1
|
Ye R, Jneid H, Alam M, Uretsky BF, Atar D, Kitakaze M, Davidson SM, Yellon DM, Birnbaum Y. Do We Really Need Aspirin Loading for STEMI? Cardiovasc Drugs Ther 2022; 36:1221-1238. [PMID: 35171384 DOI: 10.1007/s10557-022-07327-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Aspirin loading (chewable or intravenous) as soon as possible after presentation is a class I recommendation by current ST elevation myocardial infarction (STEMI) guidelines. Earlier achievement of therapeutic antiplatelet effects by aspirin loading has long been considered the standard of care. However, the effects of the loading dose of aspirin (alone or in addition to a chronic maintenance oral dose) have not been studied. A large proportion of myocardial cell death occurs upon and after reperfusion (reperfusion injury). Numerous agents and interventions have been shown to limit infarct size in animal models when administered before or immediately after reperfusion. However, these interventions have predominantly failed to show significant protection in clinical studies. In the current review, we raise the hypothesis that aspirin loading may be the culprit. Data obtained from animal models consistently show that statins, ticagrelor, opiates, and ischemic postconditioning limit myocardial infarct size. In most of these studies, aspirin was not administered. However, when aspirin was administered before reperfusion (as is the case in the majority of studies enrolling STEMI patients), the protective effects of statin, ticagrelor, morphine, and ischemic postconditioning were attenuated, which can be plausibly attributable to aspirin loading. We therefore suggest studying the effects of aspirin loading before reperfusion on the infarct size limiting effects of statins, ticagrelor, morphine, and/ or postconditioning in large animal models using long reperfusion periods (at least 24 h). If indeed aspirin attenuates the protective effects, clinical trials should be conducted comparing aspirin loading to alternative antiplatelet regimens without aspirin loading in patients with STEMI undergoing primary percutaneous coronary intervention.
Collapse
Affiliation(s)
- Regina Ye
- University of Texas at Austin, Austin, TX, USA
| | - Hani Jneid
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA
| | - Mahboob Alam
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA
| | - Barry F Uretsky
- University of Arkansas for Medical Sciences, Central Arkansas Veterans Health System, Little Rock, AR, USA
| | - Dan Atar
- Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Masafumi Kitakaze
- Center of Medical Innovation and Translational Research, Department of Medical Data Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Yochai Birnbaum
- Department of Medicine Baylor College of Medicine, 7200 Cambridge Street Houston, Texas, 77030, USA.
| |
Collapse
|
2
|
Leonard CE, Hennessy S, Han X, Siscovick DS, Flory JH, Deo R. Pro- and Antiarrhythmic Actions of Sulfonylureas: Mechanistic and Clinical Evidence. Trends Endocrinol Metab 2017; 28:561-586. [PMID: 28545784 PMCID: PMC5522643 DOI: 10.1016/j.tem.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
Sulfonylureas are the most commonly used second-line drug class for treating type 2 diabetes mellitus (T2DM). While the cardiovascular safety of sulfonylureas has been examined in several trials and nonrandomized studies, little is known of their specific effects on sudden cardiac arrest (SCA) and related serious arrhythmic outcomes. This knowledge gap is striking, because persons with DM are at increased risk of SCA. In this review, we explore the influence of sulfonylureas on the risk of serious arrhythmias, with specific foci on ischemic preconditioning, cardiac excitability, and serious hypoglycemia as putative mechanisms. Elucidating the relationship between individual sulfonylureas and serious arrhythmias is critical, especially as the diabetes epidemic intensifies and SCA incidence increases in persons with diabetes.
Collapse
Affiliation(s)
- Charles E Leonard
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xu Han
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David S Siscovick
- The New York Academy of Medicine, New York, NY 10029, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - James H Flory
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Healthcare Policy and Research, Division of Comparative Effectiveness, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - Rajat Deo
- Center for Pharmacoepidemiology Research and Training, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Li M, Zou H, Xu G. The prevention of statins against AKI and mortality following cardiac surgery: A meta-analysis. Int J Cardiol 2016; 222:260-266. [DOI: 10.1016/j.ijcard.2016.07.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
4
|
Statin-Induced Cardioprotection Against Ischemia-Reperfusion Injury: Potential Drug-Drug Interactions. Lesson to be Learnt by Translating Results from Animal Models to the Clinical Settings. Cardiovasc Drugs Ther 2016; 29:461-7. [PMID: 26303765 DOI: 10.1007/s10557-015-6615-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Numerous interventions have been shown to limit myocardial infarct size in animal models; however, most of these interventions have failed to have a significant effect in clinical trials. One potential explanation for the lack of efficacy in the clinical setting is that in bench models, a single intervention is studied without the background of other interventions or modalities. This is in contrast to the clinical setting in which new medications are added to the "standard of care" treatment that by now includes a growing number of medications. Drug-drug interaction may lead to alteration, dampening, augmenting or masking the effects of the intended intervention. We use the well described model of statin-induced myocardial protection to demonstrate potential interactions with agents which are commonly concomitantly used in patients with stable coronary artery disease and/or acute coronary syndromes. These interactions could potentially explain the reduced efficacy of statins in the clinical trials compared to the animal models. In particular, caffeine and aspirin could attenuate the infarct size limiting effects of statins; morphine could delay the onset of protection or mask the protective effect in patients with ST elevation myocardial infarction, whereas other anti-platelet agents (dipyridamole, cilostazol and ticagrelor) may augment (or mask) the effect due to their favorable effects on adenosine cell reuptake and intracellular cAMP levels. We recommend that after characterizing the effects of new modalities in single intervention bench research, studies should be repeated in the background of standard-of-care medications to assure that the magnitude of the effect is not altered before proceeding with clinical trials.
Collapse
|
5
|
Almukhtar H, Garle M, Smith P, Roberts R. Effect of simvastatin on vascular tone in porcine coronary artery: Potential role of the mitochondria. Toxicol Appl Pharmacol 2016; 305:176-185. [DOI: 10.1016/j.taap.2016.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
|
6
|
Pecoraro V, Moja L, Dall'Olmo L, Cappellini G, Garattini S. Most appropriate animal models to study the efficacy of statins: a systematic review. Eur J Clin Invest 2014; 44:848-71. [PMID: 25066257 DOI: 10.1111/eci.12304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND In animal models and clinical trials, statins are reported as effective in reducing cholesterol levels and lowering the risk of cardiovascular diseases. We have aggregated the findings in animal models - mice, rats and rabbits - using the technique of systematic review and meta-analysis to highlight differences in the efficacy of statins. MATERIALS AND METHODS We searched Medline and Embase. After examining all eligible articles, we extracted results about total cholesterol and other blood parameters, blood pressure, myocardial infarction and survival. Weighted and standard mean difference random effects meta-analysis was used to measure overall efficacy in prespecified species, strains and subgroups. RESULTS We included in systematic review 161 animal studies and we analysed 120 studies, accounting for 2432 animals. Statins lowered the total cholesterol across all species, although with large differences in the effect size: -30% in rabbits, -20% in mice and -10% in rats. The reduction was larger in animals fed on a high-cholesterol diet. Statins reduced infarct volume but did not consistently reduce the blood pressure or effect the overall survival. Few studies considered strains at high risk of cardiovascular diseases or hard outcomes. CONCLUSIONS Although statins showed substantial efficacy in animal models, few preclinical data considered conditions mimicking human pathologies for which the drugs are clinically indicated and utilized. The empirical finding that statins are more effective in lowering cholesterol derived from an external source (i.e. diet) conflicts with statin's supposed primary mechanism of action.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Clinical Epidemiology Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | | | | | | | | |
Collapse
|
7
|
El Messaoudi S, Rongen GA, Riksen NP. Metformin Therapy in Diabetes: The Role of Cardioprotection. Curr Atheroscler Rep 2013; 15:314. [DOI: 10.1007/s11883-013-0314-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y. The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol 2011; 106:925-52. [PMID: 21892746 DOI: 10.1007/s00395-011-0216-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/04/2011] [Accepted: 08/16/2011] [Indexed: 12/15/2022]
Abstract
Heart disease and stroke account for 65% of the deaths in people with diabetes mellitus (DM). DM and hyperglycemia cause systemic inflammation, endothelial dysfunction, a hypercoagulable state with impaired fibrinolysis and increased platelet degranulation, and reduced coronary collateral blood flow. DM also interferes with myocardial protection afforded by preconditioning and postconditioning. Newer anti-diabetic agents should not only reduce serum glucose and HbA1c levels, but also improve cardiovascular outcomes. The older sulfonylurea agent, glyburide, abolishes the benefits of ischemic and pharmacologic preconditioning, but newer sulfonylurea agents, such as glimepiride, may not interfere with preconditioning. GLP-1 analogs and sitagliptin, an oral dipeptidyl peptidase IV inhibitor, limit myocardial infarct size in animal models by increasing intracellular cAMP levels and activating protein kinase A, whereas metformin protects the heart by activating AMP-activated protein kinase. Both thiazolidinediones (rosiglitazone and pioglitazone) limit infarct size in animal models. The protective effect of pioglitazone is dependent on downstream activation of cytosolic phospholipase A(2) and cyclooxygenase-2 with subsequent increased production of 15-epi-lipoxin A(4), prostacyclin and 15-d-PGJ(2). We conclude that agents used to treat DM have additional actions that have been shown to affect the ability of the heart to protect itself against ischemia-reperfusion injury in preclinical models. However, the effects of these agents in doses used in the clinical setting to minimize ischemia-reperfusion injury and to affect clinical outcomes in patients with DM have yet to be shown. The clinical implications as well as the mechanisms of protection should be further studied.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
9
|
Yang YJ, Qian HY, Huang J, Li JJ, Gao RL, Dou KF, Yang GS, Willerson JT, Geng YJ. Combined Therapy With Simvastatin and Bone Marrow–Derived Mesenchymal Stem Cells Increases Benefits in Infarcted Swine Hearts. Arterioscler Thromb Vasc Biol 2009; 29:2076-82. [PMID: 19762786 DOI: 10.1161/atvbaha.109.189662] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective—
Widespread death of implanted cells hampers stem cell therapy for acute myocardial infarction (AMI). Based on the pleiotropic beneficial effects of statins, we examined whether simvastatin (SIMV) increased the efficacy of mesenchymal stem cell (MSC) transplantation after AMI.
Methods and Results—
Chinese miniswine (n=28) were randomized to 1 of 4 groups (n=7 per group): control, SIMV (0.25 mg/kg · d), MSC transplantation, and SIMV+MSCs. AMI was created by ligating the left anterior descending coronary artery; MSCs were injected immediately into the cyanotic myocardium. At 6 weeks, MRI showed the number of dyskinetic segments and the infarct size were significantly decreased in the SIMV group. Cardiac function improved and the perfusion defect decreased significantly in the SIMV+MSC group but not in the MSC-only group (
P
<0.05, versus control group). MSC survival and differentiation were significantly better in the combination group than in the MSC-only group (
P
<0.01). Cell apoptosis decreased significantly in both the SIMV and the SIMV+MSC groups but not in the MSC-only group when compared with controls (
P
<0.05). Furthermore, oxidative stress and inflammatory response was significantly reduced in the infarcted regions in both the SIMV and the SIMV+MSCs groups.
Conclusions—
SIMV treatment improves the therapeutic efficacy of MSC transplantation in acutely infarcted hearts by promoting cell survival and cardiovascular differentiation.
Collapse
Affiliation(s)
- Yue-Jin Yang
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - Hai-Yan Qian
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - Ji Huang
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - Jian-Jun Li
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - Run-Lin Gao
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - Ke-Fei Dou
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - Guo-Sheng Yang
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - James T. Willerson
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| | - Yong-Jian Geng
- From the Center for Coronary Heart Disease, Department of Cardiology (Y.-J.Y., H.-Y.Q., J.-J.L., R.-L.G., K.-F.D., G.-S.Y.), Fuwai Hospital and Cardiovascular Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; the Emergency Center of Heart, Lung, and Blood Vessel Diseases (J.H.), Beijing Anzhen Hospital, Capital University of Medical Sciences & Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, P.R. China; and the University
| |
Collapse
|
10
|
Golomb E, Nyska A, Schwalb H. Occult Cardiotoxicity—Toxic Effects on Cardiac Ischemic Tolerance. Toxicol Pathol 2009; 37:572-93. [DOI: 10.1177/0192623309339503] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The outcome of cardiac ischemic events depends not only on the extent and duration of the ischemic stimulus but also on the myocardial intrinsic tolerance to ischemic injury. Cardiac ischemic tolerance reflects myocardial functional reserves that are not always used when the tissue is appropriately oxygenated. Ischemic tolerance is modulated by ubiquitous signal transduction pathways, transcription factors and cellular enzymes, converging on the mitochondria as the main end effector. Therefore, drugs and toxins affecting these pathways may impair cardiac ischemic tolerance without affecting myocardial integrity or function in oxygenated conditions. Such effect would not be detected by current toxicological studies but would considerably influence the outcome of ischemic events. The authors refer to such effect as “occult cardiotoxicity.” In this review, the authors summarize current knowledge about main mechanisms that determine cardiac ischemic tolerance, methods to assess it, and the effects of drugs and toxins on it. The authors offer a view that low cardiac ischemic tolerance is a premorbid status and, therefore, that occult cardiotoxicity is a significant potential source of cardiac morbidity. The authors propose that toxicologic assessment of compounds would include the assessment of their effect on cardiac ischemic tolerance.
Collapse
Affiliation(s)
- Eliahu Golomb
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Abraham Nyska
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Herzl Schwalb
- The Joseph Lunenfeld Cardiac Surgery Research Center, Department of Cardiothoracic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Ludman A, Venugopal V, Yellon DM, Hausenloy DJ. Statins and cardioprotection — More than just lipid lowering? Pharmacol Ther 2009; 122:30-43. [DOI: 10.1016/j.pharmthera.2009.01.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Indexed: 11/29/2022]
|
12
|
Ye Y, Lin Y, Manickavasagam S, Perez-Polo JR, Tieu BC, Birnbaum Y. Pioglitazone protects the myocardium against ischemia-reperfusion injury in eNOS and iNOS knockout mice. Am J Physiol Heart Circ Physiol 2008; 295:H2436-46. [PMID: 18931027 DOI: 10.1152/ajpheart.00690.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Science, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
13
|
Ye Y, Lin Y, Perez-Polo JR, Birnbaum Y. Oral glyburide, but not glimepiride, blocks the infarct-size limiting effects of pioglitazone. Cardiovasc Drugs Ther 2008; 22:429-36. [PMID: 18825491 DOI: 10.1007/s10557-008-6138-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/10/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND Many patients with type 2 diabetes mellitus receive several oral hypoglycemic agents, including sulfonylurea drugs. Intravenous glyburide (Glyb), a sulfonylurea agent, blocks the protective effects of "ischemic" and pharmacologic preconditioning in various animal models without affecting myocardial infarct size when administered alone. However, there are conflicting results when other sulfonylurea drugs are used. Pioglitazone (PIO) reduces infarct size in the rat. We asked whether oral Glyb and glimepiride (Glim) affect the infarct size-limiting effects of PIO. METHODS Sprague-Dawley rats received 3-day oral treatment with: PIO (5 mg/kg/day); PIO + Glyb (10 mg/kg/day); PIO + Glim (4 mg/kg/day) or water alone (experiment 1) or PIO (5 mg/kg/day) with or without 5-hydroxydecanoate (5HD, 10 mg/kg), a specific mitochondrial ATP-sensitive K+ channels inhibitor, administered intravenously 30 min before coronary artery ligation. PIO, Glyb and Glim were administered by oral gavage. Sugar 5% was added to water to prevent hypoglycemia. Rats underwent 30 min coronary artery occlusion and 4 h reperfusion (n = 6 in each group). Ischemic area at risk was assessed by blue dye and infarct size by triphenyl-tetrazolium-chloride. RESULTS Body weight and the size of the area at risk were comparable among groups. Infarct size (% of the area at risk) was significantly smaller in the PIO (14.3 +/- 1.1%; p < 0.001) and PIO + Glim (13.2 +/- 0.8%; p < 0.001) groups than in the control group (37.7 +/- 1.2%). Glyb completely blocked the effect of PIO (43.0 +/- 1.7%; p < 0.001). Glim did not affect the protective effect of PIO (p = 0.993). 5HD blocked the protective effect of PIO (infarct size 48.5 +/- 0.8% versus 14.8 +/- 0.6%, respectively; p < 0.0001). In conclusion, the infarct size limiting effects of PIO are dependent on activation of mitochondrial ATP-sensitive K+ channels. Oral Glyb, but not Glim, blocks the infarct size limiting effects of PIO. It is plausible that Glyb affects other pleiotropic effects of PIO and thus may attenuate favorable effects on cardiovascular outcomes. In contrast, Glim does not attenuate the protective effect of PIO.
Collapse
Affiliation(s)
- Yumei Ye
- The Division of Cardiology, University of Texas Medical Branch, 5.106 John Sealy Annex, 301 University Blvd, Galveston, TX 77555-0553, USA
| | | | | | | |
Collapse
|
14
|
Sandesara CM, Roodneshin H, Sbaity S, Olshansky B. Antiarrhythmic effects of statins in heart failure. Heart Fail Clin 2008; 4:187-200. [PMID: 18433699 DOI: 10.1016/j.hfc.2008.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro heart failure models indicate that statins may be antiarrhythmic, but the mechanisms by which statins are antiarrhythmic are not completely understood. Several retrospective and post hoc analysis studies also indicate that statins can be antiarrhythmic in heart failure populations, but this was not confirmed by a recent large prospective randomized controlled clinical trial. Ongoing and future clinical trials will likely resolve the discrepancies between studies and further the understanding of how pleiotropic properties of statins can be antiarrhythmic in patients who have heart failure.
Collapse
|
15
|
Subramaniam K, Koch CG, Bashour A, O'Connor M, Xu M, Gillinov AM, Starr NJ. Preoperative statin intake and morbid events after isolated coronary artery bypass grafting. J Clin Anesth 2008; 20:4-11. [PMID: 18346602 DOI: 10.1016/j.jclinane.2007.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 02/08/2023]
Abstract
STUDY OBJECTIVE To examine the effect of statins on morbidity and mortality in patients after isolated coronary artery bypass grafting (CABG). DESIGN Observational cohort study. SETTING Tertiary-care teaching hospital. MEASUREMENTS Data from 2497 adult patients who underwent isolated CABG between January 2002 and June 2004 were studied. Patient characteristics and intraoperative variables were prospectively collected. End points were major morbid events and in-hospital mortality. A propensity score was estimated for each patient using logistic regression on the probability of statin use. Patients were also classified into 5 quintile groups according to their propensity score. Outcome variables were compared for propensity-matched pairs and quintile groups between those who received and did not receive statin therapy. MAIN RESULTS Propensity matching resulted in a similar distribution of variables among the 654 matched pairs. Similar perioperative mortality was found between matched pairs with statin therapy vs no statin therapy, 5 (0.76%) and 8 (1.2%), (P = 0.40), respectively. Cardiac, neurologic, renal and respiratory morbidity, occurrence of atrial fibrillation, and length of hospital stay were similar between the matched pairs and among quintiles of propensity scores. CONCLUSIONS Preoperative statin intake did not reduce the frequency of major perioperative morbid events after isolated CABG.
Collapse
|
16
|
Ye Y, Martinez JD, Perez-Polo RJ, Lin Y, Uretsky BF, Birnbaum Y. The role of eNOS, iNOS, and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol 2008; 295:H343-51. [PMID: 18469150 DOI: 10.1152/ajpheart.01350.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pretreatment with atorvastatin (ATV) reduces infarct size (IS) and increases myocardial expression of phosphorylated endothelial nitric oxide synthase (p-eNOS), inducible NOS (iNOS), and cyclooxygenase-2 (COX2) in the rat. Inhibiting COX2 abolished the ATV-induced IS limitation without affecting p-eNOS and iNOS expression. We investigated 1) whether 3-day ATV pretreatment limits IS in eNOS(-/-) and iNOS(-/-) mice and 2) whether COX2 expression and/or activation by ATV is eNOS, iNOS, and/or NF-kappaB dependent. Male C57BL/6 wild-type (WT), University of North Carolina eNOS(-/-) and iNOS(-/-) mice received ATV (10 mg.kg(-1).day(-1); ATV(+)) or water alone (ATV(-)) for 3 days. Mice underwent 30 min of coronary artery occlusion and 4 h of reperfusion, or hearts were harvested and subjected to ELISA, immunoblotting, biotin switch, and electrophoretic mobility shift assay. As a result, ATV reduced IS only in the WT mice. ATV increased eNOS, p-eNOS, iNOS, and COX2 levels and activated NF-kappaB in WT mice. It also increased myocardial COX2 activity. In eNOS(-/-) mice, ATV increased COX2 expression but not COX2 activity or iNOS expression. NF-kappaB was not activated by ATV in the eNOS(-/-) mice. In the iNOS(-/-) mice, eNOS and p-eNOS levels were increased but not iNOS and COX2 levels; however, NF-kappaB was activated. In conclusion, both eNOS and iNOS are essential for the IS-limiting effect of ATV. The expression of COX2 by ATV is iNOS, but not eNOS or NF-kappaB, dependent. Activation of COX2 is dependent on iNOS.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Internal Medicine, Univ. of Texas Medical Branch, Galveston, TX 77555-0553, USA
| | | | | | | | | | | |
Collapse
|
17
|
Pretreatment With High-Dose Statin, But Not Low-Dose Statin, Ezetimibe, or the Combination of Low-Dose Statin and Ezetimibe, Limits Infarct Size in the Rat. J Cardiovasc Pharmacol Ther 2008; 13:72-9. [DOI: 10.1177/1074248407312839] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Statins reduce infarct size by upregulating nitric oxide synthases and PGI2 production. In this article, the infarct size-limiting effect of low-dose simvastatin + ezetimibe, ezetimibe, and high-dose statins were compared. Rats received 3-day water, atorvastatin (10 mg/kg/d), simvastatin (10 mg/kg/d), simvastatin (2 mg/kg/d), simvastatin (2 mg/kg/d) + ezetimibe (1 mg/kg/d), or ezetimibe. Rats underwent 30-minute coronary artery occlusion and 4-hour reperfusion. Atorvastatin and simvastatin 10 reduced infarct size, whereas simvastatin 2, ezetimibe, and simvastatin 2 + ezetimibe had no effect. Atorvastatin and simvastatin 10 increased nitric oxide synthases activity, whereas simvastatin-2, ezetimibe, and simvastatin-2 + ezetimibe had only a small effect. Atorvastatin and simvastatin 10 significantly increased myocardial 6-ketoprostaglandin F1α levels, whereas simvastatin 2, ezetimibe, and simvastatin 2 + ezetimibe had no effect. High-dose statin is required to decrease infarct size, upregulate myocardial nitric oxide synthases activities, and increase 6-keto prostaglandin F1α levels. Combination of ezetimibe and low-dose statin is ineffective in modulating myocardial biochemical changes associated with cardioprotection.
Collapse
|
18
|
Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, Hughes MG, McAdoo DJ, Uretsky BF, Birnbaum Y. The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther 2008; 21:321-30. [PMID: 17620005 DOI: 10.1007/s10557-007-6036-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Atorvastatin (ATV) protects against ischemia-reperfusion by upregulating Akt and subsequently, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser-1177. However, when given orally, high doses of ATV (10 mg/kg/d) are needed to achieve maximal protective effect in the rat. Protein kinase A (PKA) also phosphorylates eNOS at Ser-1177. As PKA activity depends on cAMP, cilostazol (CIL), a phosphodiesterase type III inhibitor, may stimulate NO production by activating PKA. HYPOTHESIS CIL and ATV may have synergistic effects on eNOS phosphorylation and myocardial infarct size (IS) reduction. METHODS Sprague-Dawley rats received 3-day oral pretreatment with: (1) water; (2) low dose ATV (2 mg/kg/d); (3) CIL (20 mg/kg/d): (4) ATV+CIL. Rats underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts explanted for immunoblotting without being subjected to ischemia. Area at risk (AR) was assessed by blue dye and IS by triphenyl-tetrazolium-chloride. RESULTS Body weight and the size of AR were comparable among groups. There were no significant differences among groups in mean blood pressure and heart rate. CIL, but not ATV, reduced IS. IS in the ATV+CIL group was significantly smaller than the other three groups (P < 0.001 for each comparison). ATV, CIL and their combination did not affect total eNOS expression. ATV at 2 mg/kg/d did not affect Ser-1177 P-eNOS levels, whereas CIL increased it (258 +/- 15%). The level of myocardial P-eNOS levels was highest in the ATV+CIL group (406 +/- 7%). CONCLUSIONS ATV and CIL have synergistic effect on eNOS phosphorylation and IS reduction. By increased activation of eNOS, CIL may augment the pleiotropic effects of statins.
Collapse
|
19
|
Merla R, Ye Y, Lin Y, Manickavasagam S, Huang MH, Perez-Polo RJ, Uretsky BF, Birnbaum Y. The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. Am J Physiol Heart Circ Physiol 2007; 293:H1918-28. [PMID: 17616749 DOI: 10.1152/ajpheart.00416.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins activate phosphatidylinositol-3-kinase, which activates ecto-5′-nucleotidase and phosphorylates 3-phosphoinositide-dependent kinase-1 (PDK-1). Phosphorylated (P-)PDK-1 phosphorylates Akt, which phosphorylates endothelial nitric oxide synthase (eNOS). We asked if the blockade of adenosine receptors (A1, A2A, A2B, or A3 receptors) could attenuate the induction of Akt and eNOS by atorvastatin (ATV) and whether ERK1/2 is involved in the ATV regulation of Akt and eNOS. In protocol 1, mice received intraperitoneal ATV, theophylline (TH), ATV + TH, or vehicle. In protocol 2, mice received intraperitoneal injections of ATV, U0126 (an ERK1/2 inhibitor), ATV + U0126, or vehicle; 8 h later, hearts were assessed by immunoblot analysis. In protocol 3, mice received intraperitoneal ATV alone or with 8-sulfophenyltheophylline (SPT); 1, 3, and 6 h after injection, hearts were assessed by immunoblot analysis. In protocol 4, mice received intraperitoneal ATV alone or with SPT, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), alloxazine, or MRS-1523; 3 h after injection, hearts were assessed by immunoblot analysis. ATV increased P-ERK, P-PDK-1, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels. TH blocked ATV-induced increases in P-ERK, Ser473 P-Akt, Thr308 P-Akt, and P-eNOS levels without affecting the induction of P-PDK-1 by ATV. U0126 blocked the ATV induction of Ser473 P-Akt and Thr308 P-Akt while attenuating the induction of P-eNOS. A detectable increase in P-ERK, Ser473 P-Akt and P-eNOS was seen 3 and 6 h after injection but not at 1 h. DPCPX, CSC, and alloxazine partially blocked the ATV induction of P-ERK, Ser473 P-Akt, and P-eNOS. In conclusion, blockade of adenosine A1, A2A, and A2B receptors but not A3 receptors inhibited the induction of Akt and eNOS by statins. Adenosine was required for ERK1/2 activation by statins, which resulted in Akt and eNOS phosphorylation.
Collapse
Affiliation(s)
- Ramanna Merla
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0553, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ye Y, Lin Y, Perez-Polo R, Huang MH, Hughes MG, McAdoo DJ, Manickavasagam S, Uretsky BF, Birnbaum Y. Enhanced cardioprotection against ischemia-reperfusion injury with a dipyridamole and low-dose atorvastatin combination. Am J Physiol Heart Circ Physiol 2007; 293:H813-8. [PMID: 17416607 DOI: 10.1152/ajpheart.00210.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atorvastatin (ATV) limits infarct size (IS) by activating Akt and ecto-5-nucleotidase, which generates adenosine. Activated Akt and adenosine activate endothelial nitric oxide synthase (eNOS). When given orally, high doses (10 mg/kg) are needed to achieve full protection. We determined whether dipyridamole (DIP), by preventing the reuptake of adenosine, has a synergistic effect with ATV in reducing myocardial IS. In this study, rats received 3-days of the following: water, ATV (2 mg·kg−1·day−1), DIP (6 mg·kg−1·day−1), or ATV + DIP. In addition, rats received 3-days of the following: aminophylline (Ami; 10 mg·kg−1·day−1) or Ami + ATV + DIP. Rats underwent 30 min of myocardial ischemia followed by 4 h of reperfusion (IS protocol), or hearts were explanted for immunoblotting. As a result, IS in the controls was 34.0 ± 2.8% of the area at risk. ATV (33.1 ± 2.1%) and DIP (30.5 ± 1.5%) did not affect IS, whereas ATV + DIP reduced IS (12.2 ± 0.5%; P < 0.001 vs. each of the other groups). There was no difference in IS between the Ami alone (48.1 ± 0.8%) and the Ami + ATV + DIP (45.8 ± 2.9%) group ( P = 0.422), suggesting that Ami completely blocked the protective effect. Myocardial adenosine level in the controls was 30.6 ± 3.6 pg/μl. ATV (51.0 ± 4.9 pg/μl) and DIP (51.5 ± 6.8 pg/μl) caused a small increase in adenosine levels, whereas ATV + DIP caused a greater increase in adenosine levels (66.4 ± 3.1 pg/μl). ATV and DIP alone did not affect myocardial Ser473 phosphorylated-Akt and Ser1177 phosphorylated-eNOS levels, whereas ATV + DIP significantly increased them. In conclusion, low-dose ATV and DIP had synergistic effects in reducing myocardial IS and activation of Akt and eNOS. This combination may have a potential benefit in augmenting the eNOS-mediated pleiotropic effects of statins.
Collapse
Affiliation(s)
- Yumei Ye
- Division of Cardiology, University of Texas Medical Branch, 5.106 John Sealy Annex, 301 University Blvd., Galveston, TX 77555-0553, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee TM, Lin MS, Tsai CH, Chang NC. Effects of pravastatin on ventricular remodeling by activation of myocardial KATP channels in infarcted rats: role of 70-kDa S6 kinase. Basic Res Cardiol 2006; 102:171-82. [PMID: 17031758 DOI: 10.1007/s00395-006-0628-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/31/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Reactive cardiomyocyte hypertrophy after myocardial infarction is an important risk factor for arrhythmias. Myocardial ATP-sensitive potassium (K(ATP)) channels have been implicated in attenuating cardiac hypertrophy by inhibition of 70-kDa S6 kinase. We investigated the effect of pravastatin on ventricular hypertrophy during remodeling after myocardial infarction and whether the attenuated hypertrophic effect was via activation of myocardial K(ATP) channels. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to either vehicle, nicorandil (an agonist of K(ATP) channels), pravastatin, glibenclamide (an antagonist of K(ATP) channels), or a combination of nicorandil and glibenclamide or pravastatin and glibenclamide for 4 weeks. Infarct size and mortality were similar among the infarcted groups. Cardiomyocyte sizes isolated by enzymatic dissociation after infarction significantly increased at the border zone in vehicle-treated infarcted rats compared with sham-operated rats. Rats in the nicorandil- and pravastatin-treated groups significantly attenuated cardiomyocyte hypertrophy, as compared with the vehicle-treated group. Arrhythmic scores during programmed stimulation mirrored those of cardiomyocyte hypertrophy. Increased 70-kDa S6 kinase mRNA expression in cardiac remodeling was confirmed by reverse transcription-polymerase chain reaction, consistent with the results of immunohistochemistry and Western blot for the phosphorylation of 70-kDa S6 kinase. Nicorandil-induced effects were abolished by administering glibenclamide. Similarly, the beneficial effects of pravastatin were abolished by administering glibenclamide, implicating K(ATP) channels as the relevant target. Activation of K(ATP) channels by pravastatin administration can attenuate ventricular remodeling through a S6 kinase-dependent pathway after infarction.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Department of Internal Medicine, Taipei Medical University and Chi-Mei Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
22
|
Sesti C, Simkhovich BZ, Kalvinsh I, Kloner RA. Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics. J Cardiovasc Pharmacol 2006; 47:493-9. [PMID: 16633095 DOI: 10.1097/01.fjc.0000211732.76668.d2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mildronate is a fatty acid oxidation inhibitor approved as an antianginal drug in parts of Europe. We carried out the first study to determine whether a 10-day course of mildronate could reduce myocardial infarct size (IS) during acute myocardial ischemia. Sprague Dawley rats received 200 mg/kg/d of mildronate (treated group, n = 16) or sterile water (control group, n = 14) subcutaneously for 10 days before ischemia-reperfusion. Rats were then subjected to 45 minutes of left coronary artery occlusion and 2 hours of reperfusion. The 2 groups had identical areas at risk: treated 38 +/- 3%; controls 38 +/- 2%. The amount of necrosis was smaller in the mildronate group at 16 +/- 2% of the left ventricle versus controls, 22 +/- 2% (P = 0.05); and for any amount of risk >25%, necrosis was smaller in the treated group (P = 0.0035). Myocardial IS (% of risk zone) was 43+/-3% in the mildronate-treated rats, and 57+/-4% in controls (P = 0.004). During occlusion, there were no differences between the 2 groups in heart rate (216 +/- 12 bpm, mildronate and 210 +/- 9 bpm, control), in mean arterial pressure (60 +/- 2 mm Hg, mildronate and 64 +/- 3 mm Hg, control) or in the frequency of arrhythmias. Our study for the first time demonstrated that a 10-day treatment with mildronate reduced myocardial IS in an experimental model of acute myocardial ischemia, without any effect on hemodynamics.
Collapse
Affiliation(s)
- Casilde Sesti
- The Heart Institute, Good Samaritan Hospital, Keck School of Medicine, University of Southern California, Los Angeles, 90017, USA
| | | | | | | |
Collapse
|
23
|
Atar S, Ye Y, Lin Y, Freeberg SY, Nishi SP, Rosanio S, Huang MH, Uretsky BF, Perez-Polo JR, Birnbaum Y. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol 2006; 290:H1960-8. [PMID: 16339820 DOI: 10.1152/ajpheart.01137.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV·kg−1·day−1 added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group ( P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) × 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF1α; P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.
Collapse
Affiliation(s)
- Shaul Atar
- Division of Cardiology, University of Texas Medical Branch, Galveston, TX 77555-0553, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, Birnbaum Y. Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circ Physiol 2006; 291:H1158-69. [PMID: 16603698 DOI: 10.1152/ajpheart.00096.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We assessed 1) whether pretreatment before ischemia with pioglitazone (Pio) limits infarct size (IS) and whether this protective effect is due to nitric oxide synthase (NOS) and/or prostaglandin production, as has been shown for atorvastatin (ATV); and 2) whether Pio and ATV have synergistic effects on myocardial protection. Sprague-Dawley rats received oral ATV (10 mg.kg-1.day-1), Pio (10 mg.kg-1.day-1), their combination (Pio+ATV), or water alone for 3 days. Additional rats received Pio (10 mg.kg-1.day-1) for 3 days and intravenous SC-58125 [a cyclooxygenase-2 (COX-2) inhibitor] or SC-560 (a COX-1 inhibitor) 15 min before ischemia. Rats underwent 30 min of myocardial ischemia and 4 h of reperfusion, or hearts were harvested for analysis. IS in the Pio and in the ATV groups was significantly smaller than in the sham-treated group. IS in the Pio+ATV group was smaller than in all other groups (P<0.001 vs. each group). The protective effect of Pio was abrogated by SC-58125 but not by SC-560. Pio, ATV, and Pio + ATV increased the expression and activity of cytosolic phospholipase A2 (cPLA2) and COX-2. ATV increased phosphorylated-Akt, phosphorylated-endothelial NOS (P-eNOS), inducible NOS, and COX-2 levels. In contrast, Pio caused an insignificant increase in myocardial levels of phosphorylated-Akt but did not change P-eNOS and iNOS expression. In conclusion, the IS-limiting effects of Pio and ATV involve COX-2. However, the upstream steps differ. ATV induced eNOS phosphorylation and iNOS, cPLA2, and COX-2 expression, whereas Pio induced mainly the expression and activity of cPLA2. The effects of Pio and ATV were additive.
Collapse
Affiliation(s)
- Yumei Ye
- Division of Cardiology, Department of Biochemistry and Molecular Genetics, University of Texas Medical Branch, 5.106 John Sealy Annex, 301 Univ. Blvd., Galveston, Texas 77555-0553, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zheng X, Hu SJ. Effects of simvastatin on cardiohemodynamic responses to ischemia–reperfusion in isolated rat hearts. Heart Vessels 2006; 21:116-23. [PMID: 16550313 DOI: 10.1007/s00380-005-0868-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 09/10/2005] [Indexed: 10/24/2022]
Abstract
Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has long been thought to exert its benefits by reducing cholesterol synthesis, and has been shown to significantly reduce cardiovascular events and mortality in patients with or without coronary artery disease. However, it is still unknown whether acute administration of simvastatin beneficially affects the cardiac function prior or during ischemia-reperfusion. The aim of this study is to evaluate the cardioprotective effect of acute simvastatin treatment on isolated rat hearts or isolated ischemia-reperfusion hearts. Hearts were isolated from male Sprague-Dawley rats and attached to a Langendorff apparatus. The isolated hearts with or without ischemia (15 min) and reperfusion (60 min) were perfused with different concentrations of simvastatin. The parameters of cardiac function (such as left ventricular developed pressure [LVDP], +dp/dt max, and -dp/dt max), heart rate, and coronary flow were recorded. Simvastatin (3-30 micromol/l) significantly increased LVDP, +dp/dt max, and -dp/dt max in isolated rat hearts perfused for 60 min. Heart rate was depressed by 30 micromol/l simvastatin and the coronary flow was increased by 10 and 30 micromol/l simvastatin. At a concentration of 100 micromol/l simvastatin, worsening of heart function and subsequent cardiac arrest occurred. Administration of simvastatin (3-30 micromol/l) significantly preserved cardiac function detected by LVDP, +dp/dt max, and -dp/dt max in the isolated ischemia/reperfused (15/60 min) rat hearts. Simvastatin also significantly decreased heart rate at 30 micromol/l, and increased coronary flow at 10 and 30 micromol/l in these rat hearts. However, the protective effect of simvastatin reverted to increased damage at 100 micromol/l. Only 3 micromol/l simvastatin pretreatment before 15/60 min ischemia-reperfusion altered LVDP, +dp/dt max, and -dp/dt max. Both heart rate and coronary flow were unaltered after simvastatin pretreatment. Since simvastatin at a concentration lower than 100 micromol/l exerted beneficial effects on cardiac function in isolated perfused rat hearts, it could be applied just after myocardial ischemia and reperfusion.
Collapse
Affiliation(s)
- Xia Zheng
- Cardiovascular Department, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
26
|
Rosanio S, Ye Y, Atar S, Rahman AM, Freeberg SY, Huang MH, Uretsky BF, Birnbaum Y. Enhanced Cardioprotection Against Ischemia-Reperfusion Injury with Combining Sildenafil with Low-Dose Atorvastatin. Cardiovasc Drugs Ther 2006; 20:27-36. [PMID: 16435070 DOI: 10.1007/s10557-005-5203-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Both ATV and SL reduce myocardial infarct size (IS) by enhancing expression and activity of NOS isoforms. We investigated whether atorvastatin (ATV) and sildenafil (SL) have synergistic effects on myocardial infarct size (IS) reduction and enhancing nitric oxide synthase (NOS) expression. METHOD Rats were randomized to nine groups: ATV-1 (1 mg/kg/d); ATV-10 (10 mg/kg/d); SL-0.7 (0.7 mg/kg); SL-1 (1 mg/kg); ATV-1 + SL-0.7; water alone (controls); 1400W (iNOS inhibitor; 1 mg/kg); ATV-10 + 1400W; and ATV-1 + SL-0.7 + 1400W. ATV was administered orally for 3 days. SL was administered intraperitoneally 18 h before surgery and 1400W intravenously 15 min before surgery. Rats either underwent 30 min ischemia-4 h reperfusion or the hearts were explanted for immunoblotting and enzyme activity tests without being exposed to ischemia. RESULTS IS (% risk area, mean +/- SEM) was smaller in the ATV-10 (13 +/- 1%), SL-1 (11 +/- 2%), SL-0.7 (18 +/- 2%) and ATV-1 + SL-0.7 (9 +/- 1%) groups as compared with controls (34 +/- 3%; P < 0.001), whereas ATV-1 had no effect (29 +/- 2%). ATV-1 + SL-0.7 (9 +/- 1%) reduced IS more than SL-0.7 alone (p = 0.012). 1400W abrogated the protective effect of ATV-10 (35 +/- 3%) and ATV-1 + SL-0.7 (34 +/- 1%). SL-0.7 and ATV-10 increased phosphorylated endothelial (P-eNOS; 210 +/- 2.5% and 220 +/- 8%) and inducible (iNOS; 151 +/- 1% and 154 +/- 1%) NOS expression, whereas ATV-1 did not. These changes were significantly enhanced by ATV-1 + SL-0.7 (P-eNOS, 256 +/- 2%, iNOS 195 +/- 1%). SL-1 increased P-eNOS (311 +/- 22%) and iNOS (185 +/- 1%) concentrations. CONCLUSIONS Combining low-dose ATV with SL augments the IS limiting effects through enhanced P-eNOS and iNOS expression.
Collapse
Affiliation(s)
- Salvatore Rosanio
- The Department of Internal Medicine, Division of Cardiology, The University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|