1
|
Astărăstoae V, Rogozea LM, Leaşu F, Ioan BG. Ethical Dilemmas of Using Artificial Intelligence in Medicine. Am J Ther 2024; 31:e388-e397. [PMID: 38662923 DOI: 10.1097/mjt.0000000000001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Artificial intelligence (AI) is considered the fourth industrial revolution that will change the evolution of humanity technically and relationally. Although the term has been around since 1956, it has only recently become apparent that AI can revolutionize technologies and has many applications in the medical field. AREAS OF UNCERTAINTY The ethical dilemmas posed by the use of AI in medicine revolve around issues related to informed consent, respect for confidentiality, protection of personal data, and last but not least the accuracy of the information it uses. DATA SOURCES A literature search was conducted through PubMed, MEDLINE, Plus, Scopus, and Web of Science (2015-2022) using combinations of keywords, including: AI, future in medicine, and machine learning plus ethical dilemma. ETHICS AND THERAPEUTIC ADVANCES The ethical analysis of the issues raised by AI used in medicine must mainly address nonmaleficence and beneficence, both in correlation with patient safety risks, ability versus inability to detect correct information from inadequate or even incorrect information. The development of AI tools that can support medical practice can increase people's access to medical information, to obtain a second opinion, for example, but it is also a source of concern among health care professionals and especially bioethicists about how confidentiality is maintained and how to maintain cybersecurity. Another major risk may be related to the dehumanization of the medical act, given that, at least for now, empathy and compassion are accessible only to human beings. CONCLUSIONS AI has not yet managed to overcome certain limits, lacking moral subjectivity, empathy, the level of critical thinking is still insufficient, but no matter who will practice preventive or curative medicine in the next period, they will not be able to ignore AI, which under human control can be an important tool in medical practice.
Collapse
Affiliation(s)
- Vasile Astărăstoae
- Faculty of Medicine, Grigore T Popa University of Medicine & Pharmacy, Iasi, Romania; and
| | - Liliana M Rogozea
- Basic, Preventive and Clinical Sciences Department, Transilvania University, Brasov, Romania
| | - Florin Leaşu
- Basic, Preventive and Clinical Sciences Department, Transilvania University, Brasov, Romania
| | - Beatrice Gabriela Ioan
- Faculty of Medicine, Grigore T Popa University of Medicine & Pharmacy, Iasi, Romania; and
| |
Collapse
|
2
|
Kumar A, Goyal A. Emerging molecules, tools, technology, and future of surgical knife in gastroenterology. World J Gastrointest Surg 2024; 16:988-998. [PMID: 38690056 PMCID: PMC11056674 DOI: 10.4240/wjgs.v16.i4.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
The 21st century has started with several innovations in the medical sciences, with wide applications in health care management. This development has taken in the field of medicines (newer drugs/molecules), various tools and technology which has completely changed the patient management including abdominal surgery. Surgery for abdominal diseases has moved from maximally invasive to minimally invasive (laparoscopic and robotic) surgery. Some of the newer medicines have its impact on need for surgical intervention. This article focuses on the development of these emerging molecules, tools, and technology and their impact on present surgical form and its future effects on the surgical intervention in gastroenterological diseases.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Anirudh Goyal
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
3
|
Juneja D. Artificial intelligence: Applications in critical care gastroenterology. Artif Intell Gastrointest Endosc 2024; 5:89138. [DOI: 10.37126/aige.v5.i1.89138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] Open
Abstract
Gastrointestinal (GI) complications frequently necessitate intensive care unit (ICU) admission. Additionally, critically ill patients also develop GI complications requiring further diagnostic and therapeutic interventions. However, these patients form a vulnerable group, who are at risk for developing side effects and complications. Every effort must be made to reduce invasiveness and ensure safety of interventions in ICU patients. Artificial intelligence (AI) is a rapidly evolving technology with several potential applications in healthcare settings. ICUs produce a large amount of data, which may be employed for creation of AI algorithms, and provide a lucrative opportunity for application of AI. However, the current role of AI in these patients remains limited due to lack of large-scale trials comparing the efficacy of AI with the accepted standards of care.
Collapse
Affiliation(s)
- Deven Juneja
- Department of Critical Care Medicine, Max Super Speciality Hospital, New Delhi 110017, India
| |
Collapse
|
4
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Christou CD, Tsoulfas G. Challenges involved in the application of artificial intelligence in gastroenterology: The race is on! World J Gastroenterol 2023; 29:6168-6178. [PMID: 38186861 PMCID: PMC10768398 DOI: 10.3748/wjg.v29.i48.6168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023] Open
Abstract
Gastroenterology is a particularly data-rich field, generating vast repositories of data that are a fruitful ground for artificial intelligence (AI) and machine learning (ML) applications. In this opinion review, we initially elaborate on the current status of the application of AI/ML-based software in gastroenterology. Currently, AI/ML-based models have been developed in the following applications: Models integrated into the clinical setting following real-time patient data flagging patients at high risk for developing a gastrointestinal disease, models employing non-invasive parameters that provide accurate diagnoses aiming to either replace, minimize, or refine the indications of endoscopy, models utilizing genomic data to diagnose various gastrointestinal diseases, computer-aided diagnosis systems facilitating the interpretation of endoscopy images, models to facilitate treatment allocation and predict the response to treatment, and finally, models in prognosis predicting complications, recurrence following treatment, and overall survival. Then, we elaborate on several challenges and how they may negatively impact the widespread application of AI in healthcare and gastroenterology. Specifically, we elaborate on concerns regarding accuracy, cost-effectiveness, cybersecurity, interpretability, oversight, and liability. While AI is unlikely to replace physicians, it will transform the skillset demanded by future physicians to practice. Thus, physicians are expected to engage with AI to avoid becoming obsolete.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
- Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
- Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
6
|
Sahu VK, Ranjan A, Paul MK, Nagar S, Devarajan S, Aich J, Basu S. AI Techniques and IoT Applications Transforming the Future of Healthcare. ADVANCES IN HEALTHCARE INFORMATION SYSTEMS AND ADMINISTRATION 2023:210-233. [DOI: 10.4018/978-1-6684-5422-0.ch014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The role of artificial intelligence (AI) has advanced from an analysis and prediction tool to extending human capabilities. Currently, AI is more of a reliable assistant fueled by human experience and need of the hour in the healthcare along with simplifying daily life. AI and Internet of Things (IoT) have opened new avenues in intelligent diagnostics, drug discovery, clinical decision support, enhancing physician-patient communication, transcribing medical documents, and remote treatment. With the advent of enhanced computational power, AI has revolutionized discovery of optimal and efficient healthcare solutions and has accelerated the development of smart solutions involving IoT-based technologies. Starting from telemedicine to predict possible health disorders, AI is gaining focus to facilitate and advance healthcare solutions in developed and underdeveloped countries. This chapter deals with the scope of AI in the present scenario to future developments as AI will soon surpass human and poses threat pertaining to misuse of cognitive sciences development.
Collapse
Affiliation(s)
- Vishal Kumar Sahu
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Amit Ranjan
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Manash K. Paul
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, USA
| | - Shuchi Nagar
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Shine Devarajan
- School of Biotechnology and Bioinformatics, D.Y. Patil University (Deemed), Navi Mumbai, India
| | - Jyotirmoi Aich
- School of Biotechnology and Bioinformatics, D.Y. Patil University (Deemed), Navi Mumbai, India
| | - Soumya Basu
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
7
|
Development and Validation of Deep Learning Models for the Multiclassification of Reflux Esophagitis Based on the Los Angeles Classification. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:7023731. [PMID: 36852218 PMCID: PMC9966565 DOI: 10.1155/2023/7023731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
This study is to evaluate the feasibility of deep learning (DL) models in the multiclassification of reflux esophagitis (RE) endoscopic images, according to the Los Angeles (LA) classification for the first time. The images were divided into three groups, namely, normal, LA classification A + B, and LA C + D. The images from the HyperKvasir dataset and Suzhou hospital were divided into the training and validation datasets as a ratio of 4 : 1, while the images from Jintan hospital were the independent test set. The CNNs- or Transformer-architectures models (MobileNet, ResNet, Xception, EfficientNet, ViT, and ConvMixer) were transfer learning via Keras. The visualization of the models was proposed using Gradient-weighted Class Activation Mapping (Grad-CAM). Both in the validation set and the test set, the EfficientNet model showed the best performance as follows: accuracy (0.962 and 0.957), recall for LA A + B (0.970 and 0.925) and LA C + D (0.922 and 0.930), Marco-recall (0.946 and 0.928), Matthew's correlation coefficient (0.936 and 0.884), and Cohen's kappa (0.910 and 0.850), which was better than the other models and the endoscopists. According to the EfficientNet model, the Grad-CAM was plotted and highlighted the target lesions on the original images. This study developed a series of DL-based computer vision models with the interpretable Grad-CAM to evaluate the feasibility in the multiclassification of RE endoscopic images. It firstly suggests that DL-based classifiers show promise in the endoscopic diagnosis of esophagitis.
Collapse
|
8
|
Fitzsimmons L, Dewan M, Dexheimer JW. Diversity in Machine Learning: A Systematic Review of Text-Based Diagnostic Applications. Appl Clin Inform 2022; 13:569-582. [PMID: 35613914 DOI: 10.1055/s-0042-1749119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE As the storage of clinical data has transitioned into electronic formats, medical informatics has become increasingly relevant in providing diagnostic aid. The purpose of this review is to evaluate machine learning models that use text data for diagnosis and to assess the diversity of the included study populations. METHODS We conducted a systematic literature review on three public databases. Two authors reviewed every abstract for inclusion. Articles were included if they used or developed machine learning algorithms to aid in diagnosis. Articles focusing on imaging informatics were excluded. RESULTS From 2,260 identified papers, we included 78. Of the machine learning models used, neural networks were relied upon most frequently (44.9%). Studies had a median population of 661.5 patients, and diseases and disorders of 10 different body systems were studied. Of the 35.9% (N = 28) of papers that included race data, 57.1% (N = 16) of study populations were majority White, 14.3% were majority Asian, and 7.1% were majority Black. In 75% (N = 21) of papers, White was the largest racial group represented. Of the papers included, 43.6% (N = 34) included the sex ratio of the patient population. DISCUSSION With the power to build robust algorithms supported by massive quantities of clinical data, machine learning is shaping the future of diagnostics. Limitations of the underlying data create potential biases, especially if patient demographics are unknown or not included in the training. CONCLUSION As the movement toward clinical reliance on machine learning accelerates, both recording demographic information and using diverse training sets should be emphasized. Extrapolating algorithms to demographics beyond the original study population leaves large gaps for potential biases.
Collapse
Affiliation(s)
- Lane Fitzsimmons
- College of Agriculture and Life Science, Cornell University, Ithaca, New York, United States
| | - Maya Dewan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Judith W Dexheimer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States.,Division of Emergency Medicine; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| |
Collapse
|
9
|
Visaggi P, Barberio B, Gregori D, Azzolina D, Martinato M, Hassan C, Sharma P, Savarino E, de Bortoli N. Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. Aliment Pharmacol Ther 2022; 55:528-540. [PMID: 35098562 PMCID: PMC9305819 DOI: 10.1111/apt.16778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Artificial intelligence (AI) has recently been applied to endoscopy and questionnaires for the evaluation of oesophageal diseases (ODs). AIM We performed a systematic review with meta-analysis to evaluate the performance of AI in the diagnosis of malignant and benign OD. METHODS We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane Library. A bivariate random-effect model was used to calculate pooled diagnostic efficacy of AI models and endoscopists. The reference tests were histology for neoplasms and the clinical and instrumental diagnosis for gastro-oesophageal reflux disease (GERD). The pooled area under the summary receiver operating characteristic (AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) and diagnostic odds ratio (DOR) were estimated. RESULTS For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models' performance was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesophageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI performed better than endoscopists although without statistically significant differences. In the detection of abnormal intrapapillary capillary loops, the performance of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, respectively. CONCLUSIONS AI demonstrated high performance in the clinical and endoscopic diagnosis of OD.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Brigida Barberio
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Danila Azzolina
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
- Department of Medical ScienceUniversity of FerraraFerraraItaly
| | - Matteo Martinato
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas UniversityVia Rita Levi Montalcini 420072 Pieve Emanuele, MilanItaly
- IRCCS Humanitas Research Hospitalvia Manzoni 5620089 Rozzano, MilanItaly
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical CenterKansas CityMissouriUSA
| | - Edoardo Savarino
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Nicola de Bortoli
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
10
|
Al-Biltagi M, Saeed NK, Qaraghuli S. Gastrointestinal disorders in children with autism: Could artificial intelligence help? Artif Intell Gastroenterol 2022; 3:1-12. [DOI: 10.35712/aig.v3.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Autism is one of the pervasive neurodevelopmental disorders usually associated with many medical comorbidities. Gastrointestinal (GI) disorders are pervasive in children, with a 46%-84% prevalence rate. Children with Autism have an increased frequency of diarrhea, nausea and/or vomiting, gastroesophageal reflux and/or disease, abdominal pain, chronic flatulence due to various factors as food allergies, gastrointestinal dysmotility, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). These GI disorders have a significant negative impact on both the child and his/her family. Artificial intelligence (AI) could help diagnose and manage Autism by improving children's communication, social, and emotional skills for a long time. AI is an effective method to enhance early detection of GI disorders, including GI bleeding, gastroesophageal reflux disease, Coeliac disease, food allergies, IBS, IBD, and rectal polyps. AI can also help personalize the diet for children with Autism by microbiome modification. It can help to provide modified gluten without initiating an immune response. However, AI has many obstacles in treating digestive diseases, especially in children with Autism. We need to do more studies and adopt specific algorithms for children with Autism. In this article, we will highlight the role of AI in helping children with gastrointestinal disorders, with particular emphasis on children with Autism.
Collapse
Affiliation(s)
- Mohammed Al-Biltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Samara Qaraghuli
- Department of Pharmacognosy and Medicinal Plant, Faculty of Pharmacy, Al-Mustansiriya University, Baghdad 14022, Baghdad, Iraq
| |
Collapse
|
11
|
Visaggi P, de Bortoli N, Barberio B, Savarino V, Oleas R, Rosi EM, Marchi S, Ribolsi M, Savarino E. Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases. J Clin Gastroenterol 2022; 56:23-35. [PMID: 34739406 PMCID: PMC9988236 DOI: 10.1097/mcg.0000000000001629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI) has enormous potential to support clinical routine workflows and therefore is gaining increasing popularity among medical professionals. In the field of gastroenterology, investigations on AI and computer-aided diagnosis (CAD) systems have mainly focused on the lower gastrointestinal (GI) tract. However, numerous CAD tools have been tested also in upper GI disorders showing encouraging results. The main application of AI in the upper GI tract is endoscopy; however, the need to analyze increasing loads of numerical and categorical data in short times has pushed researchers to investigate applications of AI systems in other upper GI settings, including gastroesophageal reflux disease, eosinophilic esophagitis, and motility disorders. AI and CAD systems will be increasingly incorporated into daily clinical practice in the coming years, thus at least basic notions will be soon required among physicians. For noninsiders, the working principles and potential of AI may be as fascinating as obscure. Accordingly, we reviewed systematic reviews, meta-analyses, randomized controlled trials, and original research articles regarding the performance of AI in the diagnosis of both malignant and benign esophageal and gastric diseases, also discussing essential characteristics of AI.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Nicola de Bortoli
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Brigida Barberio
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| | - Vincenzo Savarino
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, Genoa
| | - Roberto Oleas
- Ecuadorean Institute of Digestive Diseases, Guayaquil, Ecuador
| | - Emma M. Rosi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Santino Marchi
- Gastroenterology Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa
| | - Mentore Ribolsi
- Department of Digestive Diseases, Campus Bio Medico University of Rome, Roma, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology, and Gastroenterology, Division of Gastroenterology, University of Padua, Padua
| |
Collapse
|
12
|
Bezerra AT, Pinto LA, Rodrigues DS, Bittencourt GN, Mancera PFDA, Miranda JRDA. Classification of gastric emptying and orocaecal transit through artificial neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9511-9524. [PMID: 34814356 DOI: 10.3934/mbe.2021467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Classical quantification of gastric emptying (GE) and orocaecal transit (OCT) based on half-life time T$ _{50} $, mean gastric emptying time (MGET), orocaecal transit time (OCTT) or mean caecum arrival time (MCAT) can lead to misconceptions when analyzing irregularly or noisy data. We show that this is the case for gastrointestinal transit of control and of diabetic rats. Addressing this limitation, we present an artificial neural network (ANN) as an alternative tool capable of discriminating between control and diabetic rats through GE and OCT analysis. Our data were obtained via biological experiments using the alternate current biosusceptometry (ACB) method. The GE results are quantified by T$ _{50} $ and MGET, while the OCT is quantified by OCTT and MCAT. Other than these classical metrics, we employ a supervised training to classify between control and diabetes groups, accessing sensitivity, specificity, $ f_1 $ score, and AUROC from the ANN. For GE, the ANN sensitivity is 88%, its specificity is 83%, and its $ f_1 $ score is 88%. For OCT, the ANN sensitivity is 100%, its specificity is 75%, and its $ f_1 $ score is 85%. The area under the receiver operator curve (AUROC) from both GE and OCT data is about 0.9 in both training and validation, while the AUCs for classical metrics are 0.8 or less. These results show that the supervised training and the binary classification of the ANN was successful. Classical metrics based on statistical moments and ROC curve analyses led to contradictions, but our ANN performs as a reliable tool to evaluate the complete profile of the curves, leading to a classification of similar curves that are barely distinguished using statistical moments or ROC curves. The reported ANN provides an alert that the use of classical metrics can lead to physiological misunderstandings in gastrointestinal transit processes. This ANN capability of discriminating diseases in GE and OCT processes can be further explored and tested in other applications.
Collapse
Affiliation(s)
- Anibal Thiago Bezerra
- Institute of Exact Sciences, Federal University of Alfenas-MG (UNIFAL-MG), Alfenas-MG 37133-840, Brazil
| | - Leonardo Antonio Pinto
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP 18618-689, Brazil
| | | | | | | | | |
Collapse
|
13
|
Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27:6191-6223. [PMID: 34712027 PMCID: PMC8515803 DOI: 10.3748/wjg.v27.i37.6191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/06/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is an umbrella term used to describe a cluster of interrelated fields. Machine learning (ML) refers to a model that learns from past data to predict future data. Medicine and particularly gastroenterology and hepatology, are data-rich fields with extensive data repositories, and therefore fruitful ground for AI/ML-based software applications. In this study, we comprehensively review the current applications of AI/ML-based models in these fields and the opportunities that arise from their application. Specifically, we refer to the applications of AI/ML-based models in prevention, diagnosis, management, and prognosis of gastrointestinal bleeding, inflammatory bowel diseases, gastrointestinal premalignant and malignant lesions, other nonmalignant gastrointestinal lesions and diseases, hepatitis B and C infection, chronic liver diseases, hepatocellular carcinoma, cholangiocarcinoma, and primary sclerosing cholangitis. At the same time, we identify the major challenges that restrain the widespread use of these models in healthcare in an effort to explore ways to overcome them. Notably, we elaborate on the concerns regarding intrinsic biases, data protection, cybersecurity, intellectual property, liability, ethical challenges, and transparency. Even at a slower pace than anticipated, AI is infiltrating the healthcare industry. AI in healthcare will become a reality, and every physician will have to engage with it by necessity.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Organ Transplant Unit, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Organ Transplant Unit, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
14
|
Comparison of deep learning and conventional machine learning methods for classification of colon polyp types. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Determination of polyp types requires tissue biopsy during colonoscopy and then histopathological examination of the microscopic images which tremendously time-consuming and costly. The first aim of this study was to design a computer-aided diagnosis system to classify polyp types using colonoscopy images (optical biopsy) without the need for tissue biopsy. For this purpose, two different approaches were designed based on conventional machine learning (ML) and deep learning. Firstly, classification was performed using random forest approach by means of the features obtained from the histogram of gradients descriptor. Secondly, simple convolutional neural networks (CNN) based architecture was built to train with the colonoscopy images containing colon polyps. The performances of these approaches on two (adenoma & serrated vs. hyperplastic) or three (adenoma vs. hyperplastic vs. serrated) category classifications were investigated. Furthermore, the effect of imaging modality on the classification was also examined using white-light and narrow band imaging systems. The performance of these approaches was compared with the results obtained by 3 novice and 4 expert doctors. Two-category classification results showed that conventional ML approach achieved significantly better than the simple CNN based approach did in both narrow band and white-light imaging modalities. The accuracy reached almost 95% for white-light imaging. This performance surpassed the correct classification rate of all 7 doctors. Additionally, the second task (three-category) results indicated that the simple CNN architecture outperformed both conventional ML based approaches and the doctors. This study shows the feasibility of using conventional machine learning or deep learning based approaches in automatic classification of colon types on colonoscopy images.
Collapse
|
15
|
Parasher G, Wong M, Rawat M. Evolving role of artificial intelligence in gastrointestinal endoscopy. World J Gastroenterol 2020; 26:7287-7298. [PMID: 33362384 PMCID: PMC7739161 DOI: 10.3748/wjg.v26.i46.7287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/02/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a combination of different technologies that enable machines to sense, comprehend, and learn with human-like levels of intelligence. AI technology will eventually enhance human capability, provide machines genuine autonomy, and reduce errors, and increase productivity and efficiency. AI seems promising, and the field is full of invention, novel applications; however, the limitation of machine learning suggests a cautious optimism as the right strategy. AI is also becoming incorporated into medicine to improve patient care by speeding up processes and achieving greater accuracy for optimal patient care. AI using deep learning technology has been used to identify, differentiate catalog images in several medical fields including gastrointestinal endoscopy. The gastrointestinal endoscopy field involves endoscopic diagnoses and prognostication of various digestive diseases using image analysis with the help of various gastrointestinal endoscopic device systems. AI-based endoscopic systems can reliably detect and provide crucial information on gastrointestinal pathology based on their training and validation. These systems can make gastroenterology practice easier, faster, more reliable, and reduce inter-observer variability in the coming years. However, the thought that these systems will replace human decision making replace gastrointestinal endoscopists does not seem plausible in the near future. In this review, we discuss AI and associated various technological terminologies, evolving role in gastrointestinal endoscopy, and future possibilities.
Collapse
Affiliation(s)
- Gulshan Parasher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Morgan Wong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Manmeet Rawat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| |
Collapse
|
16
|
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc 2020; 92:807-812. [PMID: 32565184 DOI: 10.1016/j.gie.2020.06.040] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) was first described in 1950; however, several limitations in early models prevented widespread acceptance and application to medicine. In the early 2000s, many of these limitations were overcome by the advent of deep learning. Now that AI systems are capable of analyzing complex algorithms and self-learning, we enter a new age in medicine where AI can be applied to clinical practice through risk assessment models, improving diagnostic accuracy and workflow efficiency. This article presents a brief historical perspective on the evolution of AI over the last several decades and the introduction and development of AI in medicine in recent years. A brief summary of the major applications of AI in gastroenterology and endoscopy are also presented, which are reviewed in further detail by several other articles in this issue of Gastrointestinal Endoscopy.
Collapse
Affiliation(s)
- Vivek Kaul
- Division of Gastroenterology & Hepatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sarah Enslin
- Division of Gastroenterology & Hepatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Seth A Gross
- Division of Gastroenterology & Hepatology, NYU Langone Health System, New York, New York, USA
| |
Collapse
|
17
|
Briganti G, Le Moine O. Artificial Intelligence in Medicine: Today and Tomorrow. Front Med (Lausanne) 2020; 7:27. [PMID: 32118012 PMCID: PMC7012990 DOI: 10.3389/fmed.2020.00027] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence-powered medical technologies are rapidly evolving into applicable solutions for clinical practice. Deep learning algorithms can deal with increasing amounts of data provided by wearables, smartphones, and other mobile monitoring sensors in different areas of medicine. Currently, only very specific settings in clinical practice benefit from the application of artificial intelligence, such as the detection of atrial fibrillation, epilepsy seizures, and hypoglycemia, or the diagnosis of disease based on histopathological examination or medical imaging. The implementation of augmented medicine is long-awaited by patients because it allows for a greater autonomy and a more personalized treatment, however, it is met with resistance from physicians which were not prepared for such an evolution of clinical practice. This phenomenon also creates the need to validate these modern tools with traditional clinical trials, debate the educational upgrade of the medical curriculum in light of digital medicine as well as ethical consideration of the ongoing connected monitoring. The aim of this paper is to discuss recent scientific literature and provide a perspective on the benefits, future opportunities and risks of established artificial intelligence applications in clinical practice on physicians, healthcare institutions, medical education, and bioethics.
Collapse
Affiliation(s)
- Giovanni Briganti
- Medical Informatics, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Epidemiology, Biostatistics and Clinical Research, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Le Moine
- Medical Informatics, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Anirvan P, Meher D, Singh SP. Artificial Intelligence in Gastrointestinal Endoscopy in a Resource-constrained Setting: A Reality Check. Euroasian J Hepatogastroenterol 2020; 10:92-97. [PMID: 33511071 PMCID: PMC7801886 DOI: 10.5005/jp-journals-10018-1322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is being increasingly explored in different domains of gastroenterology, particularly in endoscopic image analysis, cancer screening, and prognostication models. It is widely touted to become an integral part of routine endoscopies, considering the bulk of data handled by endoscopists and the complex nature of critical analyses performed. However, the application of AI in endoscopy in resource-constrained settings remains fraught with problems. We conducted an extensive literature review using the PubMed database on articles covering the application of AI in endoscopy and the difficulties encountered in resource-constrained settings. We have tried to summarize in the present review the potential problems that may hinder the application of AI in such settings. Hopefully, this review will enable endoscopists and health policymakers to ponder over these issues before trying to extrapolate the advancements of AI in technically advanced settings to those having constraints at multiple levels. How to cite this article: Anirvan P, Meher D, Singh SP. Artificial Intelligence in Gastrointestinal Endoscopy in a Resource-constrained Setting: A Reality Check. Euroasian J Hepato-Gastroenterol 2020;10(2): 92–97.
Collapse
Affiliation(s)
- Prajna Anirvan
- Department of Gastroenterology, SCB Medical College, Cuttack, Odisha, India
| | - Dinesh Meher
- Department of Gastroenterology, SCB Medical College, Cuttack, Odisha, India
| | - Shivaram P Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Odisha, India
| |
Collapse
|
19
|
Sapra R, Mehrotra S, Nundy S. Artificial Neural Networks: Prediction of mortality/survival in gastroenterology. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.cmrp.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Witt DR, Chen H, Mielens JD, McAvoy KE, Zhang F, Hoffman MR, Jiang JJ. Detection of chronic laryngitis due to laryngopharyngeal reflux using color and texture analysis of laryngoscopic images. J Voice 2013; 28:98-105. [PMID: 24314831 DOI: 10.1016/j.jvoice.2013.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/26/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine if pattern recognition of hue and textural parameters can be used to identify laryngopharyngeal reflux (LPR). METHODS Laryngoscopic images from 20 subjects with LPR and 42 control subjects without LPR were obtained. LPR status was determined using the reflux finding score. Color and texture features were quantified using hue calculation and two-dimensional Gabor filtering. Five regions were analyzed: true vocal folds, false vocal folds, epiglottis, interarytenoid space, and arytenoid mucosae. A multilayer perceptron artificial neural network with varying numbers of hidden nodes was used to classify images according to pattern recognition. Receiver operating characteristic (ROC) analysis was used to evaluate diagnostic utility, and intraclass correlation coefficient analysis was performed to determine interrater reliability. RESULTS Classification accuracy when including all parameters was 80.5% ± 1.2% with an area under the ROC curve of 0.887. Classification accuracy decreased when including only hue (73.1% ± 3.5%; area under the curve = 0.834) or texture (74.9% ± 3.6%; area under the curve = 0.852) parameters. Interrater reliability was 0.97 ± 0.03 for hue parameters and 0.85 ± 0.11 for texture parameters. CONCLUSIONS This preliminary study suggests that a combination of hue and texture features can be used to detect chronic laryngitis due to LPR. A simple, minimally invasive assessment would be a valuable addition to the currently invasive and somewhat unreliable methods currently used for diagnosis. Including more data will likely improve classification accuracy. Additional investigations will be performed to determine if results are in accordance with those provided by pH probe monitoring.
Collapse
Affiliation(s)
- Daniel R Witt
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Huijun Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai EENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jason D Mielens
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kieran E McAvoy
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Fan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai EENT Hospital, Fudan University, Shanghai, People's Republic of China
| | - Matthew R Hoffman
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jack J Jiang
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Otolaryngology-Head and Neck Surgery, Shanghai EENT Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Mielens JD, Hoffman MR, Ciucci MR, McCulloch TM, Jiang JJ. Application of classification models to pharyngeal high-resolution manometry. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:892-902. [PMID: 22232390 PMCID: PMC3501389 DOI: 10.1044/1092-4388(2011/11-0088)] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
PURPOSE The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). METHOD Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were evaluated for their ability to identify disordered swallowing. Data were collected from 12 control subjects and 13 subjects with swallowing disorders; for this experiment, these subjects swallowed 5-ml water boluses. Following extraction of relevant parameters, a subset of the data was used to train the models, and the remaining swallows were then independently classified by the networks. RESULTS All methods produced high average classification accuracies, with MLP, SVM, and LVQ achieving accuracies of 96.44%, 91.03%, and 85.39%, respectively. When evaluating the individual contributions of each parameter and groups of parameters to the classification accuracy, parameters pertaining to the upper esophageal sphincter were most valuable. CONCLUSION Classification models show high accuracy in segregating HRM data sets and represent 1 method of facilitating application of HRM to the clinical setting by eliminating the time required for some aspects of data extraction and interpretation.
Collapse
Affiliation(s)
- Jason D. Mielens
- Department of Surgery, Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792
| | - Matthew R. Hoffman
- Department of Surgery, Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792
| | - Michelle R. Ciucci
- Department of Surgery, Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792
- Department of Communicative Disorders, College of Letters & Science, University of Wisconsin, Madison, WI, 53706
| | - Timothy M. McCulloch
- Department of Surgery, Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792
| | - Jack J. Jiang
- Department of Surgery, Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792
| |
Collapse
|
22
|
Pace F, Riegler G, Leone AD, Dominici P, Grossi E, Group TEMERGES. Gastroesophageal reflux disease management according to contemporary international guidelines: A translational study. World J Gastroenterol 2011; 17:1160-6. [PMID: 21448420 PMCID: PMC3063908 DOI: 10.3748/wjg.v17.i9.1160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To test the Genval recommendations and the usefulness of a short trial of proton pump inhibitor (PPI) in the initial management and maintenance treatment of gastroesophageal reflux disease (GERD) patients.
METHODS: Five hundred and seventy seven patients with heartburn were recruited. After completing a psychometric tool to assess quality of life (PGWBI) and a previously validated GERD symptom questionnaire (QUID), patients were grouped into those with esophagitis (EE, n = 306) or without mucosal damage (NERD, n = 271) according to endoscopy results. The study started with a 2-wk period of high dose omeprazole (omeprazole test); patients responding to this PPI test entered an acute phase (3 mo) of treatment with any PPI at the standard dose. Finally, those patients with a favorable response to the standard PPI dose were maintained on a half PPI dose for a further 3-mo period.
RESULTS: The test was positive in 519 (89.9%) patients, with a greater response in EE patients (96.4%) compared with NERD patients (82.6%) (P = 0.011). Both the percentage of completely asymptomatic patients, at 3 and 6 mo, and the reduction in heartburn intensity were significantly higher in the EE compared with NERD patients (P < 0.01). Finally, the mean PGWBI score was significantly decreased before and increased after therapy in both subgroups when compared with the mean value in a reference Italian population.
CONCLUSION: Our study confirms the validity of the Genval guidelines in the management of GERD patients. In addition, we observed that the overall response to PPI therapy is lower in NERD compared to EE patients.
Collapse
|
23
|
Pace F, Riegler G, de Leone A, Pace M, Cestari R, Dominici P, Grossi E. Is it possible to clinically differentiate erosive from nonerosive reflux disease patients? A study using an artificial neural networks-assisted algorithm. Eur J Gastroenterol Hepatol 2010; 22:1163-8. [PMID: 20526203 DOI: 10.1097/meg.0b013e32833a88b8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The use of either symptom questionnaires or artificial neural networks (ANNs) has proven to improve the accuracy in diagnosing gastroesophageal reflux disease (GERD). However, the differentiation between the erosive and nonerosive reflux disease based upon symptoms at presentation still remains inconclusive. AIM To assess the capability of a combined approach, that is, the use of a novel GERD questionnaire - the QUestionario Italiano Diagnostico (QUID) questionnaire - and of an ANNs-assisted algorithm, to discriminate between nonerosive gastroesophageal reflux disease (NERD) and erosive esophagitis (EE) patients. METHODS Five hundred and fifty-seven adult outpatients with typical GERD symptoms and 94 asymptomatic adult patients, were submitted to the QUID questionnaire. GERD patients were then submitted to upper gastrointestinal endoscopy to differentiate them between EE and NERD patients. RESULTS The QUID score resulted significantly (P<0.001) higher in GERD patients versus controls, but it was not statistically significantly different between EE and NERD patients. ANNs assisted diagnosis had greater specificity, sensitivity and accuracy compared with the linear discriminant analysis only to differentiate GERD patients from controls. However, no single technique was able to satisfactorily discriminate between EE and NERD patients. CONCLUSION Our study suggests that the combination between QUID questionnaire and an ANNs-assisted algorithm is useful only to differentiate GERD patients from healthy individuals but fails to further discriminate erosive from nonerosive patients.
Collapse
Affiliation(s)
- Fabio Pace
- Division of Gastroenterology, Department of Clinical Sciences, L. Sacco University Hospital, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pandey B, Mishra R. Knowledge and intelligent computing system in medicine. Comput Biol Med 2009; 39:215-30. [PMID: 19201398 DOI: 10.1016/j.compbiomed.2008.12.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 11/24/2008] [Accepted: 12/17/2008] [Indexed: 01/04/2023]
|
25
|
Grossi E, Mancini A, Buscema M. International experience on the use of artificial neural networks in gastroenterology. Dig Liver Dis 2007; 39:278-85. [PMID: 17275425 DOI: 10.1016/j.dld.2006.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 10/09/2006] [Accepted: 10/12/2006] [Indexed: 02/08/2023]
Abstract
In this paper, we reconsider the scientific background for the use of artificial intelligence tools in medicine. A review of some recent significant papers shows that artificial neural networks, the more advanced and effective artificial intelligence technique, can improve the classification accuracy and survival prediction of a number of gastrointestinal diseases. We discuss the 'added value' the use of artificial neural networks-based tools can bring in the field of gastroenterology, both at research and clinical application level, when compared with traditional statistical or clinical-pathological methods.
Collapse
Affiliation(s)
- E Grossi
- Bracco Spa Medical Department, Via E Folli 50, 20136 Milan, Italy.
| | | | | |
Collapse
|
26
|
Savarino V, Dulbecco P. Can artificial neural networks be beneficial in diagnosing gastro-oesophageal reflux disease? Eur J Gastroenterol Hepatol 2005; 17:599-601. [PMID: 15879719 DOI: 10.1097/00042737-200506000-00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|