1
|
Xu J, Hu H, Sun Y, Zhao Z, Zhang D, Yang L, Lu Q. The fate of immune complexes in membranous nephropathy. Front Immunol 2024; 15:1441017. [PMID: 39185424 PMCID: PMC11342396 DOI: 10.3389/fimmu.2024.1441017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The most characteristic feature of membranous nephropathy (MN) is the presence of subepithelial electron dense deposits and the consequential thickening of the glomerular basement membrane. There have been great advances in the understanding of the destiny of immune complexes in MN by the benefit of experimental models represented by Heymann nephritis. Subepithelial immune complexes are formed in situ by autoantibodies targeting native autoantigens or exogenous planted antigens such as the phospholipase A2 receptor (PLA2R) and cationic BSA respectively. The nascent immune complexes would not be pathogenic until they develop into immune deposits. Podocytes are the major source of autoantigens in idiopathic membranous nephropathy. They also participate in the modulation and removal of the immune complexes to a large extent. The balance between deposition and clearance is regulated by a wide range of factors such as the composition and physicochemical properties of the immune complexes and the complement system. Complement components such as C3 and C1q have been reported to be precipitated with the deposits whereas a complement regulatory protein CR1 expressed by podocytes is involved in the phagocytosis of immune complexes by podocytes. Podocytes regulate the dynamic change of immune complexes which is disturbed in membranous nephropathy. To elucidate the precise fate of the immune complexes is essential for developing more rational and novel therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Danyuan Zhang
- Qi Huang of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Nephropathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Armbrust T, Millis MP, Alvarez ML, Saremi A, DiStefano JK, Nourbakhsh M. CXCL4L1 Promoter Polymorphisms Are Associated with Improved Renal Function in Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2019; 202:912-919. [PMID: 30593538 DOI: 10.4049/jimmunol.1801086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
Inflammation is a recognized mechanism underlying the pathogenesis of renal dysfunction in type 1 diabetes. Evidence suggests that genetic factors modulate the expression of inflammatory genes, which may lead to an enhanced predisposition to developing renal complications in patients with diabetes. In this study, we examined 55 genetic variants from 16 human candidate inflammatory genes for associations with renal function expressed as the estimated glomerular filtration rate in 1540 participants from the Genetics of Kidneys in Diabetes study. We observed protective associations between three variants in the CXCL4L1 promoter (rs872914/A, rs941757/G, and rs941758/A) and renal function in patients with type 1 diabetes. In reporter gene assays, all three variants increased CXCL4L1 promoter activity in HEK293 cells stimulated with IL-1 and TNF-α. We performed overexpression and knockdown experiments in primary human mesangial cells to examine the glucose-mediated regulation of endogenous CXCL4L1 gene expression and signaling pathways. The mRNA and protein levels of CXCL4L1 increased in response to high glucose (30 mM) treatment. Overexpression of CXCL4L1 increased the endogenous expression of SMAD7 and IκBα, which are key inhibitory factors in renal inflammation. Knockdown of CXCL4L1 expression also resulted in reduced levels of SMAD7 and IκBα. Our findings suggest that CXCL4L1 promoter variants may protect against the development of renal inflammation in diabetes by increasing CXCL4L1 expression, which in turn activates the anti-inflammatory SMAD7 and IκBα factors in mesangial cells.
Collapse
Affiliation(s)
- Tabea Armbrust
- Department of Geriatric Medicine, RWTH University Hospital, 52074 Aachen, Germany
| | | | | | - Aramesh Saremi
- Carl T. Hayden Medical Research Foundation, Phoenix, AZ 85012
| | | | - Mahtab Nourbakhsh
- Department of Geriatric Medicine, RWTH University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
3
|
Zou XF, Song B, Duan JH, Hu ZD, Cui ZL, Yang T. PRINS Long Noncoding RNA Involved in IP-10–Mediated Allograft Rejection in Rat Kidney Transplant. Transplant Proc 2018; 50:1558-1565. [DOI: 10.1016/j.transproceed.2018.03.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 01/10/2023]
|
4
|
Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 2018; 93:568-579. [DOI: 10.1016/j.kint.2017.09.033] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
5
|
Hochane M, Raison D, Coquard C, Béraud C, Bethry A, Danilin S, Massfelder T, Barthelmebs M. Parathyroid hormone-related protein modulates inflammation in mouse mesangial cells and blunts apoptosis by enhancing COX-2 expression. Am J Physiol Cell Physiol 2017; 314:C242-C253. [PMID: 29141920 DOI: 10.1152/ajpcell.00018.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Injury of mesangial cells (MC) is a prominent feature of glomerulonephritis. Activated MC secrete inflammatory mediators that induce cell apoptosis. Parathyroid hormone-related peptide (PTHrP) is a locally active cytokine that enhances cell survival and is upregulated by proinflammatory factors in many cell types. The aim of this study was to analyze the regulation of PTHrP expression by inflammatory cytokines and to evaluate whether PTHrP itself acts as a proinflammatory and/or survival factor on male murine MC in primary culture. Our results showed that IL-1β (10 ng/ml) and TNF-α (10 ng/ml) rapidly and transiently upregulated PTHrP expression in MC. The effects of IL-1β were both transcriptional and posttranscriptional, with stabilization of the PTHrP mRNA by human antigen R (HuR). Proteome profiler arrays showed that PTHrP itself enhanced cytokines within 2 h in cell lysates, mainly IL-17, IL-16, IL-1α, and IL-6. PTHrP also stimulated sustained expression (2-4 h) of chemokines, mainly regulated upon activation normal T cell expressed and secreted (RANTES)/C-C motif chemokine 5 (CCL5) and macrophage inflammatory protein-2 (MIP-2)/C-X-C motif chemokine 2 (CXCL2), thymus and activation-regulated chemokine (TARC)/CCL17, and interferon-inducible T cell α-chemoattractant (I-TAC)/CXCL11. Moreover, PTHrP markedly enhanced cyclooxygenase-2 (COX-2) expression and elicited its autoinduction through the activation of the NF-κB pathway. PTHrP induced MC survival via the COX-2 products, and PTHrP overexpression in MC blunted the apoptotic effects of IL-1β and TNF-α. Altogether, these findings suggest that PTHrP functions as a booster of glomerular inflammatory processes and may be a negative feedback loop preserving MC survival.
Collapse
Affiliation(s)
- Mazène Hochane
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France
| | - Denis Raison
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Catherine Coquard
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| | - Claire Béraud
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Audrey Bethry
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Sabrina Danilin
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Thierry Massfelder
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| | - Mariette Barthelmebs
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| |
Collapse
|
6
|
Dabrowska-Zamojcin E, Dziedziejko V, Safranow K, Kurzawski M, Domanski L, Pawlik A. Association between the CX3CR1 gene V249I polymorphism and delayed kidney allograft function. Transpl Immunol 2015; 32:172-4. [PMID: 25898802 DOI: 10.1016/j.trim.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/28/2015] [Accepted: 04/14/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fractalkine is a member of the chemokine family that acts as an adhesion molecule and as an extracellular chemoattractant promoting cellular migration. In this study, we analysed the association between the CX3CR1 gene V249I (rs3732379) SNP and renal allograft function. METHODS The study enrolled 270 Caucasian kidney allograft recipients. The following parameters were recorded in each case: the recipient's age and gender, delayed graft function (DGF) defined as the need for dialysis in the first 7 days after transplantation, occurrence and number of episodes of acute rejection (AR), and chronic allograft dysfunction (CAD). RESULTS Delayed graft function was diagnosed in 39.2% of individuals with the CC genotype, 22.7% with CT and 23.5% of those with the TT genotype. The differences were statistically significant (CC vs. TT+CT: OR = 2.17; 95% CI = 1.28-3.70, p = 0.0042). In multivariate analysis the CC genotype was an independent and significant predictor of higher risk of DGF. The distribution of genotypes and alleles of the CX3CR1 gene polymorphism among patients with and without AR as well as CAD did not differ significantly. CONCLUSIONS The results of this study suggest that the CX3CR1 gene V249I (rs3732379) SNP CC genotype is associated with increased risk of DGF.
Collapse
Affiliation(s)
- Ewa Dabrowska-Zamojcin
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Leszek Domanski
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
7
|
Simões e Silva AC, Pereira AB, Teixeira MM, Teixeira AL. Chemokines as potential markers in pediatric renal diseases. DISEASE MARKERS 2014; 2014:278715. [PMID: 24692841 PMCID: PMC3947707 DOI: 10.1155/2014/278715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
Glomerular diseases and obstructive uropathies are the two most frequent causes of chronic kidney disease (CKD) in children. Recently, biomarkers have become a focus of clinical research as potentially useful diagnostic tools in pediatric renal diseases. Among several putative biomarkers, chemokines emerge as promising molecules since they play relevant roles in the pathophysiology of pediatric renal diseases. The evaluation of these inflammatory mediators might help in the management of diverse renal diseases in children and the detection of patients at high risk to develop CKD. The aim of this paper is to revise general aspects of chemokines and the potential link between chemokines and the most common pediatric renal diseases by including experimental and clinical evidence.
Collapse
Affiliation(s)
- Ana Cristina Simões e Silva
- Unidade de Nefrologia Pediátrica, Departamento de Pediatria, Universidade Federal de Minas Gerais (UFMG), 30130-100 Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Molecular (INCT-MM), Faculdade de Medicina, UFMG, 30130-100 Belo Horizonte, MG, Brazil
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
| | - André Barreto Pereira
- Instituto Nacional de Ciência e Tecnologia em Medicina Molecular (INCT-MM), Faculdade de Medicina, UFMG, 30130-100 Belo Horizonte, MG, Brazil
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
- Departamento de Nefrologia, Santa Casa de Misericordia de Belo Horizonte, 30130-100 Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Laboratório Interdisciplinar de Investigação Médica Faculdade de Medicina, UFMG, Avenida Alfredo Balena 190, 2nd Floor, Room No.281, 30130-100 Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Simões e Silva AC, Valério FC, Vasconcelos MA, Miranda DM, Oliveira EA. Interactions between cytokines, congenital anomalies of kidney and urinary tract and chronic kidney disease. Clin Dev Immunol 2013; 2013:597920. [PMID: 24066006 PMCID: PMC3770011 DOI: 10.1155/2013/597920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022]
Abstract
Fetal hydronephrosis is the most common anomaly detected on antenatal ultrasound, affecting 1-5% of pregnancies. Postnatal investigation has the major aim in detecting infants with severe urinary tract obstruction and clinically significant urinary tract anomalies among the heterogeneous universe of patients. Congenital uropathies are frequent causes of pediatric chronic kidney disease (CKD). Imaging techniques clearly contribute to this purpose; however, sometimes, these exams are invasive, very expensive, and not sufficient to precisely define the best approach as well as the prognosis. Recently, biomarkers have become a focus of clinical research as potentially useful diagnostic tools in pediatric urological diseases. In this regard, recent studies suggest a role for cytokines and chemokines in the pathophysiology of CAKUT and for the progression to CKD. Some authors proposed that the evaluation of these inflammatory mediators might help the management of postnatal uropathies and the detection of patients with high risk to developed chronic kidney disease. Therefore, the aim of this paper is to revise general aspects of cytokines and the link between cytokines, CAKUT, and CKD by including experimental and clinical evidence.
Collapse
Affiliation(s)
- Ana Cristina Simões e Silva
- Pediatric Nephrology Unit, Department of Pediatrics, Federal University of Minas Gerais, 30130-100 Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Ozaltin F, Besbas N, Iskit AB, Cil O, Akcoren Z, Kale G, Bakkaloglu A. Role of CXCR1 (CKR-1) in inflammation of experimental mesangioproliferative glomerulonephritis. Ren Fail 2013; 35:380-5. [PMID: 23336303 DOI: 10.3109/0886022x.2012.760410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CXCR1 (CKR-1), a receptor of IL-8, is expressed in various cells including neutrophils and monocytes, both of which play a major role in proliferating glomerular diseases. We investigated time-dependent expression of CXCR1 and the effect of single-dose cyclosporine A (CsA) treatment on this expression in experimental mesangioproliferative glomerulonephritis induced by anti-thymocyte serum (ATS). Wistar rats were divided into three groups. Group 1 (control, n = 24) received non-immune serum. Group 2 (nephritis, n = 24) received ATS. Group 3 (nephritis + CsA, n = 24) received ATS and CsA concomitantly. Kidneys from six rats in each group were removed at sixth hour, 3 days, 5 days, and 7 days. ATS induced proteinuria compared to controls (p < 0.001) and CsA precluded the development of proteinuria. Glomerular inflammation and mesangial proliferation were significantly higher in ATS group than control and CsA-treated rats (p < 0.001). ATS injection caused marked interstitial inflammation that was precluded by CsA (p < 0.001). CXCR1 was not expressed in control kidneys. However, ATS induced expression of CXCR1 in both glomeruli and tubulointerstitium. CsA treatment precluded CXCR1 expression in both glomeruli and tubulointerstitium only in the first 6 h. CXCR1 may contribute to inflammation in experimental mesangioproliferative glomerulonephritis. CsA may be beneficial by inhibiting CXCR1 expression and corresponding inflammation.
Collapse
Affiliation(s)
- Fatih Ozaltin
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
10
|
Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, Duffield JS, Lin SL. Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 2011; 80:1170-81. [DOI: 10.1038/ki.2011.208] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Abstract
The main function of chemokines is to guide inflammatory cells in their migration to sites of inflammation. During the last 2 decades, an expanding number of chemokines and their receptors have driven broad inquiry into how inflammatory cells are recruited in a variety of diseases. Although this review focuses on chemokines and their receptors in renal injury, proinflammatory IL-17, TGFβ, and TWEAK signaling pathways also play a critical role in their expression. Recent studies in transgenic mice as well as blockade of chemokine signaling by neutralizing ligands or receptor antagonists now allow direct interrogation of chemokine action. The emerging role of regulatory T cells and Th17 cells during renal injury also forges tight relationships between chemokines and T cell infiltration in the development of kidney disease. As chemokine receptor blockade inches toward clinical use, the field remains an attractive area with potential for unexpected opportunity in the future.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
12
|
Santos ACS, Lima EM, Oliveira EA, Simões e Silva AC. Bone disease and cytokines in idiopathic hypercalciuria: a review. J Pediatr Endocrinol Metab 2011; 24:405-10. [PMID: 21932573 DOI: 10.1515/jpem.2011.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone remodeling is a continuous and dynamic process of skeletal destruction and renewal. A complex regulatory mechanism with the participation of several cytokines precisely defines the role of osteoclasts in the chain of events leading to bone resorption. There are multiple mechanisms underlying the regulation of bone resorption, which can involve increased calcium excretion and decreased bone density in patients with idiopathic hypercalciuria (IH). However, the pathogenesis of bone mass reduction in IH remains uncertain. The purpose of this review is to summarize the recent published evidence on the possible mechanisms by which cytokines could be associated with the pathogenesis of IH.
Collapse
Affiliation(s)
- Augusto C S Santos
- Department of Pediatrics, Pediatric Nephrology Unit, Hospital das Clínicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
13
|
Hoffmann U, Bergler T, Rihm M, Pace C, Krüger B, Jung B, Reinhold SW, Farkas S, Rümmele P, Krämer BK, Banas B. Impact of Toll-like receptor 2 expression in renal allograft rejection. Nephrol Dial Transplant 2010; 26:1080-7. [PMID: 20628182 DOI: 10.1093/ndt/gfq420] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND An important role of TLR2 has been shown in various experimental models of renal ischaemia/reperfusion injury. To study the expression of TLR2 in renal allograft rejection systematically, we established an experimental rat transplantation model. METHODS TLR2 expression was analysed in 99 human renal allograft biopsies, and in rat allografts at Day 6 and 28 after experimental renal transplantation. To discriminate whether regulation of TLR2 was following immunological processes after allogeneic transplantation or was a consequence from ischaemia/reperfusion injury, control animals subjected to syngeneic transplantation or to ischaemia/reperfusion damage were also investigated. RESULTS TLR2 mRNA was significantly elevated in rat allografts with acute rejection on Day 6 and decreased spontaneously towards Day 28. TLR2 induction correlated with renal function and TLR2 excretion in the urine of transplanted rats. TLR2 staining was also significantly increased in human allografts with acute rejection. TLR2 protein could be localized in tubular epithelial cells and vascular endothelial cells, and in CD68- and CD4-positive infiltrating cells. CONCLUSIONS TLR2 is markedly up-regulated in both experimental and human acute renal allograft rejection. Our data suggest a role for TLR2 during allogen-dependent graft damage after renal transplantation.
Collapse
Affiliation(s)
- Ute Hoffmann
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hoffmann U, Bergler T, Segerer S, Rümmele P, Krüger B, Banas MC, Reinhold S, Banas B, Krämer BK. Impact of chemokine receptor CX3CR1 in human renal allograft rejection. Transpl Immunol 2010; 23:204-8. [PMID: 20600902 DOI: 10.1016/j.trim.2010.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 11/25/2022]
Abstract
Chemokine receptors play pivotal roles for leukocyte recruitment in acute and chronic inflammatory processes. This study was performed to analyze the expression, distribution and cellular localization of CX3CR1 in human renal transplant biopsies and to assess its role as potential diagnostic and prognostic marker. CX3CR1 was prospectively analyzed in 174 renal graft biopsies from patients with normal morphology (n=76), antibody-mediated acute rejection (n=6), acute tubulointerstitial rejection (n=27), acute vascular rejection (n=31), and with acute tubulus necrosis (n=34). Double immunofluorescence was additionally performed for CX3CR1 and CD4, CD8, CD20, CD68, and CD209/DC-SIGN. The number of CX3CR1 positive interstitial cells was significantly higher in the biopsies with acute tubulointerstitial and acute vascular rejection as compared to normal renal allograft biopsies. CX3CR1 positive cells were mainly CD68 positive monocytes/macrophages and CD209/DC-SIGN positive dendritic cells. The percentage of the CX3CR1 positive staining area was a predictor for steroid responsiveness and for worse clinical outcome 3 and 12 months after transplantation. CX3CR1 positive macrophages and/or dendritic cells are significantly elevated in acute renal allograft rejection. As CX3CR1 was associated with outcome parameters, it has to be further evaluated as a prognostic marker in human renal transplantation.
Collapse
Affiliation(s)
- Ute Hoffmann
- Department of Internal Medicine II-Nephrology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Diabetes and its complications have become a public health problem. One of the most important complications is diabetic nephropathy, which is nowadays the main cause of chronic renal failure. In spite of our greater understanding of this complication, the intimate mechanisms leading to the development and progression of renal injury are not well understood. New perspectives in activated innate immunity and inflammation appear to be relevant factors in the pathogenesis of diabetes. Moreover, different inflammatory molecules, including adipokines, Toll-like receptors, chemokines, adhesion molecules and pro-inflammatory cytokines, may be critical factors in the development of microvascular diabetic complications, including nephropathy. This new pathogenic perspective leads to important therapeutic considerations, with new pathogenic pathways becoming important therapeutic targets that can be translated into clinical treatments for diabetic nephropathy.
Collapse
|
16
|
Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M, Walther T. Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One 2009; 4:e5406. [PMID: 19404405 PMCID: PMC2672164 DOI: 10.1371/journal.pone.0005406] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 02/02/2009] [Indexed: 01/09/2023] Open
Abstract
Angiotensin (Ang) II mediates pathophysiologial changes in the kidney. Ang-(1-7) by interacting with the G protein-coupled receptor Mas may also have important biological activities.In this study, renal deficiency for Mas diminished renal damage in models of renal insufficiency as unilateral ureteral obstruction and ischemia/reperfusion injury while the infusion of Ang-(1-7) to wild-type mice pronounced the pathological outcome by aggravating the inflammatory response. Mas deficiency inhibited NF-kappaB activation and thus the elevation of inflammation-stimulating cytokines, while Ang-(1-7) infusion had proinflammatory properties in experimental models of renal failure as well as under basal conditions. The Ang-(1-7)-mediated NF-kappaB activation was Mas dependent but did not involve Ang II receptors. Therefore, the blockade of the NF-kappaB-activating properties of the receptor Mas could be a new strategy in the therapy of failing kidney.
Collapse
Affiliation(s)
- Vanesa Esteban
- Cellular Biology in Renal Diseases Laboratory, Fundación Jimenez Diaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Silvia Heringer-Walther
- Department of Obstetrics, University of Leipzig, Leipzig, Germany
- Department of Cardiology, Charité, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Anja Sterner-Kock
- Institute for Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Ron de Bruin
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yong Wang
- Department of Cardiology, Charité, Campus Benjamin Franklin (CBF), Berlin, Germany
- Centre for Biomedical Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesus Egido
- Cellular Biology in Renal Diseases Laboratory, Fundación Jimenez Diaz, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Fundación Jimenez Diaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Thomas Walther
- Department of Cardiology, Charité, Campus Benjamin Franklin (CBF), Berlin, Germany
- Centre for Biomedical Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| |
Collapse
|
17
|
Abstract
Acute kidney injury (AKI) is a very common condition encountered in a hospital setting. AKI is an independent risk factor for in-hospital mortality. In this review, we discuss in detail about the tubular, inflammatory and vascular molecular targets of AKI which may result in therapies to improve mortality and biomarkers for earlier diagnosis of AKI.
Collapse
|
18
|
Liangos O, Jaber BL. Multiple organ dysfunction syndrome in children with sepsis: role of genetic factors. Semin Nephrol 2008; 28:499-509. [PMID: 18790371 DOI: 10.1016/j.semnephrol.2008.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review summarizes current knowledge on the impact of genetic markers on susceptibility, severity, and outcome of acute inflammatory disorders in children, with a special focus on systemic infections. A 14-year-old child with Neisseria meningitides bacteremia, complicated by septic shock and multiple organ dysfunction, is discussed as an exemplary case, and linked to the application of genetic epidemiology and the study of common disorders in children. The current pertinent literature is comprehensively reviewed and limitations and future directions are discussed.
Collapse
Affiliation(s)
- Orfeas Liangos
- Division of Nephrology, Caritas St. Elizabeth's Medical Center and Tufts University School of Medicine, 736 Cambridge Street, Boston, MA 02135, USA
| | | |
Collapse
|
19
|
Eardley KS, Kubal C, Zehnder D, Quinkler M, Lepenies J, Savage CO, Howie AJ, Kaur K, Cooper MS, Adu D, Cockwell P. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease. Kidney Int 2008; 74:495-504. [PMID: 18528327 DOI: 10.1038/ki.2008.183] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To assess the relationship between interstitial capillary density and interstitial macrophages we prospectively measured these factors in situ in 110 patients with chronic kidney disease. Macrophage numbers and urinary MCP-1/CCL2 levels significantly correlated inversely with capillary density which itself significantly correlated inversely with chronic damage and predicted disease progression. In 54 patients with less than 20% chronic damage, there was a significant correlation between the urinary albumin to creatinine ratio and MCP-1/CCL2, and MCP-1/CCL2 and macrophages but not between MCP-1/CCL2 and capillary density. Conversely, in 56 patients with over 20% chronic damage there was no correlation between MCP-1/CCL2 and macrophages but there were significant inverse correlations between capillary density and both macrophages and chronic damage. The expression of VEGF mRNA significantly correlated with macrophage infiltration, capillary density and chronic scarring. In an ischemic-hypertensive subgroup there was upregulation of the hypoxia marker carbonic anhydrase IX and with over 20% chronic damage an increased macrophage to CCR2 ratio. Our study shows that proteinuria and MCP-1/CCL2 are important for macrophage recruitment in early disease. As renal scarring evolves, alternative pathways relating to progressive tissue ischemia secondary to obliteration of the interstitial capillary bed predominate.
Collapse
Affiliation(s)
- Kevin S Eardley
- Department of Nephrology, Royal Shrewsbury Hospital, Shrewsbury, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Afenyi-Annan A, Kail M, Combs MR, Orringer EP, Ashley-Koch A, Telen MJ. Lack of Duffy antigen expression is associated with organ damage in patients with sickle cell disease. Transfusion 2008; 48:917-24. [DOI: 10.1111/j.1537-2995.2007.01622.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Sherry B, Dai WW, Lesser ML, Trachtman H. Dysregulated chemokine receptor expression and chemokine-mediated cell trafficking in pediatric patients with ESRD. Clin J Am Soc Nephrol 2008; 3:397-406. [PMID: 18235145 DOI: 10.2215/cjn.00120107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Children and adolescents with ESRD on dialysis are susceptible to serious bacterial infections (SBI). Chemokines and chemokine receptors play a critical role in modulating macrophage and neutrophil function. This study examined the hypothesis that expression and/or function of these molecules is dysregulated in patients with ESRD, contributing to leukocyte dysfunction. Design setting, participants, & measurements: Pediatric patients, age 6 mo to 18 yr, with ESRD treated with either hemodialysis or peritoneal dialysis were enrolled in this prospective, nontherapeutic study. Blood was collected for plasma chemokine levels, chemokine receptor profiling by flow cytometry, and functional chemotaxis studies on neutrophils and mononuclear cells. RESULTS ESRD in children was associated with reduced expression of the chemokine receptors CXCR1 and chemokine (C-C motif) receptor 2 (CCR2) on circulating neutrophils and monocytes, respectively. When ESRD patients were divided into two subgroups, those who were infection-free and those who had three or more SBI in the preceding year, the differences in chemokine receptor expression were statistically significant compared with control subjects only in those with recurrent infection. In addition to the effects of ESRD on baseline chemokine receptor expression, the hemodialysis procedure itself acutely lowered neutrophil CXCR1 and monocyte CCR2 expression. Furthermore, neutrophil and monocyte responsiveness to chemokine-mediated trafficking signals was impaired in all ESRD patients studied. This abnormality was independent of the level of chemokine receptor expression on the leukocytes. CONCLUSIONS The data presented in this study suggest that chemokine receptor dysregulation contributes to leukocyte dysfunction in patients with ESRD. This alteration is especially prominent in ESRD patients with recurrent infection.
Collapse
Affiliation(s)
- Barbara Sherry
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | |
Collapse
|
22
|
Kruppel-like zinc finger protein Glis2 is essential for the maintenance of normal renal functions. Mol Cell Biol 2008; 28:2358-67. [PMID: 18227149 DOI: 10.1128/mcb.01722-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To obtain insight into the physiological functions of the Krüppel-like zinc finger protein Gli-similar 2 (Glis2), mice deficient in Glis2 expression were generated. Glis2 mutant (Glis2(mut)) mice exhibit significantly shorter life spans than do littermate wild-type (WT) mice due to the development of progressive chronic kidney disease with features resembling nephronophthisis. Glis2(mut) mice develop severe renal atrophy involving increased cell death and basement membrane thickening in the proximal convoluted tubules. This development is accompanied by infiltration of lymphocytic inflammatory cells and interstitial/glomerular fibrosis. The severity of the fibrosis, inflammatory infiltrates, and glomerular and tubular changes progresses with age. Blood urea nitrogen and creatinine increase, and Glis2(mut) mice develop proteinuria and ultimately die prematurely of renal failure. A comparison of the gene expression profiles of kidneys from 25-day-old/60-day-old WT and Glis2(mut) mice by microarray analysis showed increased expressions of many genes involved in immune responses/inflammation and fibrosis/tissue remodeling in kidneys of Glis2(mut) mice, including several cytokines and adhesion and extracellular matrix proteins. Our data demonstrate that a deficiency in Glis2 expression leads to tubular atrophy and progressive fibrosis, similar to nephronophthisis, that ultimately results in renal failure. Our study indicates that Glis2 plays a critical role in the maintenance of normal kidney architecture and functions.
Collapse
|
23
|
Eitner F, Bücher E, van Roeyen C, Kunter U, Rong S, Seikrit C, Villa L, Boor P, Fredriksson L, Bäckström G, Eriksson U, Ostman A, Floege J, Ostendorf T. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J Am Soc Nephrol 2008; 19:281-9. [PMID: 18184860 DOI: 10.1681/asn.2007030290] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Frank Eitner
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kosugi T, Yuzawa Y, Sato W, Arata-Kawai H, Suzuki N, Kato N, Matsuo S, Kadomatsu K. Midkine is involved in tubulointerstitial inflammation associated with diabetic nephropathy. J Transl Med 2007; 87:903-13. [PMID: 17607302 DOI: 10.1038/labinvest.3700599] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The concept that inflammation plays a crucial role in the pathogenesis of diabetic nephropathy has been recently emerging, although the principal pathology of diabetic nephropathy comprises glomerular sclerosis and associated changes in nephrons. Here, we identified the growth factor midkine (MK) as a novel key molecule involved in inflammation associated with Streptozotocin-induced diabetic nephropathy. The tubulointerstitial damage, as assessed as morphological changes, osteopontin expression, collagen I deposition and macrophage infiltration, were strikingly less in MK-deficient (Mdk(-/-)) mice than in Mdk(+/+) mice. Monocyte chemoattractant protein (MCP)-1 expression, but not that of intercellular adhesion molecule-1, was also lower in Mdk(-/-) mice. High glucose upregulated MK expression in primary-cultured tubular epithelial cells, and induced MCP-1 to a larger extent in Mdk(+/+) cells than in Mdk(-/-) cells. Correspondingly, the combination of exogenous MK and high glucose enhanced MCP-1 expression in Mdk(-/-) cells. Furthermore, high glucose and oxidant stress enhanced MK expression in macrophages. Consistent with the findings in the mouse model, MK expression was detected in the glomeruli, tubular epithelium and interstitium of kidneys from patients with diabetic nephropathy. Our data indicate that MK plays a critical role in the tubulointerstitial inflammation associated with diabetic nephropathy through activation of the MCP-1 pathway.
Collapse
Affiliation(s)
- Tomoki Kosugi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chemokines comprise a family of structurally related chemotactic proteins. They bind to about 20 corresponding receptors. Chemokines provide a general communication system for cells, and regulate lymphocyte migration under normal (homeostatic) and inflammatory conditions. Chemokines organize microenvironments in lymphoid tissue, lymphoid organogenesis, and participate in vascular and lymphatic angiogenesis. Expressed at the site of injury in the kidney, chemokines are involved in the recruitment of specific leukocyte subsets to particular renal compartments. Here we summarize recent data on chemokine biology with a focus on the role of chemokines in the recruitment of neutrophils (polymorphonuclear leukocytes), monocytes/macrophages, dendritic cells, T cells, including regulatory T cells, and B cells in renal inflammation.
Collapse
Affiliation(s)
- Stephan Segerer
- Medizinische Poliklinik, University of Munich, Munich, Germany.
| | | |
Collapse
|
26
|
Segerer S, Henger A, Schmid H, Kretzler M, Draganovici D, Brandt U, Noessner E, Nelson PJ, Kerjaschki D, Schlöndorff D, Regele H. Expression of the chemokine receptor CXCR1 in human glomerular diseases. Kidney Int 2006; 69:1765-73. [PMID: 16541017 DOI: 10.1038/sj.ki.5000337] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leukocyte infiltration, a hallmark of renal diseases, is orchestrated in part by the actions of chemokines. The chemokine CXCL8/interleukin (IL)-8 is expressed during renal diseases and allograft rejection, whereas the corresponding receptor CXCR1 has not been described previously. Expression of CXCR1 was characterized in peripheral blood using multicolor fluorescence-activated cell sorter analysis (FACS). CXCR1 was localized in 81 formalin-fixed, paraffin-embedded renal specimens by immunohistochemistry using a monoclonal antibody against human CXCR1. Included were biopsies with crescentic glomerulonephritis (CGN, n = 22), immunoglobulin (Ig) A nephropathy (n = 15), membranoproliferative glomerulonephritis (MPGN, n = 17), lupus nephritis (n = 12), membranous nephropathy (n = 11), and non-involved parts of tumor nephrectomies (n = 4). Consecutive tissue sections of human tonsils, allograft explants, and renal biopsies were stained for CD15- and CD68-positive cells. Expression of CXCR1 and CXCL8/IL-8 mRNA was quantified by real-time reverse transcriptase-polymerse chain reaction of microdissected renal biopsies (n = 35) of the same disease entities. By FACS CXCR1 expression was found on polymorphonuclear CXCR1 expression by polymorphonuclear leukocytes (PMNs), natural killer cells, and a subpopulation of monocytes. By immunohistochemistry, CXCR1 expression was found on infiltrating inflammatory cells (predominantly PMNs), as well as on intrinsic renal cells (arterial smooth muscle cells, endothelial cells of peritubular capillaries). The distribution pattern of CXCR1 differed between disease entities. The highest numbers of glomerular CXCR1-positive cells were present in biopsies with MPGN, followed by lupus nephritis, and CGN. CXCR1 might be involved in the recruitment of PMNs to the glomerular tuft, which could be targeted by CXCR1-blocking agents.
Collapse
Affiliation(s)
- S Segerer
- Medizinische Poliklinik-Innenstadt, University of Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhu J, Xu ZK, Miao Y, Liu XL, Zhang H. Changes of inducible protein-10 and regulated upon activation, normal T cell expressed and secreted protein in acute rejection of pancreas transplantation in rats. World J Gastroenterol 2006; 12:4156-60. [PMID: 16830364 PMCID: PMC4087363 DOI: 10.3748/wjg.v12.i26.4156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of IFN-γ inducible protein -10 (IP-10) and regulated upon activation, normal T cell expressed and secreted (RANTES) protein in acute pancreatic allograft rejection in rats.
METHODS: An experimental pancreas transplantation model was established using diabetic SD rats as the recipient, induced by applying streptozocin (STZ). Pancreas transplantation was performed with a physiologic method of portal venous and enteric drainage. Rats were divided into two groups, isograft group (group A, n = 24) and allograft group (group B, n = 24) in which either healthy SD rats or Wistar rats served as donors, respectively. Twelve diabetic or healthy SD rats were used as controls. At d 1, 4, 7, and 10 post transplantation, serum IP-10 and RANTES were assessed by ELISA and their expression in the allografts was determined by immunohistochemistry.
RESULTS: In group B (allograft group), the development of acute rejection was significantly correlated with increased serum concentration and tissue expression of IP-10 and RANTES, with a peak level at d 7 post transplantation. In contrast, there was no obvious change before and after transplantation in group A (isograft group).
CONCLUSION: Our study suggests a possible role of IP-10 and RANTES in acute rejection and early monitoring of chemokines may be helpful in predicting the outcome of pancreas transplantation.
Collapse
Affiliation(s)
- Jun Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
28
|
Sfriso P, Oliviero F, Calabrese F, Miorin M, Facco M, Contri A, Cabrelle A, Baesso I, Cozzi F, Andretta M, Cassatella MA, Fiocco U, Todesco S, Konttinen YT, Punzi L, Agostini C. Epithelial CXCR3-B Regulates Chemokines Bioavailability in Normal, but Not in Sjögren’s Syndrome, Salivary Glands. THE JOURNAL OF IMMUNOLOGY 2006; 176:2581-9. [PMID: 16456020 DOI: 10.4049/jimmunol.176.4.2581] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of CXCR3-targeting chemokines have been demonstrated in several diseases, suggesting a critical role for CXCR3 in recruiting activated T cells to sites of immune-mediated inflammation. Sjögren's syndrome (SS) is an autoimmune disease characterized by a mononuclear cell infiltrate of activated T cells around the duct in the salivary gland. Analysis of minor salivary gland biopsy specimens from 20 healthy subjects and 18 patients with primary SS demonstrated that CXCR3, in particular, the B form of this receptor, is constitutively expressed by human salivary gland epithelial cells. Salivary gland epithelial cell cultures demonstrated that CXCR3 participate in removing relevant amount of agonists from the supernatant of exposed cells without mediating calcium flux or chemotaxis while retaining the ability to undergo internalization. Although in normal salivary gland epithelial cells, CXCR3 behaves as a chemokine-scavenging receptor, its role in SS cells is functionally impaired. The impairment of this scavenging function might favor chemotaxis, leading to heightened immigration of CXCR3-positive T lymphocytes. These findings suggest that epithelial CXCR3 may be involved in postsecretion regulation of chemokine bioavailability. They also support a critical role for CXCR3 in the pathogenesis of SS and identify its agonists as potential therapeutic targets.
Collapse
Affiliation(s)
- Paolo Sfriso
- Department of Clinical and Experimental Medicine, Section of Rheumatology, Centro di Eccellenza per la Ricerca Biomedica, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hoffmann U, Segerer S, Rümmele P, Krüger B, Pietrzyk M, Hofstädter F, Banas B, Krämer BK. Expression of the chemokine receptor CXCR3 in human renal allografts—a prospective study. Nephrol Dial Transplant 2006; 21:1373-81. [PMID: 16421159 DOI: 10.1093/ndt/gfk075] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mechanisms involved in the recruitment and activation of inflammatory cells during renal allograft injury are still incompletely understood. Since chemokines play pivotal roles in this process, our prospective study was performed to evaluate further the role of the chemokine receptor CXCR3. METHODS A total of 138 biopsies were included from patients without rejection and unaltered morphology (according to Banff 97 classification grade 1, n = 49), with acute interstitial rejection (Banff grade 4 type I, n = 8), with acute vascular rejection (Banff grade 4 type II, n = 23), with chronic allograft nephropathy (Banff grade 5, n = 16), without rejection but with various other lesions (Banff grade 6, n = 36) and from pre-transplant kidneys (n = 6). The expression of CXCR3-, CD4- and CD8-positive cells was localized by immunohistochemistry and quantified by image analysis. RESULTS CXCR3 was expressed by infiltrating inflammatory cells, but not by intrinsic renal structures. CXCR3-positive cells were found to be involved in tubulitis and vascular rejection. The area of CXCR3-positive staining was significantly larger in biopsies with acute interstitial rejection (P<0.001) and acute vascular rejection (P<0.001) as compared with normal renal graft biopsies. There was a strong morphological and numerical correlation between CXCR3 and both CD4- and CD8-positive T cells, respectively. CONCLUSIONS A significant part of both CD4- and CD8-positive T cells express the chemokine receptor CXCR3. During renal allograft rejection, the number of these cells increases significantly at the site of injury and might be targeted by CXCR3 blocking agents.
Collapse
Affiliation(s)
- Ute Hoffmann
- Klinik und Poliklinik für Innere Medizin II, Universität Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Panzer U, Steinmetz OM, Reinking RR, Meyer TN, Fehr S, Schneider A, Zahner G, Wolf G, Helmchen U, Schaerli P, Stahl RAK, Thaiss F. Compartment-specific expression and function of the chemokine IP-10/CXCL10 in a model of renal endothelial microvascular injury. J Am Soc Nephrol 2005; 17:454-64. [PMID: 16382019 DOI: 10.1681/asn.2005040364] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The recruitment of inflammatory cells into renal tissue, mainly T cells and monocytes, is a typical feature of various renal diseases such as glomerulonephritis, thrombotic angiopathies, allograft rejection, and vasculitis. T cells predominantly infiltrate the tubulointerstitium, whereas monocytes are present in the tubulointerstitial and glomerular compartment. Because chemokines play a pivotal role in leukocyte trafficking under inflammatory conditions, this study investigated whether a differential expression of chemokines contributes to the precise coordination of leukocyte subtype trafficking in a rat model of renal microvascular endothelial injury. Renal microvascular endothelial injury was induced in rats by selective renal artery perfusion with an anti-endothelial antibody. Induction of the disease led to severe glomerular and tubulointerstitial endothelial injury with subsequent upregulation of chemokines followed by inflammatory cell recruitment. Among the analyzed chemokine mRNA, IP-10/CXCL10 (119-fold), acting via CXCR3 on activated T cells, and MCP-1/CCL2 (65-fold), acting via CCR2 on monocytes, were by far the most strongly upregulated chemokines. In situ hybridization revealed that IP-10/CXCL10 mRNA was selectively expressed by endothelial cells in the tubulointerstitial area, co-localizing with infiltrating T cells. Despite extensive damage of glomerular vasculature, no IP-10/CXCL10 expression by glomerular endothelial cells was detected. MCP-1/CCL2 mRNA in contrast was detectable in the glomerulus and the tubulointerstitium. Treatment with a neutralizing anti-IP-10/CXCL10 antibody significantly reduced the number of infiltrating tubulointerstitial T cells without affecting monocyte migration and led to an improved renal function. Our study demonstrates a role of IP-10/CXCL10 on T cell recruitment in a rat model of renal endothelial microvascular injury. Furthermore, a differential chemokine expression profile by endothelial cells in different renal compartments was found. These findings are consistent with the hypothesis that functional heterogeneity of endothelial cells from different vascular sites exists and provide an insight into the molecular mechanisms that may mediate compartment-specific T cell and monocyte recruitment in inflammatory renal disease.
Collapse
Affiliation(s)
- Ulf Panzer
- Medizinische Klinik IV, Zentrum für Innere Medizin, University of Hamburg, Martinistrasse 52, Hamburg 20246, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li S, Gokden N, Okusa MD, Bhatt R, Portilla D. Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 2005; 289:F469-80. [PMID: 15814532 DOI: 10.1152/ajprenal.00038.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we demonstrated that peroxisome proliferator-activated receptor-α (PPARα) ligand ameliorates cisplatin-induced acute renal failure (ARF) by preventing inhibition of substrate oxidation, and also by preventing apoptosis and necrosis of the proximal tubule (Li S, Bhatt R, Megyesi J, Gokden N, Shah SV, and Portilla D. Am J Physiol Renal Physiol 287: F990–F998, 2004). In the following studies, we examined the protective effect of PPARα ligand on cisplatin-induced inflammatory responses during ARF. Mice subjected to a single intraperitoneal injection of cisplatin developed ARF at day 3. Cisplatin increased mRNA and protein expression of TNF-α, RANTES, and also upregulated endothelial adhesion molecules ICAM-1/VCAM-1 and chemokine receptors CCR1/CCR5. Cisplatin also led to neutrophil infiltration in the corticomedullary region. Pretreatment of wild-type mice with WY-14,643, a fibrate class of PPARα ligands, before cisplatin significantly suppressed cisplatin-induced upregulation of cytokine/chemokine expression, prevented neutrophil accumulation, and ameliorated renal dysfunction. In contrast, treatment with PPARα ligand before cisplatin did not prevent cytokine/chemokine production, neutrophil accumulation, and did not protect kidney function in PPARα null mice. In addition, we observed that cisplatin-induced NF-κB binding activity in nuclear extracts from wild-type mice was markedly reduced by treatment with PPARα ligand. These results demonstrate that PPARα exerts an anti-inflammatory effect in kidney tissue by a mechanism that includes inhibition of NF-κB DNA binding activity, and this effect results in inhibition of neutrophil infiltration, cytokine/chemokine release, and amelioration of cisplatin-induced ARF.
Collapse
Affiliation(s)
- Shenyang Li
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | | | | | | | | |
Collapse
|
32
|
Segerer S, Banas B, Wörnle M, Schmid H, Cohen CD, Kretzler M, Mack M, Kiss E, Nelson PJ, Schlöndorff D, Gröne HJ. CXCR3 is involved in tubulointerstitial injury in human glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:635-49. [PMID: 14742268 PMCID: PMC1602271 DOI: 10.1016/s0002-9440(10)63152-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemokines play pivotal roles in the recruitment of inflammatory cells into the kidney. The chemokine receptors CXCR3 and CCR5 are expressed on activated T lymphocytes, and expression of CXCR3 by mesangial cells has been suggested. Detailed description of CXCR3 expression might form a rational basis for use as a diagnostic marker and for therapeutic CXCR3 targeting in human glomerulonephritis. We studied the expression of CXCR3 in renal biopsies by immunohistochemistry (n = 45), and real time RT-PCR (n = 78). Biopsies were from patients with IgA nephropathy, lupus nephritis, and membranoproliferative glomerulonephritis. Furthermore, cultured human mesangial cells (HMC) were studied for CXCR3 expression, and for functional responses to the ligands CXCL10/IP-10 and CXCL9/Mig. CXCR3-positive cells were rarely found in glomerular tufts, but formed a major part of the tubulointerstitial infiltrates. Consistently, CXCR3 mRNA expression was too low to be quantified in glomerular compartments, and was not detectable in HMC. The published staining for CXCR3 of mesangial cells could be traced to cross-reactivity of an antibody for CXCR3 with a potentially related chemokine receptor as revealed by FACS analysis. Despite an absence of CXCR3 expression, mesangial cells reacted to CXCR3 ligands by proliferation and migration, which was blocked by pertussis toxin but not by an anti-CXCR3 antibody. These results indicate that HMC do not express the classical CXCR3, but may potentially express a related receptor with shared ligand specificity. By immunohistochemistry the number of CXCR3-positive cells, mainly interstitial T cells, correlated with renal function, proteinuria, and percentage of globally sclerosed glomeruli. A significant morphological and numerical correlation between CD3, CXCR3, and CCR5-positive cells indicated a CXCR3/CCR5 double-positive T cell population. No apparent difference in the CXCR3 expression pattern was found between disease entities. CXCR3 expression was localized to interstitial T cells, and these cells correlated strongly with important prognostic markers. Therefore interstitial CXCR3, as well as CCR5-positive T cells might play an important role during progressive loss of renal function, and are potential therapeutic targets in human glomerular diseases.
Collapse
Affiliation(s)
- Stephan Segerer
- Medizinische Poliklinik-Innenstadt, University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Renal fibrosis characterizes a common endpoint of diverse renal diseases which leads to functional impairment ultimately resulting in terminal renal failure. RECENT FINDINGS Recent advances in this field led to the discovery of several novel mediators as well as novel aspects of known mediators. Studies on the origin and role of specific renal cell types involved in renal fibrosis identified bone marrow derived mesangial progenitors and offered substantial evidence for the concept of epithelial to mesenchymal transition. Much progress has also been made in better understanding of the interactions between different mediators and between mediators and renal target cells. Compounds designed on the basis of this current knowledge have proven to be potent inhibitors of the development of renal fibrosis or might even induce resolution of renal fibrosis. SUMMARY The number and diversity of recent studies in this field offer hope for new treatment regimes in our clinical efforts towards prevention and regression of progressive fibrosing renal diseases.
Collapse
Affiliation(s)
- Frank Eitner
- Division of Nephrology and Immunology, Aachen University, Aachen, Germany.
| | | |
Collapse
|