1
|
Yang Y, Li M, Zou X, Chen C, Zheng S, Fu C, Chen K, Jose PA, Lan C, Liu Y. Role of GRK4 in the regulation of the renal ETB receptor in hypertension. FASEB J 2020; 34:11594-11604. [PMID: 32687659 DOI: 10.1096/fj.201902552r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 01/11/2023]
Abstract
The endothelin receptor type B (ETBR) regulates water and electrolyte balance and blood pressure, in part, by inhibiting renal sodium transport. Our preliminary study found that the ETBR-mediated diuresis and natriuresis are impaired in hypertension with unknown mechanism. Persistently increased activity of G protein-coupled receptor kinase 4 (GRK4), caused by increased expression or genetic variants (eg, GRKγ142V), impairs the ability of the kidney to excrete a sodium load, in part, by impairing renal dopamine D1 receptor function through persistent phosphorylation. Our present study found that although renal ETBR expression was not different between Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs), renal ETBR phosphorylation was higher in SHRs. The role of hyper-phosphorylation in impaired ETBR-function was supported by results in human (h) GRK4γ transgenic mice. Stimulation of ETBR by BQ3020-induced natriuresis in human (h) GRK4γ wild-type (WT) mice. However, in hGRK4γ 142V transgenic mice, the renal ETBR was hyperphosphorylated and ETBR-mediated natriuresis and diuresis were not evident. There were co-localization and co-immunoprecipitation of ETBR and GRK4 in renal proximal tubule (RPT) cells from both WKY and SHRs but was greater in the latter than the former group. SiRNA-mediated downregulation of GRK4 expression, recovered the impaired inhibitory effect of ETBR on Na+ -K+ -ATPase activity in RPT cells from SHR. In vivo downregulation of renal GRK4 expression, via ultrasound-targeted microbubble destruction, decreased ETBR phosphorylation and restored ETBR-mediated natriuresis and diuresis in SHRs. This study provides a mechanism by which GRK4, via regulation of renal ETBR function, participates in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China
| | - Meixiang Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China.,The First People's Hospital of Liangjiang New District, Chongqing, P.R. China
| | - Xue Zou
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Cong Lan
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China
| | - Yukai Liu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Institute of Cardiology, Chongqing, P.R. China.,Chongqing Cardiovascular Clinical Research Center, Chongqing, P.R. China.,The First People's Hospital of Liangjiang New District, Chongqing, P.R. China
| |
Collapse
|
2
|
Ou M, Dang Y, Mazzuca MQ, Basile R, Khalil RA. Adaptive regulation of endothelin receptor type-A and type-B in vascular smooth muscle cells during pregnancy in rats. J Cell Physiol 2014; 229:489-501. [PMID: 24105843 DOI: 10.1002/jcp.24469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/06/2013] [Indexed: 12/26/2022]
Abstract
Normal pregnancy is associated with systemic vasodilation and decreased vascular contraction, partly due to increased release of endothelium-derived vasodilator substances. Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor acting via endothelin receptor type A (ETA R) and possibly type B (ETB R) in vascular smooth muscle cells (VSMCs), with additional vasodilator effects via endothelial ETB R. However, the role of ET-1 receptor subtypes in the regulation of vascular function during pregnancy is unclear. We investigated whether the decreased vascular contraction during pregnancy reflects changes in the expression/activity of ETAR and ETBR. Contraction was measured in single aortic VSMCs isolated from virgin, mid-pregnant (mid-Preg, day 12), and late-Preg (day 19) Sprague-Dawley rats, and the mRNA expression, protein amount, tissue and cellular distribution of ETAR and ETBR were examined using RT-PCR, Western blots, immunohistochemistry, and immunofluorescence. Phenylephrine (Phe, 10(-5) M), KCl (51 mM), and ET-1 (10(-6) M) caused VSMC contraction that was in late-Preg < mid-Preg and virgin rats. In VSMCs treated with ETB R antagonist BQ788, ET-1 caused significant contraction that was still in late-Preg < mid-Preg and virgin rats. In VSMCs treated with the ETAR antagonist BQ123, ET-1 caused a small contraction; and the ETBR agonists IRL-1620 and sarafotoxin 6c (S6c) caused similar contraction that was in late-Preg < mid-Preg and virgin rats. RT-PCR revealed similar ETAR, but greater ETBR mRNA expression in pregnant versus virgin rats. Western blots revealed similar ETAR, and greater protein amount of ETBR in endothelium-intact vessels, but reduced ETBR in endothelium-denuded vessels of pregnant versus virgin rats. Immunohistochemistry revealed prominent ETBR staining in the intima, but reduced ETAR and ETBR in the aortic media of pregnant rats. Immunofluorescence signal for ETAR and ETBR was less in VSMCs of pregnant versus virgin rats. The pregnancy-associated decrease in ETAR- and ETBR-mediated VSMC contraction appears to involve downregulation of ETAR and ETBR expression/activity in VSM, and may play a role in the adaptive vasodilation during pregnancy.
Collapse
Affiliation(s)
- Minghui Ou
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
3
|
Khalil RA. Modulators of the vascular endothelin receptor in blood pressure regulation and hypertension. Curr Mol Pharmacol 2012; 4:176-86. [PMID: 21222646 DOI: 10.2174/1874467211104030176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/19/2010] [Accepted: 09/03/2010] [Indexed: 12/14/2022]
Abstract
Endothelin (ET) is one of the most investigated molecules in vascular biology. Since its discovery two decades ago, several ET isoforms, receptors, signaling pathways, agonists and antagonists have been identified. ET functions as a potent endothelium-derived vasoconstrictor, but could also play a role in vascular relaxation. In endothelial cells, preproET and big ET are cleaved by ET converting enzymes into ET-1, -2, -3 and -4. These ET isoforms bind with different affinities to ET(A) and ET(B) receptors in vascular smooth muscle (VSM), and in turn increase [Ca(2+)](i), protein kinase C and mitogen-activated protein kinase and other signaling pathways of VSM contraction and cell proliferation. ET also binds to endothelial ET(B) receptors and stimulates the release of nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor. ET, via endothelial ET(B) receptor, could also promote ET re-uptake and clearance. While the effects of ET on vascular reactivity and growth have been thoroughly examined, its role in the regulation of blood pressure and the pathogenesis of hypertension is not clearly established. Elevated plasma and vascular tissue levels of ET have been identified in salt-sensitive hypertension and in moderate to severe hypertension, and ET receptor antagonists have been shown to reduce blood pressure to variable extents in these forms of hypertension. The development of new pharmacological and genetic tools could lead to more effective and specific modulators of the vascular ET system for treatment of hypertension and related cardiovascular disease.
Collapse
Affiliation(s)
- Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
4
|
Zhang Y, Fu C, Ren H, He D, Wang X, Asico LD, Jose PA, Zeng C. Impaired stimulatory effect of ETB receptor on D₃ receptor in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Blood Press Res 2011; 34:75-82. [PMID: 21228598 DOI: 10.1159/000323135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activation of renal D₃ receptor induces natriuresis and diuresis in Wistar-Kyoto (WKY) rats; in the presence of ETB receptor antagonist, the natriuretic effect of D₃ receptor in WKY rats is reduced. We hypothesize that ETB receptor activation may regulate D₃ receptor expression in renal proximal tubule (RPT) cells from WKY rats, which is impaired in RPT cells from spontaneously hypertensive rats (SHRs). METHODS D₃ receptor expression was determined by immunoblotting; the D₃/ETB receptor linkage was checked by coimmunoprecipitation; Na(+)-K(+)-ATPase activity was determined as the rate of inorganic phosphate released in the presence or absence of ouabain. RESULTS In RPT cells from WKY rats, the ETB receptor agonist BQ3020 increased D₃ receptor protein. In contrast, in RPT cells from SHRs, BQ3020 did not increase D₃ receptor. There was coimmunoprecipitation between D₃ and ETB receptors in RPT cells from WKY and SHRs. Activation of ETB receptor increased D₃/ETB coimmunoprecipitation in RPT cells from WKY rats, but not from SHRs. The basal levels of D₃/ETB receptor coimmunoprecipitation were greater in RPT cells from WKY rats than in those from SHRs. Stimulation of D₃ receptor inhibited Na(+)-K(+)-ATPase activity, which was augmented by the pretreatment with the ETB receptor agonist BQ3020 in WKY RPT cells, but not in SHR RPT cells. CONCLUSION ETB receptors regulate and physically interact with D₃ receptors differently in WKY rats and SHRs. The impaired natriuretic effect in SHRs may be, in part, related to impaired ETB and D₃ receptor interactions.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Schildroth J, Rettig-Zimmermann J, Kalk P, Steege A, Fähling M, Sendeski M, Paliege A, Lai EY, Bachmann S, Persson PB, Hocher B, Patzak A. Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice. Nephrol Dial Transplant 2010; 26:779-89. [PMID: 20813769 DOI: 10.1093/ndt/gfq534] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Endothelin 1 contributes to renal blood flow control and pathogenesis of kidney diseases. The differential effects, however, of endothelin 1 (ET-1) on afferent (AA) and efferent arterioles (EA) remain to be established. METHODS We investigated endothelin type A and B receptor (ETA-R, ETB-R) functions in the control of AA and EA. Arterioles of ETB-R deficient, rescued mice [ETB(-/-)] and wild types [ETB(+/+)] were microperfused. RESULTS ET-1 constricted AA stronger than EA in ETB(-/-) and ETB(+/+) mice. Results in AA: ET-1 induced similar constrictions in ETB(-/-) and ETB(+/+) mice. BQ-123 (ETA-R antagonist) inhibited this response in both groups. ALA-ET-1 and IRL1620 (ETB-R agonists) had no effect on arteriolar diameter. L-NAME did neither affect basal diameters nor ET-1 responses. Results in EA: ET-1 constricted EA stronger in ETB(+/+) compared to ETB(-/-). BQ-123 inhibited the constriction completely only in ETB(-/-). ALA-ET-1 and IRL1620 constricted only arterioles of ETB(+/+) mice. L-NAME decreased basal diameter in ETB(+/+), but not in ETB(-/-) mice and increased the ET-1 response similarly in both groups. The L-NAME actions indicate a contribution of ETB-R in basal nitric oxide (NO) release in EA and suggest dilatory action of ETA-R in EA. CONCLUSIONS ETA-R mediates vasoconstriction in AA and contributes to vasoconstriction in EA in this mouse model. ETB-R has no effect in AA but mediates basal NO release and constriction in EA. The stronger effect of ET-1 on AA supports observations of decreased glomerular filtration rate to ET-1 and indicates a potential contribution of ET-1 to the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Janice Schildroth
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
D3 dopamine receptor regulation of ETB receptors in renal proximal tubule cells from WKY and SHRs. Am J Hypertens 2009; 22:877-83. [PMID: 19390510 DOI: 10.1038/ajh.2009.80] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The dopaminergic and endothelin systems, by regulating sodium transport in the renal proximal tubule (RPT), participate in the control of blood pressure. The D(3) and ETB receptors are expressed in RPTs, and D(3) receptor function in RPTs is impaired in spontaneously hypertensive rats (SHRs). Therefore, we tested the hypothesis that D(3) receptors can regulate ETB receptors, and that D(3) receptor regulation of ETB receptors in RPTs is impaired in SHRs. METHODS ETB receptor expression in RPT cells was measured by immunoblotting and reverse transcriptase-PCR and ETB receptor function by measuring Na(+)-K(+) ATPase activity. D(3)/ETB receptor interaction was studied by co-immunoprecipitation. RESULTS In Wistar-Kyoto (WKY) RPT cells, the D(3) receptor agonist, PD128907, increased ETB receptor protein expression, effects that were blocked by removal of calcium in the culture medium. The stimulatory effect of D(3) on ETB receptor mRNA and protein expression was also blocked by nicardipine. In contrast, in SHR RPT cells, PD128907 decreased ETB receptor expression. Basal D(3)/ETB receptor co-immunoprecipitation was three times greater in WKY than in SHRs. The absolute amount of D(3)/ETB receptor co-immunoprecipitation induced by a D(3) receptor agonist was also greater in WKY than in SHRs. Stimulation of ETB receptors decreased Na(+)-K(+) ATPase activity in WKY but not in SHR cells. Pretreatment with PD128907 augmented the inhibitory effect of BQ3020 on Na(+)-K(+) ATPase activity in WKY but not in SHR cells. CONCLUSIONS D(3) receptors regulate ETB receptors by physical receptor interaction and govern receptor expression and function. D(3) receptor regulation of ETB receptors is aberrant in RPT cells from SHRs.
Collapse
|
7
|
Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 2008; 86:485-98. [PMID: 18758495 DOI: 10.1139/y08-059] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since its identification as an endothelial cell-derived vasoconstrictor peptide in 1988, endothelin-1, the predominant member of the endothelin peptide family, has received considerable interest in basic medical science and in clinical medicine, which is reflected by more than 20 000 scientific publications on endothelin research in the past 20 years. The story of endothelin is unique as the gene sequences of endothelin receptors and the first receptor antagonists became available within only 4 years of the identification of the peptide sequence. The first clinical study in patients with congestive heart failure was published only 3 years thereafter. Yet, despite convincing experimental evidence of a pathogenetic role for endothelin in development, cell function, and disease, many initial clinical studies on endothelin antagonism were negative. In many of these studies, study designs or patient selection were inadequate. Today, for diseases such as pulmonary hypertension, endothelin antagonist treatment has become reality in clinical medicine, and ongoing clinical studies are evaluating additional indications, such as renal disease and cancer. Twenty years after the discovery of endothelin, its inhibitors have finally arrived in the clinical arena and are now providing us with new options to treat disease and prolong the lives of patients. Possible future indications include resistant arterial hypertension, proteinuric renal disease, cancer, and connective tissue diseases.
Collapse
Affiliation(s)
- Matthias Barton
- Klinik und Poliklinik für Innere Medizin, Departement für Innere Medizin, Universitätsspital Zürich, Zürich, Switzerland.
| | | |
Collapse
|
8
|
Zeng C, Asico LD, Yu C, Villar VAM, Shi W, Luo Y, Wang Z, He D, Liu Y, Huang L, Yang C, Wang X, Hopfer U, Eisner GM, Jose PA. Renal D3 dopamine receptor stimulation induces natriuresis by endothelin B receptor interactions. Kidney Int 2008; 74:750-9. [PMID: 18547994 DOI: 10.1038/ki.2008.247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dopaminergic and endothelin systems participate in the control blood pressure by regulating sodium transport in the renal proximal tubule. Disruption of either the endothelin B receptor (ETB) or D(3) dopamine receptor gene in mice produces hypertension. To examine whether these two receptors interact we studied the Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats by selectively infusing reagents into the right kidney of anesthetized rats. The D(3) receptor agonist (PD128907) caused natriuresis in WKY rats which was partially blocked by the ETB receptor antagonist. In contrast, PD128907 blunted sodium excretion in the SHRs. We found using laser confocal microscopy that the ETB receptor was mainly located in the cell membrane in control WKY cells. Treatment with the D(3) receptor antagonist caused its internalization into intracellular compartments that contained the D(3) receptors. Combined use of D(3) and ETB antagonists failed to internalize ETB receptors in cells from WKY rats. In contrast in SHR cells, ETB receptors were found mainly in internal compartments under basal condition and thus were likely prevented from interacting with the agonist-stimulated, membrane-bound D(3) receptors. Our studies suggest that D(3) receptors physically interact with proximal tubule ETB receptors and that the blunted natriuretic effect of dopamine in SHRs may be explained, in part, by abnormal D(3)/ETB receptor interactions.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Flammer J, Mozaffarieh M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol 2008; 52 Suppl 2:S162-73. [PMID: 17998042 DOI: 10.1016/j.survophthal.2007.08.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glaucomatous optic neuropathy implies loss of neural tissue, activation of glial cells, tissue remodeling, and change of blood flow. The blood flow reduction is not only secondary but has a primary component. Activation of astrocytes leads to an altered microenvironment. An unstable ocular perfusion, either due to IOP fluctuation or a disturbed autoregulation (due to primary vascular dysregulation syndrome) leads to a mild reperfusion injury. The superoxide (O(2)(-)) anion produced in the mitochondria of the axons, fuses with the nitric oxide (NO) diffusing from the astrocytes, leading to the damaging peroxynitrite (ONOO(-)). It is possible that the diffusion of endothelin and metalloproteinases to the surrounding of the optic nerve head leads to a local vasoconstriction and thereby increases the risk for venous occlusion and weakens the blood-brain barrier, which in extreme situations results in splinter hemorrhages. Activated retinal astrocytes can be visualized clinically. The involvement of primary vascular dysregulation in the pathogenesis of glaucomatous optic neuropathy may explain why women, as well as Japanese, suffer more often from normal-tension glaucoma.
Collapse
Affiliation(s)
- Josef Flammer
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
10
|
|
11
|
Orth SR, Schiele G, Banas B, Ritz E, Amann K. Effect of a selective endothelin receptor A blocker on cardiovascular remodeling in uninephrectomized spontaneously hypertensive rats of the stroke-prone strain. Kidney Blood Press Res 2007; 30:400-7. [PMID: 17890870 DOI: 10.1159/000108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/25/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The role of endothelin (ET) in cardiovascular remodeling was investigated by treating uninephrectomized spontaneously hypertensive rats of the stroke-prone strain (UNX-SHRsp) on normal- or high (3%)-salt diet with the selective ET(A) receptor blocker LU 135252. METHODS SHRsp on normal or high salt were sham-operated (n = 10/11) or UNX; UNX received no treatment (n = 10/15) or 100 mg/kg body weight LU 135252 (n = 10/10). Systolic blood pressure (BP) was measured weekly. After perfusion fixation the heart and the aorta were analyzed using quantitative morphological and stereological techniques. RESULTS No effect was seen in normal-salt groups. In high-salt animals UNX caused left ventricular (LV) hypertrophy which was prevented by LU 135252 (p < 0.001). LU 135252 only lowered BP during the last 2 weeks of the 12-week experiment. UNX showed hypertrophic remodeling of intramyocardial arterioles. Treatment with LU 135252 caused lower wall:lumen ratio and wall thickness of LV intramyocardial arterioles (p < 0.01). In the descending thoracic aorta UNX caused thickening of the media. The media area and the wall:lumen ratio were lower in UNX + LU 135252 as compared to untreated UNX (p < 0.01 and p < 0.05, respectively). CONCLUSION In SHRsp UNX causes hypertrophic cardiovascular remodeling only in the presence of salt loading. These effects are largely BP-independent and prevented by ET(A) receptor blockade.
Collapse
Affiliation(s)
- Stephan R Orth
- Department of Internal Medicine II, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Chang MY, Parker E, El Nahas M, Haylor JL, Ong ACM. Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2007; 18:560-9. [PMID: 17202412 DOI: 10.1681/asn.2006090994] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disease that causes kidney failure and accounts for 10% of all patients who are on renal replacement therapy. However, the marked phenotypic variation between patients who carry the same PKD1 or PKD2 mutation suggests that nonallelic factors may have a greater influence on the cystic phenotype. Endothelin-1 (ET-1) transgenic mice have been reported to develop profound renal cystic disease and interstitial fibrosis without hypertension. The hypothesis that ET-1 acts as a modifying factor for cystic disease progression was tested in an orthologous mouse model of ADPKD (Pkd2(WS25/-)). Four experimental groups (n = 8 to 11) were treated from 5 to 16 wk of age with the highly selective orally active receptor antagonists ABT-627 (ETA) and A-192621 (ETB) singly or in combination. Unexpected, ETB blockade led to accelerated cystic kidney disease. Of significance, this was associated with a reduction in urine volume and sodium excretion and increases in urine osmolarity and renal cAMP and ET-1 concentrations. The deleterious effect of chronic ETB blockade was neutralized by simultaneous ETA blockade. ETA blockade alone resulted in a significant increase in tubular cell proliferation but did not alter the cystic phenotype. It is concluded that the balance between ETA and ETB signaling is critical for maintaining tubular structure and function in the cystic kidney. These results implicate ET, acting via vasopressin-dependent and independent pathways, as a major modifying factor for cystic disease progression in human ADPKD.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Academic Nephrology Unit, The Henry Wellcome Laboratories for Medical Research, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road. Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Abstract
Endothelin (ET)-1 is a potent vasoconstrictor peptide with pro-inflammatory, mitogenic, and pro-fibrotic properties that is closely involved in both normal renal physiology and pathology. ET-1 exerts a wide variety of biological effects, including constriction of cortical and medullary vessels, mesangial cell contraction, stimulation of extracellular matrix production, and inhibition of sodium and water reabsorption along the collecting duct, effects that are primarily mediated in an autocrine/paracrine manner. Increasing evidence indicates that the ET system is involved in an array of renal disorders. These comprise chronic proteinuric states associated with progressive glomerular and tubulointerstitial fibrosis, including diabetic and hypertensive nephropathy, glomerulonephritis and others. In addition, ET-1 is causally linked to renal disorders characterized by increased renal vascular resistance, including acute ischaemic renal failure, calcineurin inhibitor toxicity, endotoxaemia, hepatorenal syndrome and others. Furthermore, derangement of the ET system may be involved in conditions associated with inappropriate sodium and water retention; for example, in congestive heart failure and hepatic cirrhosis. Both selective and non-selective ET receptor antagonist have been developed and tested in animal models with promising results. As key events in progressive renal injury like inflammation and fibrosis are mediated via both ET(A) and ET(B) receptors, while constrictor effects are primarily transduced by ET(A) receptors, dual ET receptor blockade may be superior over selective ET(A) antagonism. Several compounds have been developed with remarkable effects in several models of acute and progressive renal injury. Thus, clinical studies are required to assess whether these results can be confirmed in humans, hopefully leading to novel and effective therapeutic options with few side effects.
Collapse
Affiliation(s)
- W Neuhofer
- Department of Physiology, University of Munich, Munich, Germany.
| | | |
Collapse
|
14
|
Tsuruoka S, Watanabe S, Purkerson JM, Fujimura A, Schwartz GJ. Endothelin and nitric oxide mediate adaptation of the cortical collecting duct to metabolic acidosis. Am J Physiol Renal Physiol 2006; 291:F866-73. [PMID: 16705153 DOI: 10.1152/ajprenal.00027.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin (ET) and nitric oxide (NO) modulate ion transport in the kidney. In this study, we defined the function of ET receptor subtypes and the NO guanylate cyclase signaling pathway in mediating the adaptation of the rabbit cortical collecting duct (CCD) to metabolic acidosis. CCDs were perfused in vitro and incubated for 3 h at pH 6.8, and bicarbonate transport or cell pH was measured before and after acid incubation. Luminal chloride was reversibly removed to isolate H(+) and HCO(3)(-) secretory fluxes and to raise the pH of beta-intercalated cells. Acid incubation caused reversal of polarity of net HCO(3)(-) transport from secretion to absorption, comprised of a 40% increase in H(+) secretion and a 75% decrease in HCO(3)(-) secretion. The ET(B) receptor antagonist BQ-788, as well as the NO synthase inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME), attenuated the adaptive decrease in HCO(3)(-) secretion by 40%, but only BQ-788 inhibited the adaptive increase in H(+) secretion. There was no effect of inactive d-NAME or the ET(A) receptor antagonist BQ-123. Both BQ-788 and l-NAME inhibited the acid-induced inactivation (endocytosis) of the apical Cl(-)/HCO(3)(-) exchanger. The guanylate cyclase inhibitor LY-83583 and cGMP-dependent protein kinase inhibitor KT-5823 affected HCO(3)(-) transport similarly to l-NAME. These data indicate that signaling via the ET(B) receptor regulates the adaptation of the CCD to metabolic acidosis and that the NO guanylate cyclase component of ET(B) receptor signaling mediates downregulation of Cl(-)/HCO(3)(-) exchange and HCO(3)(-) secretion.
Collapse
Affiliation(s)
- Shuichi Tsuruoka
- Department of Pharmacology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | |
Collapse
|
15
|
Zeng C, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA. Altered AT
1
Receptor Regulation of ETB Receptors in Renal Proximal Tubule Cells of Spontaneously Hypertensive Rats. Hypertension 2005; 46:926-31. [PMID: 16144989 DOI: 10.1161/01.hyp.0000174595.41637.13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The renin-angiotensin and endothelin systems regulate blood pressure, in part, by affecting renal tubular sodium transport. In rodents, ETB receptors decrease proximal tubular reabsorption, whereas AT
1
receptors produce the opposite effect. We hypothesize that ETB and AT
1
receptors interact at the receptor level, and that the interaction is altered in spontaneously hypertensive rats (SHRs). In immortalized renal proximal tubule (RPT) cells from Wistar-Kyoto (WKY) rats, angiotensin II, via AT
1
receptors, increased ETB receptor protein in a time- and concentration-dependent manner. In contrast, in SHR RPT cells, angiotensin II (10
−8
M/24 hours) had no effect on ETB receptor protein. AT
1
/ETB receptors colocalized and co-immunoprecipitated in both rat strains but long-term angiotensin II (10
−8
M/24 hours) treatment increased AT
1
/ETB co-immunoprecipitation in WKY but not in SHR cells. Short-term angiotensin II (10
−8
M/15 minutes) treatment decreased ETB receptor phosphorylation in both WKY and SHR cells, and increased ETB receptors in RPT cell surface membranes of RPT cells in WKY but not SHRs. Basal cell surface membrane ETB receptor expression was also higher in WKY than in SHRs. We conclude that AT
1
receptors regulate ETB receptors by receptor interaction and modulation of receptor expression. The altered AT
1
receptor regulation of ETB receptors in SHRs may play a role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | |
Collapse
|
16
|
Zeng C, Wang Z, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. Aberrant ETB receptor regulation of AT1 receptors in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Int 2005; 68:623-31. [PMID: 16014039 DOI: 10.1111/j.1523-1755.2005.00440.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The renin-angiotensin and endothelin systems interact to regulate blood pressure, in part, by affecting sodium transport in the kidney. Because angiotensin II type 1 (AT(1)) receptor activation increases ETB receptor expression in renal proximal tubule cells from Wistar-Kyoto (WKY) rat, we hypothesize that ETB receptor activation may also regulate AT(1) receptor expression. Furthermore, ETB receptor regulation of the AT(1) receptor may be different in the WKY and spontaneously hypertensive rat (SHR). METHOD AT(1) and ETB receptors were studied in immortalized renal proximal tubule cells from WKY and SHRs, using immunoblotting, confocal microscopic colocalization, and immunoprecipitation. RESULTS In WKY renal proximal tubule cells, an ETB receptor agonist, BQ3020, decreased AT(1) receptor protein in a time- and concentration-dependent manner [median effective concentration (EC(50)) = 3.2 x 10(-10) mol/L, t(1/2)= 15 hours]. The inhibitory effect of BQ3020 (10(-8) mol/L/24 hours) on AT(1) receptor protein was blocked by an ETB receptor antagonist (BQ788). However, BQ3020 (10(-8) mol/L/24 hours) increased ETB receptor protein in WKY renal proximal tubule cells. In contrast, in SHR renal proximal tubule cells, BQ3020 (10(-8) mol/L/24 hours) no longer affected AT(1) or ETB receptor protein. AT(1)/ETB receptors colocalized and coimmunoprecipitated in WKY and SHRs. BQ3020 (10(-8) mol/L/15 minutes) treatment had no effect on AT(1)/ETB coimmunoprecipitation in WKY but decreased it in SHRs. BQ3020 (10(-8) mol/L/15 minutes) treatment increased AT(1) receptor phosphorylation in WKY, but decreased it in SHRs. CONCLUSION ETB receptors regulate AT(1) receptors by direct physical receptor interaction and receptor expression. An impaired ETB receptor regulation of the AT(1) receptor may participate in the pathogenesis of high blood pressure in the SHR.
Collapse
MESH Headings
- Animals
- Cell Line, Transformed
- Endothelins/pharmacology
- Hypertension, Renal/metabolism
- Immunoprecipitation
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Peptide Fragments/pharmacology
- Phosphorylation/drug effects
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Endothelin B/metabolism
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Quaschning T, Rebhan B, Wunderlich C, Wanner C, Richter CM, Pfab T, Bauer C, Kraemer-Guth A, Galle J, Yanagisawa M, Hocher B. Endothelin B receptor-deficient mice develop endothelial dysfunction independently of salt loading. J Hypertens 2005; 23:979-85. [PMID: 15834283 DOI: 10.1097/01.hjh.0000166838.55688.7e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rodents without a functional endothelin B (ETB) receptor develop salt-sensitive hypertension. The underlying mechanisms, however, are so far unknown. The ETB receptor is involved in endothelial function by modulating the activity of the endothelial nitric oxide synthesis as well as contributing to the control of endothelial prostacyclin synthesis. In the present study, we analysed whether salt alters endothelial function in rescued ETB receptor-deficient mice. We used mice with a rescue of the lethal phenotype of an ETB knockout. These mice were generated by crossbreeding ETB mice with dopamine-hydroxylase ETB transgenic mice. METHODS Adult rescued ETB-deficient mice were kept in parallel with wild-type control animals for 15 days on standard (0.2% NaCl) or salt-enriched (4% NaCl) chow, respectively. Systolic blood pressure was measured by the tail cuff method and endothelium-dependent and endothelium-independent vascular function was assessed in isolated aortic rings under isometric conditions. RESULTS Systolic blood pressure increased on salt-enriched chow in ETB receptor-deficient mice (166 +/- 12 mmHg), but neither in wild-type mice on high-salt diet (128 +/- 11 mmHg; P < 0.05) nor in ETB receptor-deficient mice on standard chow. The heart rate was similar in all groups at any point of time. Endothelium-dependent relaxation was impaired in ETB receptor-deficient mice (74 +/- 3 versus 96 +/- 5% of preconstriction for wild-type mice; P < 0.05) and was not significantly affected by a salt-enriched diet. Endothelium-independent relaxation was similar among all groups. Contractions to endothelin-1 were not significantly influenced by preincubation with the ETB receptor antagonist BQ-788, but were completely blunted by preincubation with the ETA receptor antagonist BQ-123 in all animals. CONCLUSION Rescued ETB receptor-deficient mice develop salt-sensitive hypertension. Nevertheless, in this animal model of ETB receptor deficiency, endothelial function is impaired independent of salt-enriched diet or hypertension. This indicates that, in this model, salt-induced hypertension is not mediated by endothelial dysfunction.
Collapse
|
18
|
Fattal I, Abassi Z, Ovcharenko E, Shimada K, Takahashi M, Hoffman A, Winaver J. Effect of Dietary Sodium Intake on the Expression of Endothelin-Converting Enzyme in the Renal Medulla. ACTA ACUST UNITED AC 2004; 98:p89-96. [PMID: 15627797 DOI: 10.1159/000081557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/06/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Endothelin-converting enzyme (ECE) catalyzes the generation of endothelin-1 (ET-1) from its inactive precursor big-ET-1. Previous studies suggested that the ET-1 system is involved in the regulation of sodium excretion by the kidney. In particular, ET-1 via the ET(B) receptor-mediated signaling has been shown to increase renal medullary blood flow and decrease sodium transport in the collecting duct, both acting to promote renal sodium excretion. The present study was designed to evaluate the possibility that alterations in dietary salt intake may regulate the ECE-1. METHODS Wistar rats were fed for 3 days either with a diet containing low salt (0.01% NaCl), normal salt (0.5% NaCl), or high salt intake, either by high salt diet (4% NaCl) or normal salt diet plus 0.9% saline drinking. The expression of and immunoreactive protein levels of ECE-1 in the renal medulla was studied by RT-PCR, Northern blotting and Western blotting techniques. RESULTS The expression of ECE-1 mRNA (by RT-PCR and Northern blotting), as well as the immunoreactive levels of ECE-1, were significantly higher in the renal medulla of rats exposed to high salt intake than in rats on normal salt diet. CONCLUSION The findings suggest that upregulation of ECE-1, leading to increased generation of ET-1 in the renal medulla, may be a compensatory mechanism promoting enhanced sodium excretion by the kidney in response to high salt intake.
Collapse
Affiliation(s)
- I Fattal
- Department of Physiology and Biophysics, Faculty of Medicine and the Rappaport Family Institute for Research in Medical Sciences, Technion, IIT, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
Larivière R, Lebel M. Endothelin-1 in chronic renal failure and hypertension. Can J Physiol Pharmacol 2003; 81:607-21. [PMID: 12839272 DOI: 10.1139/y03-012] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Investigation into the role of endothelin-1 (ET-1) in renal function has revealed two major direct actions leading to the control of extracellular volume and blood pressure. These are the regulation of renal hemodynamics and glomerular filtration rate and the modulation of sodium and water excretion. In the rat remnant kidney model of chronic renal failure, ET-1 production is increased in blood vessels and renal tissues. These changes are related to an increase in preproET-1 expression and correlate with the rise in blood pressure, the development of cardiovascular hypertrophy, and the degree of renal insufficiency and injury. Selective ETA receptor blockade prevents the progression of hypertension and the vascular and renal damage, supporting a role for ET-1 in chronic renal failure progression. The increase in ET-1 production can be associated with other local mediators, including angiotensin II, transforming growth factor-beta1 and nitric oxide, the local production of which is also altered in chronic renal failure. In human patients with essential hypertension, atherosclerosis, and nephrosclerosis, plasma ET-1 levels are increased compared with patients with uncomplicated essential hypertension. Similarly, plasma ET-1 concentrations are markedly increased in patients with end-stage renal disease undergoing dialysis, and this correlates with blood pressure, suggesting that ET-1 may contribute to hypertension in these patients. The treatment of anemia in patients with renal failure with human recombinant erythropoietin increases blood pressure by accentuating the underlying endothelial dysfunction and the elevated vascular ET-1 production. Overall, these results support a role for ET-1 in hypertension and the end-organ damage associated with chronic renal failure. ETA receptor blockade may then represent a potential target for the management of hypertension and cardiovascular and renal protection.
Collapse
Affiliation(s)
- Richard Larivière
- Research Center and Division of Nephrology, CHUQ, L'Hôtel-Dieu de Québec Hospital, 9 rue McMahon, Québec, QC G1R 2J6, Canada.
| | | |
Collapse
|
20
|
Rothermund L, Traupe T, Dieterich M, Kossmehl P, Yagil C, Yagil Y, Kreutz R. Nephroprotective effects of the endothelin ET(A) receptor antagonist darusentan in salt-sensitive genetic hypertension. Eur J Pharmacol 2003; 468:209-16. [PMID: 12754059 DOI: 10.1016/s0014-2999(03)01714-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We tested the effect of selective endothelin ET(A) receptor blockade on the development renal damage in the Sabra rat model of genetic salt-sensitivity. Animals from the salt-sensitive (SBH/y) and salt-resistant strains (SBN/y) were either salt-loaded with deoxycorticosterone acetate and salt (DOCA) or fed a normal diet. Additional salt-loaded groups were also treated with the selective ET(A) antagonist darusentan (DA). Salt-loading in SBH/y increased systolic blood pressure by 75 mm Hg and urinary albumin excretion 23-fold (P<0.0001). Darusentan attenuated the rise of systolic blood pressure (50%) and urinary albumin excretion (63%, P<0.01, respectively). Salt-loading in SBH/y was associated with significant increased osteopontin mRNA expression as well as glomerulosclerosis and tubulointerstitial damage in the kidney (P<0.05, respectively). This was either significantly reduced or normalized by darusentan (P<0.05, respectively). Thus, darusentan confers a significant renal protection in the Sabra model of salt-sensitive hypertension.
Collapse
MESH Headings
- Albuminuria/complications
- Animals
- Body Weight/drug effects
- Desoxycorticosterone/administration & dosage
- Desoxycorticosterone/pharmacology
- Disease Models, Animal
- Endothelin A Receptor Antagonists
- Endothelin-1/urine
- Hypertension/drug therapy
- Hypertension/genetics
- Kidney
- Kidney Diseases/drug therapy
- Kidney Diseases/prevention & control
- Male
- Organ Size/drug effects
- Osteopontin
- Phenylpropionates/administration & dosage
- Phenylpropionates/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred Strains/genetics
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/drug effects
- Receptor, Endothelin B/metabolism
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/genetics
- Sodium/urine
- Sodium Chloride, Dietary/administration & dosage
- Sodium Chloride, Dietary/adverse effects
Collapse
Affiliation(s)
- Lars Rothermund
- Institut für Klinische Pharmakologie und Toxikologie, Benjamin Franklin Hospital, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Shiraishi N, Kitamura K, Kohda Y, Narikiyo T, Adachi M, Miyoshi T, Iwashita K, Nonoguchi H, Miller RT, Tomita K. Increased endothelin-1 expression in the kidney in hypercalcemic rats. Kidney Int 2003; 63:845-52. [PMID: 12631065 DOI: 10.1046/j.1523-1755.2003.00801.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although hypercalcemia causes diuresis and natriuresis, the molecular mechanisms of these effects are not well established. Recently, the important role of the calcium-sensing receptor (CaR) in hypercalcemia-induced polyuria was reported. Endothelin-1 (ET-1) that is locally produced in the nephron has been suggested to have the natriuretic and/or diuretic effects in the kidney. Therefore, we hypothesized that ET-1 expression could be increased through the activation of CaR in the kidney in hypercalcemia. METHODS Rats were made hypercalcemic by dihydrotachysterol (DHT) treatment. The urinary concentration of ET-1 and the mRNA expression of ET-1 in the kidney were determined. Immunohistochemistry was performed to determine types of the cells that produce ET-1. CaR and ET-1 promoter luciferase constructs were co-expressed in COS-7 cells and the ET-1 promoter activity following the addition of extracellular calcium was measured by the luciferase assay. RESULTS In hypercalcemic rat, urinary ET-1 excretion was increased by twofold, and ET-1 mRNA expression was increased in the kidney cortex by threefold. In cortical collecting duct (CCD), both principal cells and intercalated cells synthesized ET-1. In cells that express CaR, ET-1 promoter was activated in a dose-dependent manner by extracellular calcium over the range of 0.5 to 3.0 mmol/L. CONCLUSIONS First, activation of CaR increases ET-1 transcription in a dose-dependent manner. Second, hypercalcemia increases ET-1 production in the kidney cortex. These data suggest the possibility that CaR might play an important role in hypercalcemia-induced increase in ET-1 production.
Collapse
Affiliation(s)
- Naoki Shiraishi
- Third Department of Internal Medicine, Kumamoto University School of Medicine, Kumamoto, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Naicker S, Naicker T, Bhoola KD. Immunolocalisation of endothelin-1 and its receptors during acute renal allograft rejection. Transplant Proc 2001; 33:1218-20. [PMID: 11267266 DOI: 10.1016/s0041-1345(00)02394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S Naicker
- Department of Medicine, University of Natal Medical School, Durban, South Africa
| | | | | |
Collapse
|