapse
Affiliation(s)
- Elisabeth J Rushing
- Department of Neuropathology and Ophthalmic Pathology, Armed Forces Institute of Pathology, Washington, DC 20306, USA.
| | | |
Collapse
|
31
|
|