1
|
Canzian J, Gonçalves FLS, Müller TE, Franscescon F, Santos LW, Adedara IA, Rosemberg DB. Zebrafish as a potential non-traditional model organism in translational bipolar disorder research: Genetic and behavioral insights. Neurosci Biobehav Rev 2022; 136:104620. [PMID: 35300991 DOI: 10.1016/j.neubiorev.2022.104620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
Bipolar disorder (BD) is a severe and debilitating illness that affects 1-2% of the population worldwide. BD is characterized by recurrent and extreme mood swings, including mania/hypomania and depression. Animal experimental models have been used to elucidate the mechanisms underlying BD and different strategies have been proposed to assess BD-like symptoms. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the genetic tractability, molecular/physiological conservation, and well-characterized behavioral responses. In this review, we discuss how zebrafish-based models can be successfully used to understand molecular, biochemical, and behavioral alterations paralleling those found in BD. We also outline some advantages and limitations of this aquatic species to examine BD-like phenotypes in translational neurobehavioral research. Overall, we reinforce the use of zebrafish as a promising tool to investigate the neural basis associated with BD-like behaviors, which may foster the discovery of novel pharmacological therapies.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L S Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
2
|
Verhoeven WMA, Tuinier S. Clinical perspectives on the genetics of schizophrenia: a bottom-up orientation. Neurotox Res 2009; 14:141-50. [PMID: 19073422 DOI: 10.1007/bf03033806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phenomenology has been the reference point that investigators have used in their efforts to understand schizophrenia. Although symptoms and signs are crucial for the diagnosis of schizophrenia, there is an ongoing debate since Kraepelin attempted to group symptoms to understand the etiology of schizophrenia. Several operational criteria have been developed to establish the diagnosis of schizophrenia, making it obvious that there are no precise symptomatological boundaries. There is little clear indication which of the systems is valid for genetic and other biological research. Despite the enormous effort to find a linkage between schizophrenia and one or more loci, the results are far from conclusive. Another approach is the search for candidate genes of which DICS1 and 22q11 deletion syndrome are examples. In all studies into the genetic underpinnings of schizophrenia, however, the clinical vantage point is neglected in that a broad clinical phenotype with respect to, e.g., developmental issues, symptoms and comorbidity is narrowed down to one categorical diagnosis. This is illustrated by the lack of exclusion criteria in genetic studies and by the occurrence of schizophrenia-like psychoses in a broad array of genetic syndromes. In case of 22q11 deletion syndrome, the psychotic symptoms emerge in the context of brain anomalies, a plethora of somatic abnormalities and specific neurocognitive deficits. Prader-Willi syndrome is a hypothalamic disorder in which psychotic symptoms may occur that resemble schizophrenia. It is concluded that not only schizophrenia is a highly variable disease but that the genetic samples are even much more heterogeneous.
Collapse
Affiliation(s)
- Willem M A Verhoeven
- Vincent van Gogh Institute for Psychiatry, Department of Clinical Research, Venray, The Netherlands.
| | | |
Collapse
|
3
|
Venken T, Alaerts M, Souery D, Goossens D, Sluijs S, Navon R, Van Broeckhoven C, Mendlewicz J, Del-Favero J, Claes S. Chromosome 10q harbors a susceptibility locus for bipolar disorder in Ashkenazi Jewish families. Mol Psychiatry 2008; 13:442-50. [PMID: 17579605 DOI: 10.1038/sj.mp.4002039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report the results of a 10 cM density genome-wide scan and further fine mapping of three chromosomal candidate regions in 10 Belgian multigenerational families with bipolar (BP) disorder. This two-stage approach revealed significant evidence for linkage on chromosome 10q21.3-10q22.3, showing a maximum multipoint parametric heterogeneity logarithm of odds (HLOD) score of 3.28 and a nonparametric linkage (NPL) score of 4.00. Most of the chromosome 10q evidence was derived from a single, large Ashkenazi Jewish pedigree. Haplotype analysis in this pedigree shows that the patients share a 14-marker haplotype, defining a chromosomal candidate region of 19.2 cM. This region was reported previously as a candidate region for BP disorder in several independent linkage analysis studies and in one large meta-analysis. It was also implicated in a linkage study on schizophrenia (SZ) in Ashkenazi Jewish families. Additionally, we found suggestive evidence for linkage on chromosome 19q13.2-13.4 (HLOD 2.01, NPL 1.09) and chromosome 7q21-q22 (HLOD 1.45, NPL 2.28). Together, these observations suggest that a gene located on chromosome 10q21.3-10q22.3 is underlying the susceptibility both for SZ and for BP disorder in at least the Ashkenazi Jewish population.
Collapse
Affiliation(s)
- T Venken
- Department of Molecular Genetics, Flanders Institute for Biotechnology VIB, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Korpi ER, Debus F, Linden AM, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W, Lüddens H. Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol 2007; 41:163-76. [PMID: 17591542 DOI: 10.1016/j.alcohol.2007.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/17/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
In rodent models, gamma-aminobutyric acid A (GABAA) receptors with the alpha6 and delta subunits, expressed in the cerebellar and cochlear nucleus granule cells, have been linked to ethanol sensitivity and voluntary ethanol drinking. Here, we review the findings. When considering both in vivo contributions and data on cloned receptors, the evidence for direct participation of the alpha6-containing receptors to increased ethanol sensitivity is poor. The alpha6 subunit-knockout mouse lines do not have any changed sensitivity to ethanol, although these mice do display increased benzodiazepine sensitivity. However, in general the compensations occurring in knockout mice (regardless of which particular gene is knocked out) tend to fog interpretations of drug actions at the systems level. For example, the alpha6 knockout mice have increased TASK-1 channel expression in their cerebellar granule cells, which could influence sensitivity to ethanol in the opposite direction to that obtained with the alpha6 knockouts. Indeed, TASK-1 knockout mice are more impaired than wild types in motor skills when given ethanol; this might explain why GABAA receptor alpha6 knockout mice have unchanged ethanol sensitivities. As an alternative to studying knockout mice, we examined the claimed delta subunit-dependent/gamma2 subunit-independent ethanol/[3H]Ro 15-4513 binding sites on GABAA receptors. We looked at [3H]Ro 15-4513 binding in HEK 293 cell membrane homogenates containing rat recombinant alpha6/4beta3delta receptors and in mouse brain sections. Specific high-affinity [3H]Ro 15-4513 binding could not be detected under any conditions to the recombinant receptors or to the cerebellar sections of gamma2(F77I) knockin mice, nor was this binding to brain sections of wild-type C57BL/6 inhibited by 1-100 mM ethanol. Since ethanol may act on many receptor and channel protein targets in neuronal membranes, we consider the alpha6 (and alpha4) subunit-containing GABAA receptors unlikely to be directly responsible for any major part of ethanol's actions. Therefore, we finish the review by discussing more generally alcohol and GABAA receptors and by suggesting potential future directions for this research.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dean B, Scarr E, McLeod M. Changes in hippocampal GABAA receptor subunit composition in bipolar 1 disorder. ACTA ACUST UNITED AC 2005; 138:145-55. [PMID: 15950312 DOI: 10.1016/j.molbrainres.2005.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 03/11/2005] [Accepted: 04/17/2005] [Indexed: 01/28/2023]
Abstract
Postmortem CNS studies have suggested an uncoupling of the gamma-aminobutyric acid (GABA) and benzodiazepine binding sites on the hippocampal GABA(A) receptor in schizophrenia. The GABA(A) receptor is an assembly of discrete subunits that form a ligand-gated ion channel, the binding characteristics of which are defined by receptor subunit composition. Thus, a likely explanation for an uncoupling between the GABA and benzodiazepine binding sites on the GABA(A) receptor would be a change in receptor subunit composition. To test this hypothesis we measured the density of GABA ([(3)H]muscimol) and benzodiazepine ([(3)H]flumazenil) binding sites on the GABA(A) receptor in hippocampi, obtained postmortem, from schizophrenic, bipolar I disorder and control subjects. In addition, we measured the amount of [(3)H]flumazenil binding that could be displaced with zolpidem and clonazepam. Levels of both [(3)H]muscimol and [(3)H]flumazenil binding were significantly decreased in part of the CA2 from subjects with schizophrenia; the decrease in [(3)H]flumazenil being due to decreases in both zolpidem-sensitive and -insensitive radioligand binding. There were complex regionally specific changes in [(3)H]muscimol binding in the hippocampus from subjects with bipolar I disorder but there were no significant changes in the overall levels of [(3)H]flumazenil binding. There were significant decreases in zolpidem-sensitive and increases in zolpidem-insensitive [(3)H]flumazenil binding in most regions of the sections of the hippocampal formation studied in bipolar I disorder. Unlike [(3)H]flumazenil, zolpidem does not bind to the alpha5 subunit of the GABA(A) receptor; therefore, we postulate that there is an increase in GABA(A) receptors containing alpha5 subunit in the hippocampus from subjects with bipolar I disorder.
Collapse
Affiliation(s)
- Brian Dean
- The Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
6
|
Korpi ER, Sinkkonen ST. GABA(A) receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 2005; 109:12-32. [PMID: 15996746 DOI: 10.1016/j.pharmthera.2005.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 12/30/2022]
Abstract
The main inhibitory neurotransmitter system in the brain, the gamma-aminobutyric acid (GABA) system, is the target for many clinically used drugs to treat, for example, anxiety disorders and epilepsy and to induce sedation and anesthesia. These drugs facilitate the function of pentameric A-type GABA (GABA(A)) receptors that are extremely widespread in the brain and composed from the repertoire of 19 subunit variants. Modern genetic studies have found associations of various subunit gene polymorphisms with neuropsychiatric disorders, including alcoholism, schizophrenia, anxiety, and bipolar affective disorder, but these studies are still at their early phase because they still have failed to lead to validated drug development targets. Recent neurobiological studies on new animal models and receptor subunit mutations have revealed novel aspects of the GABA(A) receptors, which might allow selective targeting of the drug action in receptor subtype-selective fashion, either on the synaptic or extrasynaptic receptor populations. More precisely, the greatest advances have occurred in the clarification of the molecular and behavioral mechanisms of action of the GABA(A) receptor agonists already in the clinical use, such as benzodiazepines and anesthetics, rather than in the introduction of novel compounds to clinical practice. It is likely that these new developments will help to overcome the present problems of the chronic treatment with nonselective GABA(A) agonists, that is, the development of tolerance and dependence, and to focus the drug action on the neurobiologically and neuropathologically relevant substrates.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, P.O. Box 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
7
|
Otani K, Ujike H, Tanaka Y, Morita Y, Katsu T, Nomura A, Uchida N, Hamamura T, Fujiwara Y, Kuroda S. The GABA type A receptor alpha5 subunit gene is associated with bipolar I disorder. Neurosci Lett 2005; 381:108-13. [PMID: 15882799 DOI: 10.1016/j.neulet.2005.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 02/02/2005] [Accepted: 02/04/2005] [Indexed: 11/30/2022]
Abstract
Several genetic studies have revealed that bipolar disorders are linked with the chromosomal locus of 15q11-q13, where the gamma-aminobutyric acid (GABA) receptor alpha5 subunit gene (GABRA5) locates. GABA is one of the major neurotransmitters that may be involved in the pathogenesis of bipolar disorder. Five polymorphisms in the GABRA5 gene, -754C>T in the promoter region, IVS1-21G>A, IVS2-26T>A, (*)302C>T in 3'-UTR of exon 5, and a CA repeat polymorphism in the 3' flanking region were examined in a Japanese population. IVS1-21G>A exhibited significant differences in the distribution of the genotype and allele frequency in bipolar I disorder patients but not in bipolar II disorder patients, compared with control subjects. The haplotype analysis showed that IVS1-21G>A/IVS2-26A>T was associated with bipolar I disorder, and the IVS1-21A/IVS2-26T haplotype was a negative risk factor for susceptibility to the disorders (odds ratio: 0.57, 95% confidence interval: 0.44-0.73). These results suggest that the GABRA5 gene may confer susceptibility to bipolar I disorder.
Collapse
Affiliation(s)
- Kyohei Otani
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho 2-5-1, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ambrósio AM, Kennedy JL, Macciardi F, King N, Azevedo MH, Oliveira CR, Pato CN. A linkage study between the GABAA beta2 and GABAA gamma2 subunit genes and major psychoses. CNS Spectr 2005; 10:57-61. [PMID: 15618948 DOI: 10.1017/s1092852900009913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alterations of the gamma-aminobutyric acid (GABA) system have been implicated in the pathophysiology of major psychoses. OBJECTIVE Restriction fragment length polymorphisms associated with the human gamma-aminobutyric acid type A (GABAA) beta2 and GABAA gamma2 subunit genes on chromosome 5q32-q35 were tested to determine whether they confer susceptibility to major psychoses. METHODS Thirty-two schizophrenic families and 25 bipolar families were tested for linkage. RESULTS Nonparametric linkage (NPL) analysis performed by GENEHUNTER showed no significant NPL scores for both genes in schizophrenia (GABAA beta2: NPL narrow= -0.450; NPL broad= -0.808; GABAA gamma2: NPL narrow=0.177; NPL broad= -0.051) or bipolar disorder (GABAA beta2: NPL narrow=0.834; NPL broad=0.783; GABAA gamma2: NPL narrow= -0.159; NPL broad=0.070). CONCLUSION Linkage analysis does not support the hypothesis that variants within the GABAA beta2 and GABAA gamma2 genes are significantly linked to major psychoses in a Portuguese population.
Collapse
Affiliation(s)
- Alda M Ambrósio
- Unit of Clinical and Molecular Genetics, National Institute of Legal Medicine, Faculty of Medicine, University of Coimbra, Largo da Se Nova, 3000-213 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The authors review the available literature on the preclinical and clinical studies involving GABAergic neurotransmission in mood disorders. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter present almost exclusively in the central nervous system (CNS), distributed across almost all brain regions, and expressed in interneurons modulating local circuits. The role of GABAergic dysfunction in mood disorders was first proposed 20 years ago. Preclinical studies have suggested that GABA levels may be decreased in animal models of depression, and clinical studies reported low plasma and CSF GABA levels in mood disorder patients. Also, antidepressants, mood stabilizers, electroconvulsive therapy, and GABA agonists have been shown to reverse the depression-like behavior in animal models and to be effective in unipolar and bipolar patients by increasing brain GABAergic activity. The hypothesis of reduced GABAergic activity in mood disorders may complement the monoaminergic and serotonergic theories, proposing that the balance between multiple neurotransmitter systems may be altered in these disorders. However, low GABAergic cortical function may probably be a feature of a subset of mood disorder patients, representing a genetic susceptibility. In this paper, we discuss the status of GABAergic hypothesis of mood disorders and suggest possible directions for future preclinical and clinical research in this area.
Collapse
Affiliation(s)
- P Brambilla
- Biological Psychiatry Unit, IRCCS S Giovanni di Dio, Fatebenefratelli, Brescia, Italy.
| | | | | | | | | |
Collapse
|
10
|
Georgieva L, Dimitrova A, Nikolov I, Koleva S, Tsvetkova R, Owen MJ, Toncheva D, Kirov G. Dopamine transporter gene (DAT1) VNTR polymorphism in major psychiatric disorders: family-based association study in the Bulgarian population. Acta Psychiatr Scand 2002; 105:396-9. [PMID: 11942948 DOI: 10.1034/j.1600-0447.2002.1o174.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE A 40-bp variable number tandem repeat in the 3'-UTR of dopamine transporter gene (DAT1) has been examined for association with major psychiatric disorders in several case-control studies. No significant results have been found. We used a new collection of parent-offspring trios to test for association with schizophrenia (SZ), bipolar 1 disorder (BPI) and schizoaffective (SA) disorder. METHOD We genotyped trios from Bulgarian origin where the proband had SZ (178 trios), BPI (77 trios) and SA (29 trios). Alleles ranging from 5 to 11 repeats were observed. The results were analysed with the extended TDT (ETDT). RESULTS No preferential transmission of alleles was observed for any diagnostic group. The presence of allele DAT*10 was associated with the severity and frequency of auditory hallucinations, however, this result is not significant if corrected for multiple testing. CONCLUSION Our results are in agreement with previous reports of a lack of association between this polymorphism and major psychiatric disorders.
Collapse
Affiliation(s)
- L Georgieva
- Department of Medical Genetics, Medical University Sofia, 2 Zdrave Street, 1431 Sofia, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Massat I, Souery D, Del-Favero J, Van Gestel S, Serretti A, Macciardi F, Smeraldi E, Kaneva R, Adolfsson R, Nylander PO, Blackwood D, Muir W, Papadimitriou GN, Dikeos D, Oru? L, Segman RH, Ivezi? S, Aschauer H, Ackenheil M, Fuchshuber S, Dam H, Jakovljevi? M, Peltonen L, Hilger C, Hentges F, Staner L, Milanova V, Jazin E, Lerer B, Van Broeckhoven C, Mendlewicz J. Positive association of dopamine D2 receptor polymorphism with bipolar affective disorder in a European multicenter association study of affective disorders. ACTA ACUST UNITED AC 2002. [DOI: 10.1002/ajmg.10118] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Elvidge G, Jones I, McCandless F, Asherson P, Owen MJ, Craddock N. Allelic variation of a BalI polymorphism in the DRD3 gene does not influence susceptibility to bipolar disorder: results of analysis and meta-analysis. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:307-11. [PMID: 11378841 DOI: 10.1002/ajmg.1353] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bipolar disorder is a major psychiatric illness that has evidence for a significant genetic contribution toward its development. In recent years, the BalI RFLP (restriction fragment length polymorphism) in the dopamine D3 receptor gene has been examined as a possible susceptibility factor for both schizophrenia and bipolar disorder. While analysis in schizophrenia has produced examples of increased homozygosity in patients, less encouraging results have been found for bipolar disorder. Recently, however, a family-based association study has found a significant excess of allele 1 and allele 1-containing genotypes in transmitted alleles to bipolar probands over nontransmitted controls. In a large bipolar case control sample (n = 454), we have been unable to replicate the family-based association study (chi-square = 0.137, P = 0.71, 1 df) or detect an effect similar to the positive homozygosity findings in schizophrenia (chi-square = 0.463, P = 0.50, 1 df). A meta-analysis of previous association studies also revealed no difference in allele distributions between bipolar patients and controls for this polymorphism in ethnically homogeneous samples (odds ratio, OR, = 1.04; P = 0.60; 95% confidence interval, CI, = 0.89-1.20). In view of this evidence, we conclude that variation at the BalI RFLP is not an important factor influencing the susceptibility to bipolar disorder. It remains possible, however, that other sequence variations within the DRD3 gene could play a role.
Collapse
Affiliation(s)
- G Elvidge
- Department of Psychiatry, University of Birmingham, Queen Elizabeth Psychiatric Hospital, Birmingham, England
| | | | | | | | | | | |
Collapse
|
13
|
Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Stefanis CN. GABA-A receptor beta3 and alpha5 subunit gene cluster on chromosome 15q11-q13 and bipolar disorder: a genetic association study. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:317-20. [PMID: 11378843 DOI: 10.1002/ajmg.1354] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is accumulated evidence that the genes coding for the receptor of gamma aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the CNS, may be involved in the pathogenesis of affective disorders. In a previous study, we have found a genetic association between the GABA-A receptor alpha5 subunit gene locus (GABRA5) on chromosome 15q11-of 13 and bipolar affective disorder. The aim of the present study was to examine the same subjects to see if there exists a genetic association between bipolar affective disorder and the GABA receptor beta3 subunit gene (GABRB3), which is located within 100 kb from GABRA5. The sample consisted of 48 bipolar patients compared to 44 controls (blood donors). All subjects were Greek, unrelated, and personally interviewed. Diagnosis was based on DSM-IV and ICD-10 criteria. The marker used was a dinucleotide (CA) repeat polymorphism with 12 alleles 179 to 201 bp long; genotyping was successful in all patients and 43 controls. The distribution of GABRB3 genotypes among the controls did not deviate significantly from the Hardy-Weinberg equilibrium. No differences in allelic frequencies between bipolar patients and controls were found for GABRB3, while this locus and GABRA5 did not seem to be in significant linkage disequilibrium. In conclusion, the GABRB3 CA-repeat polymorphism we investigated does not present the observed association between bipolar affective illness and GABRA5. This could be due to higher mutation rate in the GABRB3 CA-repeat polymorphism, but it might also signify that GABRA5 is the gene actually associated with the disease.
Collapse
Affiliation(s)
- G N Papadimitriou
- Department of Psychiatry, Clinical and Molecular Neurogenetics Unit, Eginition Hospital, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
14
|
Muir WJ, Thomson ML, McKeon P, Mynett-Johnson L, Whitton C, Evans KL, Porteous DJ, Blackwood DH. Markers close to the dopamine D5 receptor gene (DRD5) show significant association with schizophrenia but not bipolar disorder. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:152-8. [PMID: 11304828 DOI: 10.1002/1096-8628(2001)9999:9999<::aid-ajmg1163>3.0.co;2-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Following the description of linkage of markers at chromosome 4p16 to bipolar disorder in several families [Blackwood et al., 1996], and the association of the alleles of a polymorphism closely linked to D5 dopamine receptor gene with schizophrenia [Williams et al., 1997], we have looked for linkage disequilibrium between a series of microsatellite markers from this region and major psychoses including schizophrenia, bipolar disorder, and unipolar major depressive disorder. A significant increase in the frequency of the 148 bp allele of DRD5 (P = 0.024) and the 244 bp allele of D4S615 (P = 0.001) was found in patients with schizophrenia (n = 158 DRD5; n = 133 D4S615), compared with patients with bipolar disorder (n = 270 DRD5; n = 107 D4S615), or controls without psychiatric illness (n = 437 DRD5; n = 309 D4S615). The frequency of the 148 bp allele of DRD5 was also increased in schizophrenia over unipolar major depressive disorder (n = 65). D4S615 was not typed in unipolar disorder. The estimated odds ratios confirmed that the 148 bp allele of DRD5 and the 244 bp allele of D4S615 conferred increased risk of schizophrenia. Estimated Haplotype (EH) analysis of 174 controls and 128 patients with schizophrenia who were typed for both markers confirmed the strong associations with these alleles but did not show evidence that the markers were in linkage disequilibrium with each other even though they lie approximately 150 kb apart. The data are consistent with an association between markers close to the D5 dopamine receptor and schizophrenia, but not bipolar disorder or unipolar major depression.
Collapse
Affiliation(s)
- W J Muir
- Department of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Serretti A, Macciardi F, Cusin C, Lattuada E, Souery D, Lipp O, Mahieu B, Van Broeckhoven C, Blackwood D, Muir W, Aschauer HN, Heiden AM, Ackenheil M, Fuchshuber S, Raeymaekers P, Verheyen G, Kaneva R, Jablensky A, Papadimitriou GN, Dikeos DG, Stefanis CN, Smeraldi E, Mendlewicz J. Linkage of mood disorders with D2, D3 and TH genes: a multicenter study. J Affect Disord 2000; 58:51-61. [PMID: 10760558 DOI: 10.1016/s0165-0327(99)00112-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND It has been suggested that the dopaminergic system is involved in the pathophysiology of mood disorders. We conducted a multicenter study of families with mood disorders, to investigate a possible linkage with genes coding for dopamine receptor D2, dopamine receptor D3 and tyrosine hydroxylase (TH). METHODS Twenty three mood disorder pedigrees collected within the framework of the European Collaborative Project on Affective Disorders were analyzed with parametric and non-parametric linkage methods. Various potential phenotypes were considered, from a narrow (only bipolar as affected) to a broad (bipolar+major depressive+schizoaffective disorders) definition of affection status. RESULTS Parametric analyses excluded linkage for all the candidate genes, even though small positive LOD (Limit of Detection) scores were observed for TH in three families. Non-parametric analyses yielded negative results for all markers. CONCLUSION The D2 and D3 dopamine receptors were, therefore, not a major liability factor for mood disorders in our sample, whereas TH may play a role in a subgroup of patients.
Collapse
Affiliation(s)
- A Serretti
- Istituto Scientifico Ospedale San Raffaele, Department of Neuropsychiatric Sciences, University of Milan School of Medicine, Via Luigi Prinetti 29, 20127, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gorwood P, Bellivier F, Adès J, Leboyer M. The DRD2 gene and the risk for alcohol dependence in bipolar patients. Eur Psychiatry 2000; 15:103-8. [PMID: 10881206 DOI: 10.1016/s0924-9338(00)00205-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high co-morbidity between bipolar disorder and alcohol dependence may have different explanations, one of them being the existence of common genetic factors for the two disorders. Several candidate genes may be involved but the genes acting in the dopaminergic pathway may be more specifically involved. We have thus tested the role of the gene encoding the D2 dopamine receptor (TaqI A1 allele) in the potentially shared vulnerability to alcohol dependence and bipolar disorder. One hundred and twenty-two French (for at least two generations) patients were recruited on the basis of hospital or outpatient files and were interviewed with the DIGS. The A1 allele frequencies were compared between four groups, namely, with bipolar patients and co-morbid alcohol dependence (N = 21), with bipolar patients without alcohol morbidity (N = 31), with alcohol dependence without mood disorder (N = 35) and unaffected controls (N = 35). The Hardy Weinberg equilibrium for the DRD2 Taq1 A1 genotypes was respected for the sample as a whole, and for each subsample. We observed that 42.9% of control subjects have at least one A1 allele, a frequency which is not significantly different from the one observed in the affected sample as a whole (39.1%), neither from patients with alcohol dependence (37.1%), patients with bipolar disorder (48.4%) nor patients with alcohol dependence and bipolar disorder (28.6%). The regression analysis based on the three variables (bipolar disorder, alcohol dependence and interaction between these two disorders) does not explain the presence of the A1 allele of the DRD2 gene. We thus found no evidence for a significant role of the A1 allele of the D2 dopamine receptor gene in the specific association between bipolar disorder and alcohol dependence in our sample.
Collapse
Affiliation(s)
- P Gorwood
- Hospital Louis Mourier (Service de Psychiatrie adulte du Professeur Adès). Colombes 92700, France
| | | | | | | |
Collapse
|
17
|
Serretti A, Lattuada E, Cusin C, Lilli R, Lorenzi C, Smeraldi E. Dopamine D3 receptor gene not associated with symptomatology of major psychoses. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19991015)88:5<476::aid-ajmg8>3.0.co;2-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Serretti A, Lilli R, Lorenzi C, Franchini L, Di Bella D, Catalano M, Smeraldi E. Dopamine receptor D2 and D4 genes, GABA(A) alpha-1 subunit genes and response to lithium prophylaxis in mood disorders. Psychiatry Res 1999; 87:7-19. [PMID: 10512150 DOI: 10.1016/s0165-1781(99)00056-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lithium is an effective prophylactic agent in mood disorders, and genetic factors are likely to modulate individual susceptibility to lithium treatment. The aim of this study is to investigate the influence of dopamine receptor D2 (DRD2), D4 exon 3 (DRD4), and gamma-aminobutyric acid type A (GABA(A)) receptor alpha-1 subunit (GABRA1) gene variants on the efficacy of lithium prophylaxis in mood disorders. Patients with mood disorders (N = 125: bipolar subtype, n = 100; major depressive disorder subtype, n = 25) were followed prospectively for an average of 53 months and were typed for DRD2 (Ser311/Cys311: n = 121, VNTR: n = 63), DRD4 (n = 125) and GABRA1 (n = 61) variants using polymerase chain reaction (PCR) techniques. DRD2, DRD4 and GABRA1 variants were not associated with response to lithium. A trend was observed toward a better outcome of DRD4* 2/4 subjects, but it was due to only two subjects. Consideration of possible stratification effects like gender, polarity, family history, age at onset and duration of lithium treatment did not reveal any association either. DRD2, DRD4 and GABRA1 variants therefore do not appear to be associated with the outcome of lithium prophylaxis in mood disorders.
Collapse
Affiliation(s)
- A Serretti
- Istituto Scientifico Ospedale San Raffaele, Department of Neuropsychiatric Sciences, University of Milan School of Medicine, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Serretti A, Macciardi F, Cusin C, Lattuada E, Lilli R, Di Bella D, Catalano M, Smeraldi E. No interaction of GABAA alpha-1 subunit and dopamine receptor D4 exon 3 genes in symptomatology of major psychoses. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19990205)88:1<44::aid-ajmg8>3.0.co;2-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Vassilopoulos D, Stefanis CN. Association between the GABAA receptor ?5 subunit gene locus (GABRA5) and bipolar affective disorder. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980207)81:1<73::aid-ajmg14>3.0.co;2-t] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|