1
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Larsen K, Petrovski G, Boix-Lemonche G. Alternative cryoprotective agent for corneal stroma-derived mesenchymal stromal cells for clinical applications. Sci Rep 2024; 14:15788. [PMID: 38982099 PMCID: PMC11233711 DOI: 10.1038/s41598-024-65469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Cryopreservation of human corneal stroma-derived mesenchymal stromal cells (hCS-MSCs) with dimethylsulfoxide (DMSO) as a cryoprotective agent (CPA) has not been previously compared to that with glycerol under standard conditions. The hCS-MSCs were hereby cryopreserved with both compounds using a freezing rate of 1 °C/minute. The CPAs were tested by different concentrations in complete Minimum Essential Medium (MEM) approved for good manufacturing practice, and a medium frequently used in cell laboratory culturing-Dulbecco's modified eagle serum. The hCS-MSCs were isolated from cadaveric human corneas obtained from the Norwegian Eye Bank, and immunophenotypically characterized by flow cytometry before and after cryopreservation. The survival rate, the cellular adhesion, proliferation and cell surface coverage after cryopreservation of hCS-MSCs has been studied. The hCS-MSCs were immunofluorescent stained and examined for their morphology microscopically. The results showed that cryopreservation of hCS-MSCs in MEM with 10% glycerol gives a higher proliferation rate compared to other cryopreserving media tested. Based on the results, hCS-MSCs can safely be cryopreserved using glycerol instead of the traditional use of DMSO.
Collapse
Affiliation(s)
- Kristoffer Larsen
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- School of Medicine, University of Split, 21000, Split, Croatia
- UKLONetwork, University St. Kliment Ohridski -Bitola, 7000, Bitola, North Macedonia
| | - Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Surovtseva MA, Krasner KY, Kim II, Surovtsev NV, Chepeleva EV, Bondarenko NA, Lykov AP, Bgatova NP, Alshevskaya AA, Trunov AN, Chernykh VV, Poveshchenko OV. Reversed Corneal Fibroblasts Therapy Restores Transparency of Mouse Cornea after Injury. Int J Mol Sci 2024; 25:7053. [PMID: 39000162 PMCID: PMC11241278 DOI: 10.3390/ijms25137053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cell-based therapies using corneal stromal stem cells (CSSC), corneal keratocytes, or a combination of both suppress corneal scarring. The number of quiescent keratocytes in the cornea is small; it is difficult to expand them in vitro in quantities suitable for transplantation. This study examined the therapeutic effect of corneal fibroblasts reversed into keratocytes (rCF) in a mouse model of mechanical corneal injury. The therapeutic effect of rCF was studied in vivo (slit lamp, optical coherence tomography) and ex vivo (transmission electron microscopy and immunofluorescence staining). Injection of rCF into the injured cornea was accompanied by recovery of corneal thickness, improvement of corneal transparency, reduction of type III collagen in the stroma, absence of myofibroblasts, and the improvement in the structural organization of collagen fibers. TEM results showed that 2 months after intrastromal injection of cells, there was a decrease in the fibril density and an increase in the fibril diameter and the average distance between collagen fibrils. The fibrils were well ordered and maintained the short-range order and the number of nearest-neighbor fibrils, although the averaged distance between them increased. Our results demonstrated that the cell therapy of rCF from ReLEx SMILe lenticules promotes the recovery of transparent corneal stroma after injury.
Collapse
Affiliation(s)
- Maria A Surovtseva
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
| | - Kristina Yu Krasner
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
- Novosibirsk Branch of S. Fedorov Eye Microsurgery Federal State Institution, 10 Kolkhidskaya Str., 630096 Novosibirsk, Russia
| | - Irina I Kim
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
| | - Nikolay V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, 1 Academician Koptyug St., 630090 Novosibirsk, Russia
| | - Elena V Chepeleva
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
| | - Natalia A Bondarenko
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
| | - Alexander P Lykov
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
| | - Nataliya P Bgatova
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
| | - Alina A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Russian Federation, 2, Building 4 Bolshaya Pirogovskaya St., 119048 Moscow, Russia
| | - Alexander N Trunov
- Novosibirsk Branch of S. Fedorov Eye Microsurgery Federal State Institution, 10 Kolkhidskaya Str., 630096 Novosibirsk, Russia
| | - Valery V Chernykh
- Novosibirsk Branch of S. Fedorov Eye Microsurgery Federal State Institution, 10 Kolkhidskaya Str., 630096 Novosibirsk, Russia
| | - Olga V Poveshchenko
- Research Institute of Clinical and Experimental Lymphology Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 2 Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
4
|
Ogata FT, Verma S, Coulson-Thomas VJ, Gesteira TF. TGF-β-Based Therapies for Treating Ocular Surface Disorders. Cells 2024; 13:1105. [PMID: 38994958 PMCID: PMC11240592 DOI: 10.3390/cells13131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
Collapse
Affiliation(s)
- Fernando T Ogata
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| | - Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | | | - Tarsis F Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
5
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
6
|
Zhang J, Xiang Y, Yang Q, Chen J, Liu L, Jin J, Zhu S. Adipose-derived stem cells derived decellularized extracellular matrix enabled skin regeneration and remodeling. Front Bioeng Biotechnol 2024; 12:1347995. [PMID: 38628439 PMCID: PMC11019001 DOI: 10.3389/fbioe.2024.1347995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
The tissues or organs derived decellularized extracellular matrix carry immunogenicity and the risk of pathogen transmission, resulting in limited therapeutic effects. The cell derived dECM cultured in vitro can address these potential risks, but its impact on wound remodeling is still unclear. This study aimed to explore the role of decellularized extracellular matrix (dECM) extracted from adipose derived stem cells (ADSCs) in skin regeneration. Methods: ADSCs were extracted from human adipose tissue. Then we cultivated adipose-derived stem cell cells and decellularized ADSC-dECM for freeze-drying. Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS) were conducted to analyzed the main protein components in ADSC-dECM. The cell counting assay (CCK-8) and scratch assay were used to explore the effects of different concentrations of ADSC-dECM on the proliferation and migration of human keratinocytes cells (HaCaT), human umbilical vein endothelia cells (HUVEC) and human fibroblasts (HFB), respectively. Moreover, we designed a novel ADSC-dECM-CMC patch which used carboxymethylcellulose (CMC) to load with ADSC-dECM; and we further investigated its effect on a mouse full thickness skin wound model. Results: ADSC-dECM was obtained after decellularization of in vitro cultured human ADSCs. Western blot, ELISA and mass spectrometry results showed that ADSC-dECM contained various bioactive molecules, including collagen, elastin, laminin, and various growth factors. CCK-8 and scratch assay showed that ADSC-dECM treatment could significantly promote the proliferation and migration of HaCaT, human umbilical vein endothelia cells, and human fibroblasts, respectively. To evaluate the therapeutic effect on wound healing in vivo, we developed a novel ADSC-dECM-CMC patch and transplanted it into a mouse full-thickness skin wound model. And we found that ADSC-dECM-CMC patch treatment significantly accelerated the wound closure with time. Further histology and immunohistochemistry indicated that ADSC-dECM-CMC patch could promote tissue regeneration, as confirmed via enhanced angiogenesis and high cell proliferative activity. Conclusion: In this study, we developed a novel ADSC-dECM-CMC patch containing multiple bioactive molecules and exhibiting good biocompatibility for skin reconstruction and regeneration. This patch provides a new approach for the use of adipose stem cells in skin tissue engineering.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Yang Xiang
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Quyang Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jiqiu Chen
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Lei Liu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Jin
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shihui Zhu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Priyadarsini S, McKay TB, Escandon P, Nicholas SE, Ma JX, Karamichos D. Cell sheet-based approach to study the diabetic corneal stroma. Exp Eye Res 2023; 237:109717. [PMID: 37944849 DOI: 10.1016/j.exer.2023.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Prolonged hyperglycemia during diabetes mellitus (DM) is associated with severe complications that may affect both the anterior and posterior ocular segments, leading to impaired vision or blindness. The cornea is a vital part of the eye that has a dual role as a protective transparent barrier and as a major refractive structure and is likewise negatively affected by hyperglycemia in DM. Understanding the cellular and molecular mechanisms underlying the phenotypic changes associated with DM is critical to developing targeted therapies to promote tissue integrity. In this proof-of-concept study, we applied a cell sheet-based approach to generate stacked constructs of physiological corneal thickness using primary human corneal fibroblasts isolated from cadaveric control (healthy), Type 1 DM and Type 2 DM corneal tissues. Self-assembled corneal stromal sheets were generated after 2 weeks in culture, isolated, and subsequently assembled to create stacked constructs, which were evaluated using transmission electron microscopy. Analysis of gene expression patterns revealed significant downregulation of fibrotic markers, α-smooth muscle actin, and collagen type 3, with stacking in Type 2 DM constructs when compared to controls. IGF1 expression was significantly upregulated in Type 2 DM constructs compared to controls with a significant reduction induced by stacking. This study describes the development of a thicker, self-assembled corneal stromal construct as a platform to evaluate phenotypic differences associated with DM-derived corneal fibroblasts and enable the development of targeted therapeutics to promote corneal integrity.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tina B McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
8
|
Yu F, Gong D, Yan D, Wang H, Witman N, Lu Y, Fu W, Fu Y. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther 2023; 31:2454-2471. [PMID: 37165618 PMCID: PMC10422019 DOI: 10.1016/j.ymthe.2023.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
The cornea serves as an important barrier structure to the eyeball and is vulnerable to injuries, which may lead to scarring and blindness if not treated promptly. To explore an effective treatment that could achieve multi-dimensional repair of the injured cornea, the study herein innovatively combined modified mRNA (modRNA) technologies with adipose-derived mesenchymal stem cells (ADSCs) therapy, and applied IGF-1 modRNA (modIGF1)-engineered ADSCs (ADSCmodIGF1) to alkali-burned corneas in mice. The therapeutic results showed that ADSCmodIGF1 treatment could achieve the most extensive recovery of corneal morphology and function when compared not only with simple ADSCs but also IGF-1 protein eyedrops, which was reflected by the healing of corneal epithelium and limbus, the inhibition of corneal stromal fibrosis, angiogenesis and lymphangiogenesis, and also the repair of corneal nerves. In vitro experiments further proved that ADSCmodIGF1 could more significantly promote the activity of trigeminal ganglion cells and maintain the stemness of limbal stem cells than simple ADSCs, which were also essential for reconstructing corneal homeostasis. Through a combinatorial treatment regimen of cell-based therapy with mRNA technology, this study highlighted comprehensive repair in the damaged cornea and showed the outstanding application prospect in the treatment of corneal injury.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Danni Gong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Dan Yan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nevin Witman
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Yang Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
9
|
Tavakkoli F, Eleiwa TK, Elhusseiny AM, Damala M, Rai AK, Cheraqpour K, Ansari MH, Doroudian M, H Keshel S, Soleimani M, Djalilian AR, Sangwan VS, Singh V. Corneal stem cells niche and homeostasis impacts in regenerative medicine; concise review. Eur J Ophthalmol 2023:11206721221150065. [PMID: 36604831 DOI: 10.1177/11206721221150065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The limbal stem cells niche (LSCN) is an optimal microenvironment that provides the limbal epithelial stem cells (LESCs) and strictly regulates their proliferation and differentiation. Disturbing the LSCN homeostasis can lead to limbal stem cell dysfunction (LSCD) and subsequent ocular surface aberrations, such as corneal stromal inflammation, persistent epithelial defects, corneal neovascularisation, lymphangiogenesis, corneal opacification, and conjunctivalization. As ocular surface disorders are considered the second main cause of blindness, it becomes crucial to explore different therapeutic strategies for restoring the functions of the LSCN. A major limitation of corneal transplantation is the current shortage of donor tissue to meet the requirements worldwide. In this context, it becomes mandatory to find an alternative regenerative medicine, such as using cultured limbal epithelial/stromal stem cells, inducing the production of corneal like cells by using other sources of stem cells, and using tissue engineering methods aiming to produce the three-dimensional (3D) printed cornea. Limbal epithelial stem cells have been considered the magic potion for eye treatment. Epithelial and stromal stem cells in the limbal niche hold the responsibility of replenishing the corneal epithelium. These stem cells are being used for transplantation to maintain corneal epithelial integrity and ultimately sustain optimal vision. In this review, we summarised the characteristics of the LSCN and their current and future roles in restoring corneal homeostasis in eyes with LSCD.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Department of Community Health, College of Health Technology, Cihan University, Erbil, Iraq.,SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Taher K Eleiwa
- Department of Ophthalmology, Benha University, Benha, Egypt
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mukesh Damala
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit K Rai
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Kasra Cheraqpour
- Translational Eye Research Center, Farabi Eye Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - Saeed H Keshel
- Department of Tissue Engineering and Applied Cell Sciences, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Vivek Singh
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
10
|
Shhedding New Light on the Role of Hedgehog Signaling in Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms23073630. [PMID: 35408986 PMCID: PMC8998466 DOI: 10.3390/ijms23073630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.
Collapse
|
11
|
Okada Y, Sumioka T, Reinach PS, Miyajima M, Saika S. Roles of Epithelial and Mesenchymal TRP Channels in Mediating Inflammatory Fibrosis. Front Immunol 2022; 12:731674. [PMID: 35058918 PMCID: PMC8763672 DOI: 10.3389/fimmu.2021.731674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The maintenance of normal vision is dependent on preserving corneal transparency. For this to occur, this tissue must remain avascular and its stromal architecture needs to be retained. Epithelial transparency is maintained provided the uppermost stratified layers of this tissue are composed of terminally differentiated non-keratinizing cells. In addition, it is essential that the underlying stromal connective tissue remains avascular and scar-free. Keratocytes are the source of fibroblasts that are interspersed within the collagenous framework and the extracellular matrix. In addition, there are sensory nerve fibers whose lineage is possibly either neural crest or mesenchymal. Corneal wound healing studies have been undertaken to delineate the underlying pathogenic responses that result in the development of opacification following chemical injury. An alkali burn is one type of injury that can result in severe and long- lasting losses in ocular transparency. During the subsequent wound healing process, numerous different proinflammatory cytokines and proteolytic enzymes undergo upregulation. Such increases in their expression levels induce maladaptive expression of sustained stromal inflammatory fibrosis, neovascularization, and losses in the smooth optical properties of the corneal outer surface. It is becoming apparent that different transient receptor potential channel (TRP) isoforms are important players in mediating these different events underlying the wound healing process since injury upregulates both their expression levels and functional involvement. In this review, we focus on the involvement of TRPV1, TRPA1 and TRPV4 in mediating some of the responses that underlie the control of anterior ocular tissue homeostasis under normal and pathological conditions. They are expressed on both different cell types throughout this tissue and also on corneal sensory nerve endings. Their roles have been extensively studied as sensors and transducers of environmental stimuli resulting from exposure to intrinsic modulators and extrinsic ligands. These triggers include alteration of the ambient temperature and mechanical stress, etc., that can induce pathophysiological responses underlying losses in tissue transparency activated by wound healing in mice losses in tissue transparency. In this article, experimental findings are reviewed about the role of injury-induced TRP channel activation in mediating inflammatory fibrotic responses during wound healing in mice.
Collapse
Affiliation(s)
- Yuka Okada
- Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | | | - Peter S Reinach
- Wenzhou Medical University School of Ophthalmology and Optometry, Wenzhou, China
| | | | - Shizuya Saika
- Ophthalmology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
12
|
Desjardins P, Le-Bel G, Ghio SC, Germain L, Guérin SL. The WNK1 kinase regulates the stability of transcription factors during wound healing of human corneal epithelial cells. J Cell Physiol 2022; 237:2434-2450. [PMID: 35150137 DOI: 10.1002/jcp.30698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Due to its superficial anatomical localization, the cornea is continuously subjected to injuries. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by membrane-bound integrins and ultimately lead to re-epithelialization of the injured epithelium through intracellular signalin. Among the many downstream targets of the integrin-activated signaling pathways, WNK1 is the kinase whose activity is the most strongly increased during corneal wound healing. We previously demonstrated that pharmacological inhibition of WNK1 prevents proper closure of wounded human tissue-engineered cornea in vitro. In the present study, we investigated the molecular mechanisms by which WNK1 contributes to corneal wound healing. By exploiting transcription factors microarrays, electrophoretic mobility-shift assay, and gene profiling analyses, we demonstrated that the DNA binding properties and expression of numerous transcription factors (TFs), including the well-known, ubiquitous TFs specific protein 1 (Sp1) and activator protein 1 (AP1), were reduced in hCECs upon WNK1 inhibition by WNK463. This process appears to be mediated at least in part by alteration in both the ubiquitination and glycosylation status of these TFs. These changes in TFs activity and expression impacted the transcription of several genes, including that encoding the α5 integrin subunit, a well-known target of both Sp1 and AP1. Gene profiling revealed that only a moderate number of genes in hCECs had their level of expression significantly altered in response to WNK463 exposition. Interestingly, analysis of the microarray data for these deregulated genes using the ingenuity pathway analysis software predicted that hCECs would stop migrating and proliferating but differentiate more when they are grown in the presence of the WNK1 inhibitor. These results demonstrate that WNK1 plays a critical function by orienting hCECs into the appropriate biological response during the process of corneal wound healing.
Collapse
Affiliation(s)
- Pascale Desjardins
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Gaëtan Le-Bel
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sergio C Ghio
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Lucie Germain
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
13
|
Purushothaman I, Zagon IS, Sassani JW, McLaughlin PJ. Ocular surface complications in diabetes: The interrelationship between insulin and enkephalin. Biochem Pharmacol 2021; 192:114712. [PMID: 34324868 PMCID: PMC8478878 DOI: 10.1016/j.bcp.2021.114712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Diabetes is a multi-faceted disorder with increasing prevalence and rising healthcare costs. The burden of diabetes is increased because of associated complications affecting nearly all organs including the eye. The underlying pathophysiology for the onset of these ocular surface disorders is not well known. Enkephalins are endogenous opioids that originate in the brain and have numerous actions in the human body. Opioid growth factor (OGF), chemically termed [Met5]-enkephalin, binds to a novel, nuclear-associated receptor and mediates cellular homeostasis. Serum OGF levels are elevated in diabetic individuals and rodent models of diabetes. Sustained blockade of the OGF receptor (OGFr) with opioid receptor antagonists, such as naltrexone (NTX), reverses many complications of diabetes in the animal model, including delayed cutaneous wound healing, dry eye, altered corneal surface sensitivity, and keratopathy. The increased enkephalin levels observed in diabetes suggest a relationship between endogenous opioid peptides and the pathophysiology of diabetes. It is common for diabetic patients to undergo insulin therapy to restore normal blood glucose levels. However, this restoration does not alter OGF serum levels nor ameliorate ocular surface complications in the animal model of diabetes. Moreover, sex differences in the prevalence of diabetes, response to insulin therapy, and abnormalities in the OGF-OGFr axis have been reported. This review highlights current knowledge on the dysregulation of the OGF-OGFr pathway and possible relationships of insulin and enkephalins to the development of ocular surface defects in diabetes. It proposes that this dysregulation is a fundamental mechanism for the pathobiology of diabetic complications.
Collapse
Affiliation(s)
- Indira Purushothaman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ian S Zagon
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Joseph W Sassani
- Department of Ophthalmology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Patricia J McLaughlin
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
15
|
Cheung IM, Mcghee CN, Sherwin T. A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive species‐associated processes. Clin Exp Optom 2021; 96:188-96. [DOI: 10.1111/cxo.12025] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/30/2012] [Indexed: 12/13/2022] Open
Affiliation(s)
- Isabella My Cheung
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| | - Charles Nj Mcghee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| | - Trevor Sherwin
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
16
|
Zheng XS, Zheng H, Xu D, Liu PP, Li B, Cao ZM, Liu Y, Liu Y. Effect of zymosan on the expression and function of the gap-junction protein connexin 43 in human corneal fibroblasts. Int J Ophthalmol 2021; 14:341-348. [PMID: 33747807 DOI: 10.18240/ijo.2021.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
AIM To study the effect of zymosan, a ligand found on the surface of fungi, on gap junctional intercellular communication (GJIC) in cultured human corneal fibroblasts (HCFs). METHODS Zymosan was added to the medium of cultured HCFs with or without the administration of mitogen-activated protein kinase (MAPK) inhibitors or the inhibitor kappa B kinase 2 (IKK2) inhibitor IV. The protein and mRNA levels of connexin 43 (Cx43) in HCFs were measured by Western blot, immunofluorescence, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The GJIC activity was tested using a dye-coupling assay. RESULTS The reduction of Cx43 protein and mRNA levels as well as a significant decrease in GJIC activity were observed in cultured HCFs when zymosan was added into the culture medium. Compared with controls (no zymosan), the protein level of Cx43 was reduced by 45% and 54% in the presence of zymosan at 200 and 600 µg/mL, respectively (P<0.05); and it was reduced by 45%, 48%, and 75% in the presence of zymosan (600 µg/mL) for 24, 36, and 48h, respectively (P<0.05). The mRNA expression of Cx43 was reduced by 98% in the presence of zymosan (P<0.05). The effects of zymosan on Cx43 expression and GJIC activity were attenuated by the administration of PD98059 [an extracellular signal-regulated kinase (ERK) signaling inhibitor] (P<0.05), c-Jun NH2-terminal kinase (JNK) inhibitor II (P<0.05), and IKK2 inhibitor IV (P<0.05). CONCLUSION Zymosan inhibits the activity of GJIC in cultured HCFs. This effect is likely regulated via the nuclear factor-κB (NF-κB), MAPK/ERK, and JNK signaling pathways. The inhibitory effects of zymosan on Cx43 expression and GJIC activity in HCFs may induce damage of corneal stroma during corneal fungal infection.
Collapse
Affiliation(s)
- Xiao-Shuo Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Hui Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environmental Science and Engineering College, Dalian Maritime University, Dalian 116027, Liaoning Province, China
| | - Ping-Ping Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Bing Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Zi-Mu Cao
- Institute of Environmental Systems Biology, Environmental Science and Engineering College, Dalian Maritime University, Dalian 116027, Liaoning Province, China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangzhou Province, China
| |
Collapse
|
17
|
Tear Proteases and Protease Inhibitors: Potential Biomarkers and Disease Drivers in Ocular Surface Disease. Eye Contact Lens 2021; 46 Suppl 2:S70-S83. [PMID: 31369467 DOI: 10.1097/icl.0000000000000641] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tears are highly concentrated in proteins relative to other biofluids, and a notable fraction of tear proteins are proteases and protease inhibitors. These components are present in a delicate equilibrium that maintains ocular surface homeostasis in response to physiological and temporal cues. Dysregulation of the activity of protease and protease inhibitors in tears occurs in ocular surface diseases including dry eye and infection, and ocular surface conditions including wound healing after refractive surgery and contact lens (CL) wear. Measurement of these changes can provide general information regarding ocular surface health and, increasingly, has the potential to give specific clues regarding disease diagnosis and guidance for treatment. Here, we review three major categories of tear proteases (matrix metalloproteinases, cathepsins, and plasminogen activators [PAs]) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, cystatins, and PA inhibitors), and the changes in these factors associated with dry eye, infection and allergy, refractive surgery, and CLs. We highlight suggestions for development of these and other protease/protease inhibitor biomarkers in this promising field.
Collapse
|
18
|
Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf 2020; 19:290-306. [PMID: 33127599 DOI: 10.1016/j.jtos.2020.10.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Corneal stromal wound healing is a complex event that occurs to restore the transparency of an injured cornea. It involves immediate apoptosis of keratocytes followed by their activation, proliferation, migration, and trans-differentiation to myofibroblasts. Myofibroblasts contract to close the wound and secrete extracellular matrix and proteinases to remodel it. Released proteinases may degenerate the basement membrane allowing an influx of cytokines from overlying epithelium. Immune cells infiltrate the wound to clear cellular debris and prevent infections. Gradually basement membrane regenerates, myofibroblasts and immune cells disappear, abnormal matrix is resorbed, and transparency of the cornea is restored. Often this cascade deregulates and corneal opacity results. Factors that prevent corneal opacity after an injury have always intrigued the researchers. They hold clinical relevance as they can guide the outcomes of corneal surgeries. Studies in the past have shed light on the role of various factors in stromal healing. TGFβ (transforming growth factor-beta) signaling is the central player guiding stromal responses. Other major regulators include myofibroblasts, basement membrane, collagen fibrils, small leucine-rich proteoglycans, biophysical cues, proteins derived from extracellular matrix, and membrane channels. The knowledge about their roles helped to develop novel therapies to prevent corneal opacity. This article reviews the role of major regulators that determine the outcome of stromal healing. It also discusses emerging therapies that modulate the role of these regulators to prevent stromal opacity.
Collapse
Affiliation(s)
- Sabeeh Kamil
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
19
|
Montorio D, Cennamo G, Menna F, Donna P, Napolitano P, Breve MA, Fiore U, Cennamo G, Rosa N. Evaluation of corneal structures in myopic eyes more than twenty-two years after photorefractive keratectomy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000138. [PMID: 32668101 DOI: 10.1002/jbio.202000138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study is to evaluate corneal epithelial thickness (CET), corneal densitometry (CD) in 84 myopic eyes (57 patients) more than 22 years after photorefractive keratectomy, using anterior segment-optical coherence tomography (AS-OCT) and Scheimpflug imaging system. The CET was significantly higher in all operated eyes than in unoperated eyes in central sector. A statistically significant increase in CD in corneal anterior layer of central sector was shown in groups of operated eyes with greater ablation depth respect to unoperated eyes. While there was no significant difference in CD between the operated eyes groups with lower ablation depth and unoperated eyes. A significant trend toward higher values in anterior CD with deeper ablations in central sector was found. These noninvasive imaging techniques allow to better understand the corneal remodeling process after photoablation and to monitor the patients over time.
Collapse
Affiliation(s)
- Daniela Montorio
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Gilda Cennamo
- Eye Clinic, Public Health Department, University of Naples Federico II, Naples, Italy
| | - Feliciana Menna
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Piero Donna
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Pasquale Napolitano
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Maria Angelica Breve
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Ugo Fiore
- Department of Management and Quantitative Studies, Parthenope University, Naples, Italy
| | - Giovanni Cennamo
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Nicola Rosa
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
20
|
Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K, Karamichos D. Diabetic keratopathy: Insights and challenges. Surv Ophthalmol 2020; 65:513-529. [PMID: 32092364 PMCID: PMC8116932 DOI: 10.1016/j.survophthal.2020.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Ocular complications from diabetes mellitus are common. Diabetic keratopathy, the most frequent clinical condition affecting the human cornea, is a potentially sight-threatening condition caused mostly by epithelial disturbances that are of clinical and research attention because of their severity. Diabetic keratopathy exhibits several clinical manifestations, including persistent corneal epithelial erosion, superficial punctate keratopathy, delayed epithelial regeneration, and decreased corneal sensitivity, that may lead to compromised visual acuity or permanent vision loss. The limited amount of clinical studies makes it difficult to fully understand the pathobiology of diabetic keratopathy. Effective therapeutic approaches are elusive. We summarize the clinical manifestations of diabetic keratopathy and discuss available treatments and up-to-date research studies in an attempt to provide a thorough overview of the disorder.
Collapse
Affiliation(s)
- S Priyadarsini
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - A Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - S Nicholas
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - K Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - D Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
21
|
Coupling of Fibrin Reorganization and Fibronectin Patterning by Corneal Fibroblasts in Response to PDGF BB and TGFβ1. Bioengineering (Basel) 2020; 7:bioengineering7030089. [PMID: 32784578 PMCID: PMC7552779 DOI: 10.3390/bioengineering7030089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
We previously reported that corneal fibroblasts within 3D fibrin matrices secrete, bind, and organize fibronectin into tracks that facilitate cell spreading and migration. Other cells use these fibronectin tracks as conduits, which leads to the development of an interconnected cell/fibronectin network. In this study, we investigate how cell-induced reorganization of fibrin correlates with fibronectin track formation in response to two growth factors present during wound healing: PDGF BB, which stimulates cell spreading and migration; and TGFβ1, which stimulates cellular contraction and myofibroblast transformation. Both PDGF BB and TGFβ1 stimulated global fibrin matrix contraction (p < 0.005); however, the cell and matrix patterning were different. We found that, during PDGF BB-induced cell spreading, fibronectin was organized simultaneously with the generation of tractional forces at the leading edge of pseudopodia. Over time this led to the formation of an interconnected network consisting of cells, fibronectin and compacted fibrin tracks. Following culture in TGFβ1, cells were less motile, produced significant local fibrin reorganization, and formed fewer cellular connections as compared to PDGF BB (p < 0.005). Although bands of compacted fibrin tracks developed in between neighboring cells, fibronectin labeling was not generally present along these tracks, and the correlation between fibrin and fibronectin labeling was significantly less than that observed in PDGF BB (p < 0.001). Taken together, our results show that cell-induced extracellular matrix (ECM) reorganization can occur independently from fibronectin patterning. Nonetheless, both events seem to be coordinated, as corneal fibroblasts in PDGF BB secrete and organize fibronectin as they preferentially spread along compacted fibrin tracks between cells, producing an interconnected network in which cells, fibronectin and compacted fibrin tracks are highly correlated. This mechanism of patterning could contribute to the formation of organized cellular networks that have been observed following corneal injury and refractive surgery.
Collapse
|
22
|
Exploring the Key Genes and Pathways in the Formation of Corneal Scar Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6247489. [PMID: 32016117 PMCID: PMC6994212 DOI: 10.1155/2020/6247489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022]
Abstract
The Corneal wound healing results in the formation of opaque corneal scar. In fact, millions of people around the world suffer from corneal scars, leading to loss of vision. This study aimed to identify the key changes of gene expression in the formation of opaque corneal scar and provided potential biomarker candidates for clinical treatment and drug target discovery. We downloaded Gene expression dataset GSE6676 from NCBI-GEO, and analyzed the Differentially Expressed Genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, and protein-protein interaction (PPI) network. A total of 1377 differentially expressed genes were identified and the result of Functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) identification and protein-protein interaction (PPI) networks were performed. In total, 7 hub genes IL6 (interleukin-6), MMP9 (matrix metallopeptidase 9), CXCL10 (C-X-C motif chemokine ligand 10), MAPK8 (mitogen-activated protein kinase 8), TLR4 (toll-like receptor 4), HGF (hepatocyte growth factor), EDN1 (endothelin 1) were selected. In conclusion, the DEGS, Hub genes and signal pathways identified in this study can help us understand the molecular mechanism of corneal scar formation and provide candidate targets for the diagnosis and treatment of corneal scar.
Collapse
|
23
|
Sun X, Yang X, Song W, Ren L. Construction and Evaluation of Collagen-Based Corneal Grafts Using Polycaprolactone To Improve Tension Stress. ACS OMEGA 2020; 5:674-682. [PMID: 31956817 PMCID: PMC6964271 DOI: 10.1021/acsomega.9b03297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/18/2019] [Indexed: 05/09/2023]
Abstract
The emergence of innovative surgical procedures using partial thickness corneal transplant has created a need for the development of corneal grafts to replace pathologic corneal tissue. Corneal repair materials have been successfully prepared in the past 10 years, but they were difficult to be used in clinics because of the unbearable tension caused by interrupted suture during routine surgery. However, polycaprolactone (PCL), a medical polymer material, can solve this problem. Therefore, a hierarchical collagen (Col)-based corneal graft with curvature, consisting of a transparent core part composed of collagen in the center and a mechanically robust fixed part containing collagen and polycaprolactone in the edge, was used as a potential corneal graft for corneal repair and regeneration in this study. The hierarchical collagen-based corneal grafts [collagen-polycaprolactone (Col-PCL) membranes] that are capable of mimicking the native cornea were developed based on chemical and thermal crosslinking mechanisms. The water adsorption of Col-PCL membranes could reach over 80% similar to that of human cornea, and its swelling could reach over 400%. More importantly, the formed Col-PCL membranes could resist a larger tensile strength (1.1 ± 0.03 MPa) before rupturing in comparison with pure collagen membranes and polycaprolactone membranes. Furthermore, the biodegradable Col-PCL membranes could facilitate cell adhesion and proliferation as well as cell migration (exhibiting epithelial wound coverage in <5 days), which showed promise as corneal grafts for cornea tissue engineering.
Collapse
Affiliation(s)
- Xiaomin Sun
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Xiangjing Yang
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Wenjing Song
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Li Ren
- School
of Materials Science and Engineering, Key Laboratory of Biomedical Engineering
of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering
of the Ministry of Education, and Innovation Center for Tissue Restoration and
Reconstruction, South China University of
Technology, Guangzhou 510006, P. R. China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Sino-Singapore
International Joint Research Institute, Guangzhou 510555, P. R. China
- Guangzhou
Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, P. R. China
| |
Collapse
|
24
|
Son YJ, Tse JW, Zhou Y, Mao W, Yim EKF, Yoo HS. Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 2019; 7:4444-4471. [PMID: 31436261 DOI: 10.1039/c9bm00456d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The skin and cornea are tissues that provide protective functions. Trauma and other environmental threats often cause injuries, infections and damage to these tissues, where the degree of injury is directly correlated to the recovery time. For example, a superficial skin or corneal wound may recover within days; however, more severe injuries can last up to several months and may leave scarring. Thus, therapeutic strategies have been introduced to enhance the wound healing efficiency and quality. Although the skin and cornea share similar anatomic structures and wound healing process, therapeutic agents and formulations for skin and cornea wound healing differ in accordance with the tissue and wound type. In this review, we describe the anatomy and epithelial wound healing processes of the skin and cornea, and summarize the therapeutic molecules that are beneficial to the respective regeneration process. In addition, biomaterial scaffolds that inherently possess bioactive properties or modified with therapeutic molecules for topical controlled release and enhanced wound healing efficiency are also discussed.
Collapse
Affiliation(s)
- Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Yiran Zhou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea. and Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
25
|
Desjardins P, Couture C, Germain L, Guérin SL. Contribution of the WNK1 kinase to corneal wound healing using the tissue-engineered human cornea as an in vitro model. J Tissue Eng Regen Med 2019; 13:1595-1608. [PMID: 31207112 DOI: 10.1002/term.2912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Damage to the corneal epithelium triggers important changes in the extracellular matrix (ECM) to which basal human corneal epithelial cells (hCECs) attach. These changes are perceived by integrin receptors that activate different intracellular signalling pathways, ultimately leading to re-epithelialization of the injured epithelium. In this study, we investigated the impact of pharmacological inhibition of specific signal transduction mediators on corneal wound healing using both monolayers of hCECs and the human tissue-engineered cornea (hTEC) as an in vitro 3D model. RNA and proteins were isolated from the wounded and unwounded hTECs to conduct gene profiling analyses and protein kinase arrays. The impact of WNK1 inhibition was evaluated on the wounded hTECs as well as on hCECs monolayers using a scratch wound assay. Gene profiling and protein kinase arrays revealed that expression and activity of several mediators from the integrin-dependent signaling pathways were altered in response to the ECM changes occurring during corneal wound healing. Phosphorylation of the WNK1 kinase turned out to be the most striking activation event going on during this process. The inhibition of WNK1 by WNK463 reduced the rate of corneal wound closure in both the hTEC and hCECs grown in monolayer compared with their respective negative controls. WNK463 also reduced phosphorylation of the WNK1 downstream targets SPAK/OSR1 in wounded hTECs. These in vitro results allowed for a better understanding of the cellular and molecular mechanisms involved in corneal wound healing and identified WNK1 as a kinase important to ensure proper wound healing of the cornea.
Collapse
Affiliation(s)
- Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
- Département de Chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Sylvain L Guérin
- CUO-Recherche, Médecine Régénératrice, Centre de recherche du CHU de Québec and Centre de Recherche en Organogénèse expérimentale de l'Université Laval/LOEX, Université Laval, Québec, QC, Canada
- Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
26
|
Sharif R, Priyadarsini S, Rowsey TG, Ma JX, Karamichos D. Corneal Tissue Engineering: An In Vitro Model of the Stromal-nerve Interactions of the Human Cornea. J Vis Exp 2018. [PMID: 29443018 DOI: 10.3791/56308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue engineering has gained substantial recognition due to the high demand for human cornea replacements with an estimated 10 million people worldwide suffering from corneal vision loss1. To address the demand for viable human corneas, significant progress in three-dimensional (3D) tissue engineering has been made2,3,4. These cornea models range from simple monolayer systems to multilayered models, leading to 3D full-thickness corneal equivalents2. However, the use of a 3D tissue-engineered cornea in the context of in vitro disease models studied to date lacks resemblance to the multilayered 3D corneal tissue structure, function, and the networking of different cell types (i.e., nerve, epithelium, stroma, and endothelium)2,3. In addition, the demand for in vitro cornea tissue models has increased in an attempt to reduce animal testing for pharmaceutical products. Thus, more sophisticated models are required to better match systems to human physiological requirements, and the development of a model that is more relevant to the patient population is absolutely necessary. Given that multiple cell types in the cornea are affected by diseases and dystrophies, such as Keratoconus, Diabetic Keratopathy, and Fuchs, this model includes a 3D co-culture model of primary human corneal fibroblasts (HCFs) from healthy donors and neurons from the SH-SY5Y cell line. This allows us for the first time to investigate the interactions between the two cell types within the human corneal tissue. We believe that this model could potentially dissect the underlying mechanisms associated with the stromal-nerve interactions of corneal diseases that exhibit nerve damages. This 3D model mirrors the basic anatomical and physiological nature of the corneal tissue in vivo and can be used in the future as a tool for investigating corneal defects as well as screening the efficacy of various agents before animal testing.
Collapse
Affiliation(s)
- Rabab Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center
| | - Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
| | - Tyler G Rowsey
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
| | - Jian-Xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center; Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center;
| |
Collapse
|
27
|
Singh A, Abd AJ, Al-Mashahedah A, Kanwar JR. Corneal Haze, Refractive Surgery, and Implications for Choroidal Neovascularization. DRUG DELIVERY FOR THE RETINA AND POSTERIOR SEGMENT DISEASE 2018:439-477. [DOI: 10.1007/978-3-319-95807-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Wang SJ, Du L, Shi CM. Involvement of RNA helicase p68 in skin wound healing process in rats. Chin J Traumatol 2017; 20:311-317. [PMID: 29221657 PMCID: PMC5961762 DOI: 10.1016/j.cjtee.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023] Open
Abstract
PURPOSE RNA helicase p68 plays an important role in organ development and maturation through tuning cell proliferation. However, the character and role of p68 in the whole wound healing process need more study. METHODS First, we characterize expression of p68 in normal rat skin development postnatal. Then, we assayed dynamic change of p68 in rat skin from different stage after injury, and explored the role of p68 in proliferation and migration of three types of wound healing related cells. RESULTS p68 was down-regulated during skin developmental and maturation process, up-regulated after wound, peaked on day 14 and then significantly decreased. Wound fluid enhanced wound healing related cell proliferation and up-regulated expression of p68. Conversely, reducing p68 expression by RNA interference resulted in significantly slower proliferation and migration. CONCLUSION Our results define an important role of RNA helicase p68 in skin wound healing process.
Collapse
Affiliation(s)
- Shao-Jun Wang
- Department of Ophthalmology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China,Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lu Du
- Department of Ophthalmology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071, China,Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chun-Meng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China,Corresponding author.
| |
Collapse
|
29
|
Unravelling the interplay of sphingolipids and TGF-β signaling in the human corneal stroma. PLoS One 2017; 12:e0182390. [PMID: 28806736 PMCID: PMC5555661 DOI: 10.1371/journal.pone.0182390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose To delineate the role of Sphingolipids (SPLs) in the human cornea and their cross-talks with transforming growth factor beta (TGF-β) in order to develop novel, non-invasive therapies. Methods Human corneal fibroblasts (HCFs) were harvested from healthy donors, stimulated with Vitamin C to promote extracellular matrix assembly, treated with exogenous sphingosine-1-phosphate (S1P) or sphingosine kinase inhibitor 2 (SPHK I2) and isolated after 4 weeks for further analysis. Results Data showed that S1P led to a significant decrease in cellular migration where SPHK I2 just delayed it for 24h. Significant modulation of the sphingolipid pathway was also noted. Sphingosine kinase-1 (SphK1) was significantly downregulated upon exogenous stimulation with S1P at a concentration of 5μM and Sphingosine kinase-2 (SphK2) was also significantly downregulated at concentrations of 0.01μM, 0.1μM, and 5μM; whereas no effects were observed upon stimulation with SPHK I2. S1PR3 was significantly downregulated by 0.1μM and 5μM S1P and upregulated by 5μM and 10μM SPHK I2. Furthermore, both S1P and SPHK I2 regulated corneal fibrosis markers such as alpha-smooth muscle actin, collagen I, III, and V. We also investigated the interplay between two TGF-β isoforms and S1P/SPHK I2 treatments and found that TGF-β1 and TGF-β3 were both significantly upregulated with the 0.1μM S1P but were significantly downregulated with the 5μM S1P concentration. When TGF-β1 was compared directly to TGF-β3 expression, we observed that TGF-β3 was significantly downregulated compared to TGF-β1 in the 5μM concentration of S1P. No changes were observed upon SPHK I2 treatment. Conclusion Our study delineates the role of sphingolipids in the human cornea and highlights their different activities based on the cell/tissue type.
Collapse
|
30
|
Choi H, Phillips C, Oh JY, Stock EM, Kim DK, Won JK, Fulcher S. Comprehensive Modeling of Corneal Alkali Injury in the Rat Eye. Curr Eye Res 2017. [DOI: 10.1080/02713683.2017.1317817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hosoon Choi
- Department of Basic Research, Central Texas Veterans Research Foundation, Temple, TX, USA
| | - Casie Phillips
- Department of Basic Research, Central Texas Veterans Research Foundation, Temple, TX, USA
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Eileen M. Stock
- Cooperative Studies Program Coordinating Center, VA Maryland Health Care System, Perry Point, MD, USA
| | - Dong-Ki Kim
- Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Samuel Fulcher
- Department of Surgery, Ophthalmology Section, Central Texas Veterans Health Care System, Temple, TX, USA
| |
Collapse
|
31
|
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities. Int J Mol Sci 2017; 18:ijms18061257. [PMID: 28604651 PMCID: PMC5486079 DOI: 10.3390/ijms18061257] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.
Collapse
|
32
|
|
33
|
Priyadarsini S, Nicholas SE, Karamichos D. 3D Stacked Construct: A Novel Substitute for Corneal Tissue Engineering. Methods Mol Biol 2017; 1697:173-180. [PMID: 28451994 DOI: 10.1007/7651_2017_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Corneal trauma/injury often results in serious complications including permanent vision loss or loss of visual acuity which demands corneal transplantations or treatment with allogenic graft tissues. There is currently a huge shortage of donor tissue worldwide and the need for human corneal equivalents increases annually. In order to meet such demand the current clinical approach of treating corneal injuries is limited and involves synthetic and allogenic materials which have various shortcomings when it comes to actual transplantations. In this study we introduce the newly developed, next generation of our previously established 3D self-assembled constructs, where multiple constructs are grown and stacked on top of each other without any other artificial product. This new technology brings our 3D in vitro model closer to what is seen in vivo and provides a solid foundation for future studies on corneal biology.Lipids are known for playing a vital role during metabolism and diseased state of various tissues and Sphingolipids are one such class of lipids which are involved in various cellular mechanisms and signaling processes. The impacts of Sphingolipids that have been documented in several human diseases often involve inflammation, neovascularization, tumorigenesis, and diabetes, but these conditions are not yet thoroughly studied. There is very little information about the exact role of Sphingolipids in the human cornea and future studies aiming at dissecting the mechanisms and pathways involved in order to develop novel therapies. We believe that our novel 3D stacked model can be used to delineate the role of Sphingolipids in the human cornea and provide new insights for understanding and treating various human corneal diseases.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sarah E Nicholas
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
34
|
Elbadawy HM, Mirabelli P, Xeroudaki M, Parekh M, Bertolin M, Breda C, Cagini C, Ponzin D, Lagali N, Ferrari S. Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization. Br J Pharmacol 2016; 173:2880-93. [PMID: 27472295 PMCID: PMC5055138 DOI: 10.1111/bph.13568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose The connexin 43 (Cx43) mimetic peptide Gap27 was designed to transiently block the function of this gap junction. This study was undertaken to investigate the effect of Gap27 on corneal healing, inflammation and neovascularization. Experimental Approach The effect of Gap27 on wound healing, inflammation and vascularization was assessed in primary human corneal epithelial cells (HCEC) in vitro and whole human corneas ex vivo, and in an in vivo rat wound healing model. Key Results Gap27 enhanced the wound closure of HCEC in vitro and accelerated wound closure and stratification of epithelium in human corneas ex vivo, but did not suppress the corneal release of inflammatory mediators IL‐6 or TNF‐α in vivo. In human corneas ex vivo, F4/80 positive macrophages were observed around the wound site. In vivo, topical Gap27 treatment enhanced the speed and density of early granulocyte infiltration into rat corneas. After 7 days, the expressions of TNF‐α and TGFβ1 were elevated and correlated with inflammatory cell accumulation in the tissue. Additionally, Gap27 did not suppress VEGF release in organotypic culture, nor did it suppress early or late VEGFA expression or neovascularization in vivo. Conclusions and Implications Gap27 can be effective in promoting the healing of superficial epithelial wounds, but in deep stromal wounds it has the potential to promote inflammatory cell migration and accumulation in the tissue and does not suppress the subsequent neovascularization response. These results support the proposal that Gap27 acts as a healing agent in the transient, early stages of corneal epithelial wounding.
Collapse
Affiliation(s)
- Hossein Mostafa Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, AlMadinah AlMunawwarah, Saudi Arabia. .,International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy.
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden
| | - Mohit Parekh
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy
| | - Marina Bertolin
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy
| | - Claudia Breda
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy
| | - Carlo Cagini
- Department of Ophthalmology, Perugia General Hospital, University of Perugia, Perugia, Italy
| | - Diego Ponzin
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linkoping, Sweden
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, The Veneto Eye Bank Foundation, Venice, Italy
| |
Collapse
|
35
|
Abstract
PURPOSE Corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells and interactions between epithelial cells and stromal fibroblasts. Compounds that can be applied topically to the ocular surface and that have the capability of activating corneal epithelial cells to proliferate and/or migrate would be useful to promote corneal wound healing. We hypothesize that human growth hormone (HGH) will activate signal transducers and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial cell and fibroblast proliferation and/or migration in vitro. The purpose of this study was to test these hypotheses. METHODS We studied cell signaling, proliferation, and migration using an immortalized human corneal epithelial cell line and primary human corneal fibroblasts in vitro. We also examined whether insulin-like growth factor-1 (IGF-1), a hormone known to mediate many of HGH's growth promoting actions, may play a role in this effect. RESULTS We show that HGH activates STAT5 signaling and promotes corneal epithelial cell migration in vitro. The migratory effect requires an intact communication between corneal epithelia and fibroblasts and is not mediated by IGF-1. CONCLUSIONS HGH may represent a topical therapeutic to promote corneal epithelial wound healing. This warrants further investigation.
Collapse
|
36
|
Coulson-Thomas VJ, Chang SH, Yeh LK, Coulson-Thomas YM, Yamaguchi Y, Esko J, Liu CY, Kao W. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Invest Ophthalmol Vis Sci 2015; 56:3004-14. [PMID: 26024086 DOI: 10.1167/iovs.14-15341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Heparan sulfate (HS) is a highly modified glycosaminoglycan (GAG) bound to a core protein to form heparan sulfate proteoglycans (HSPGs) that are vital in many cellular processes ranging from development to adult physiology, as well as in disease, through interactions with various protein ligands. This study aimed to elucidate the role of HS in corneal epithelial homeostasis and wound healing. METHODS An inducible quadruple transgenic mouse model was generated to excise Ext1 and Ndst1, which encode the critical HS chain elongation enzyme and N-deacetylase/N-sulfotransferase, respectively, in keratin 14-positive cells upon doxycycline induction. RESULTS EXT(Δ/ΔCEpi) mice (deletion of Ext1 in corneal epithelium) induced at P20 presented progressive thinning of the corneal epithelium with a significant loss in the number of epithelial layers by P55. EXT(Δ/ΔCEpi) mice presented tight junction disruption, loss of cell-basement membrane adhesion complexes, and impaired wound healing. Interestingly, EXT(Δ/ΔCEpi) and NDST(Δ/ΔCEpi) mice presented an increase in cell proliferation, which was assayed by both Ki67 staining and 5-ethynyl-2'-deoxyuridine (EdU) incorporation. Moreover, EXT(Δ/ΔCEpi) mice presented compromised epithelial stratification 7 days after a debridement wound. The conditional knockout of HS from keratocytes using the keratocan promoter led to no corneal abnormalities or any disruption in wound healing. CONCLUSIONS Corneal epithelial cells require HS for maintaining corneal homeostasis, and the loss of epithelial HS leads to both impaired wound healing and impaired corneal stratification.
Collapse
Affiliation(s)
| | - Shao-Hsuan Chang
- Department of Ophthalmology University of Cincinnati, Cincinnati, Ohio, United States
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Linko, Taiwan
| | | | - Yu Yamaguchi
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, California, United States
| | - Chia-Yang Liu
- Department of Ophthalmology University of Cincinnati, Cincinnati, Ohio, United States
| | - Winston Kao
- Department of Ophthalmology University of Cincinnati, Cincinnati, Ohio, United States
| |
Collapse
|
37
|
Abstract
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
Collapse
Affiliation(s)
- Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
38
|
Nanomedicine approaches for corneal diseases. J Funct Biomater 2015; 6:277-98. [PMID: 25941990 PMCID: PMC4493512 DOI: 10.3390/jfb6020277] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023] Open
Abstract
Corneal diseases are the third leading cause of blindness globally. Topical nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, antibiotics and tissue transplantation are currently used to treat corneal pathological conditions. However, barrier properties of the ocular surface necessitate high concentration of the drugs applied in the eye repeatedly. This often results in poor efficacy and several side-effects. Nanoparticle-based molecular medicine seeks to overcome these limitations by enhancing the permeability and pharmacological properties of the drugs. The promise of nanomedicine approaches for treating corneal defects and restoring vision without side effects in preclinical animal studies has been demonstrated. Numerous polymeric, metallic and hybrid nanoparticles capable of transporting genes into desired corneal cells to intercept pathologic pathways and processes leading to blindness have been identified. This review provides an overview of corneal diseases, nanovector properties and their applications in drug-delivery and corneal disease management.
Collapse
|
39
|
Wirostko B, Rafii M, Sullivan DA, Morelli J, Ding J. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone. Ocul Surf 2015; 13:204-212.e1. [PMID: 26045234 DOI: 10.1016/j.jtos.2014.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 10/23/2022]
Abstract
Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing.
Collapse
Affiliation(s)
- Barbara Wirostko
- Jade Therapeutics, Inc., University of Utah Research Park, Salt Lake City, UT; Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - MaryJane Rafii
- Jade Therapeutics, Inc., University of Utah Research Park, Salt Lake City, UT
| | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Julia Morelli
- Jade Therapeutics, Inc., University of Utah Research Park, Salt Lake City, UT
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, MA.
| |
Collapse
|
40
|
Huang YH, I CC, Kuo CH, Hsu YY, Lee FT, Shi GY, Tseng SH, Wu HL. Thrombomodulin promotes corneal epithelial wound healing. PLoS One 2015; 10:e0122491. [PMID: 25816372 PMCID: PMC4376916 DOI: 10.1371/journal.pone.0122491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 02/22/2015] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing. Methods TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays. Results TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing. Conclusions TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury.
Collapse
Affiliation(s)
- Yi-Hsun Huang
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chang I
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Cheng-Hsiang Kuo
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Yun-Yan Hsu
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Fang-Tzu Lee
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Guey-Yueh Shi
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Sung-Huei Tseng
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Cardiovascular Research Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Ibares-Frías L, Gallego P, Cantalapiedra-Rodríguez R, Valsero MC, Mar S, Merayo-Lloves J, Martínez-García MC. Tissue reaction after intrastromal corneal ring implantation in an experimental animal model. Graefes Arch Clin Exp Ophthalmol 2015; 253:1071-83. [PMID: 25744328 DOI: 10.1007/s00417-015-2959-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To evaluate corneal wound healing in the hen animal model after additive surgery with an intracorneal ring segment (ICRS). METHODS We implanted one ICRS in each eye of 76 hens. In control group 1 (n = 22 hens), the stromal channel was prepared but no ICRS was inserted. In control group 2 (n = 2 hens), no surgery was performed. Animals were randomly separated into groups and euthanized after clinical follow-up of 4 and 12 hours, 1, 2, 3, and 7 days, and 1, 2, 3, 4, and 6 months. Corneas were stained with hematoxylin-eosin. Apoptosis was measured by terminal uridine nick end-labeling assays. Cell proliferation and myofibroblast-like differentiation were assayed by BrdU and α-smooth muscle actin immunofluorescence microscopy. Stromal matrix changes were documented by electron microscopy. RESULTS Epithelial and stromal cell apoptosis around the ICRS-implanted and control group 1 eyes peaked at 12 hours, but continued for 72 hours. In ICRS-implanted eyes, epithelial and stromal proliferation was present at 12 and 24 hours, respectively, and peaked at 7 days and 72 hours, respectively. Some proliferation in the ICRS-implanted group continued through the 6-month follow-up, and myofibroblast-like cells differentiated one to three months after ICRS implantation. The segments rotated within the stroma as the limbal inferior angle approached the epithelium. CONCLUSIONS Wound healing after ICRS implantation in hen corneas was similar to that of other corneal surgical wounds in stages. However, there were some specific features related to the small size of the epithelial wound and the device permanently implanted inside the cornea.
Collapse
Affiliation(s)
- Lucía Ibares-Frías
- Group of Optical Diagnostic Techniques, Theorist, Atomic and Optical Physics Department, Faculty of Science, University of Valladolid, Valladolid, Spain,
| | | | | | | | | | | | | |
Collapse
|
42
|
Pang A, Mohamed-Noriega K, Chan AS, Mehta JS. Confocal microscopy findings in deep anterior lamellar keratoplasty performed after Descemet's stripping automated endothelial keratoplasty. Clin Ophthalmol 2014; 8:243-9. [PMID: 24549011 PMCID: PMC3897318 DOI: 10.2147/opth.s54824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background This study describes the in vivo confocal microscopy findings in two patients who had deep anterior lamellar keratoplasty (DALK) following Descemet’s stripping automated endothelial keratoplasty (DSAEK). Methods The study reviewed the cases of two patients who first underwent DSAEK followed by DALK when their vision failed to improve due to residual stromal scarring. In the first case, a DSAEK was performed for a patient with pseudophakic bullous keratopathy. After surgery, the patient’s vision failed to improve satisfactorily due to residual anterior stromal opacity and irregularity. Subsequently, the patient underwent a DALK. The same two consecutive operations were performed for a second patient with keratoconus whose previous penetrating keratoplasty had failed and had secondary graft ectasia. In vivo confocal microscopy was performed 2 months after the DALK surgery in both cases. Results At 3 months after DALK, the best-corrected visual acuity was 6/30 in case 1 and 6/24 in case 2. In vivo confocal microscopy in both cases revealed the presence of quiescent keratocytes in the stroma layers of the DSAEK and DALK grafts, which was similar in the central and peripheral cornea. There was no activated keratocytes or haze noted in the interface between the grafts. Conclusion Our short-term results show that performing a DALK after a DSAEK is an effective way of restoring cornea clarity in patients with residual anterior stromal opacity. In vivo confocal microscopy showed that there were no activated keratocytes seen in the interface of the grafts, which suggests that optimal visual acuity may be obtained with minimal interface haze.
Collapse
Affiliation(s)
- Audrey Pang
- Singapore National Eye Centre, National University of Singapore, Singapore ; Department of Ophthalmology, Tan Tock Seng Hospital, National University of Singapore, Singapore
| | | | - Anita S Chan
- Singapore National Eye Centre, National University of Singapore, Singapore ; Singapore Eye Research Institute, National University of Singapore, Singapore ; Department of Histopathology, Pathology, Singapore General Hospital, National University of Singapore, Singapore ; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jodbhir S Mehta
- Singapore National Eye Centre, National University of Singapore, Singapore ; Singapore Eye Research Institute, National University of Singapore, Singapore
| |
Collapse
|
43
|
Lee KJ, Lee JY, Lee SH, Choi TH. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea. BMB Rep 2013; 46:195-200. [PMID: 23615260 PMCID: PMC4133888 DOI: 10.5483/bmbrep.2013.46.4.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To understand the corneal regeneration induced by bevacizumab, we investigated the structure changes of stroma and basement membrane regeneration. A Stick soaked in 0.5 N NaOH onto the mouse cornea and 2.5 mg/ml of bevacizumab was delivered into an alkali-burned cornea (2 μl) by subconjunctival injections at 1 hour and 4 days after injury. At 7 days after injury, basement membrane regeneration was observed by transmission electron microscope. Uneven and thin epithelial basement membrane, light density of hemidesmosomes, and edematous collagen fibril bundles are shown in the alkali-burned cornea. Injured epithelial basement membrane and hemidesmosomes and edematous collagen fibril bundles resulting from alkali-burned mouse cornea was repaired by bevacizumab treatment. This study demonstrates that bevacizumab can play an important role in wound healing in the cornea by accelerating the reestablishment of basement membrane integrity that leads to barriers for scar formation. [BMB Reports 2013; 46(4): 195-200]
Collapse
Affiliation(s)
- Koon-Ja Lee
- Department of Optometry, Eulji University, Seongnam 461-713, Korea.
| | | | | | | |
Collapse
|
44
|
Pothula S, Bazan HEP, Chandrasekher G. Regulation of Cdc42 expression and signaling is critical for promoting corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2013; 54:5343-52. [PMID: 23833064 DOI: 10.1167/iovs.13-11955] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Cdc42, a member of Rho GTPases (guanosine triphosphatases), participates in cytokine- and growth factor-controlled biological functions in mammalian tissues. Here, we examined Cdc42 role in corneal epithelial wound healing and the influence of hepatocyte, keratinocyte, and epidermal growth factor (HGF, KGF, and EGF)-mediated signaling on Cdc42. METHODS Epithelial wounds were created on the corneas of live rabbits by complete debridement and in rabbit corneal epithelial primary cultures through scratch injury. Cdc42 expression in cultures was suppressed using Cdc42 siRNA. Cdc42 activation was determined by pull-down assays with PAK-agarose beads. Cdc42 expression was analyzed by immunoblotting and immunofluorescence. Association of Cdc42 with cell-cycle proteins was identified by immunoprecipitation. RESULTS In rabbit corneas, significant increase in Cdc42 expression that occurred 2 to 4 days after the injury coincided with wound closure, and by 8 days the expression reached near basal levels. Silencing of Cdc42 expression in cultures caused inhibition of wound closure as a result of 60% to 75% decrease in epithelial migration and growth. HGF, KGF, and EGF increased Cdc2 expression, activation, and its phosphorylation on ser71. Inhibition of growth factor-mediated PI-3K signaling resulted in the downregulation of Cdc42 expression and its phosphorylation. Increased association of cell-cycle proteins p27(kip) and cyclin-dependent kinase 4 (CDK4) with Cdc42; and phosphorylated Cdc42 with plasma membrane leading edges was also observed in the presence of growth factors. CONCLUSIONS Cdc42 is an important regulator of corneal epithelial wound repair. To promote healing, Cdc42 may interact with receptor tyrosine kinase-activated signaling cascades that participate in cell migration and cell-cycle progression.
Collapse
Affiliation(s)
- Swetha Pothula
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota 57007, USA
| | | | | |
Collapse
|
45
|
Maltseva I, Chan M, Kalus I, Dierks T, Rosen SD. The SULFs, extracellular sulfatases for heparan sulfate, promote the migration of corneal epithelial cells during wound repair. PLoS One 2013; 8:e69642. [PMID: 23950901 PMCID: PMC3738537 DOI: 10.1371/journal.pone.0069642] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Corneal epithelial wound repair involves the migration of epithelial cells to cover the defect followed by the proliferation of the cells to restore thickness. Heparan sulfate proteoglycans (HSPGs) are ubiquitous extracellular molecules that bind to a plethora of growth factors, cytokines, and morphogens and thereby regulate their signaling functions. Ligand binding by HS chains depends on the pattern of four sulfation modifications, one of which is 6-O-sulfation of glucosamine (6OS). SULF1 and SULF2 are highly homologous, extracellular endosulfatases, which post-synthetically edit the sulfation status of HS by removing 6OS from intact chains. The SULFs thereby modulate multiple signaling pathways including the augmentation of Wnt/ß-catenin signaling. We found that wounding of mouse corneal epithelium stimulated SULF1 expression in superficial epithelial cells proximal to the wound edge. Sulf1−/−, but not Sulf2−/−, mice, exhibited a marked delay in healing. Furthermore, corneal epithelial cells derived from Sulf1−/− mice exhibited a reduced rate of migration in repair of a scratched monolayer compared to wild-type cells. In contrast, human primary corneal epithelial cells expressed SULF2, as did a human corneal epithelial cell line (THCE). Knockdown of SULF2 in THCE cells also slowed migration, which was restored by overexpression of either mouse SULF2 or human SULF1. The interchangeability of the two SULFs establishes their capacity for functional redundancy. Knockdown of SULF2 decreased Wnt/ß-catenin signaling in THCE cells. Extracellular antagonists of Wnt signaling reduced migration of THCE cells. However in SULF2- knockdown cells, these antagonists exerted no further effects on migration, consistent with the SULF functioning as an upstream regulator of Wnt signaling. Further understanding of the mechanistic action of the SULFs in promoting corneal repair may lead to new therapeutic approaches for the treatment of corneal injuries.
Collapse
Affiliation(s)
- Inna Maltseva
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Matilda Chan
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Ina Kalus
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Steven D. Rosen
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lake J, Zaniolo K, Gaudreault M, Carrier P, Deschambault A, Bazin R, Germain L, Salesse C, Guérin SL. Expression of the α5 integrin gene in corneal epithelial cells cultured on tissue-engineered human extracellular matrices. Biomaterials 2013; 34:6367-76. [PMID: 23727260 DOI: 10.1016/j.biomaterials.2013.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
The integrin α5β1 plays a major role in corneal wound healing by promoting epithelial cell adhesion and migration over the fibronectin matrix secreted as a cellular response to corneal damage. Expression of α5 is induced when rabbit corneal epithelial cells (RCECs) are grown in the presence of fibronectin. Here, we examined whether α5 expression is similarly altered when RCECs or human corneal epithelial cells (HCECs) are grown on a reconstructed stromal matrix used as an underlying biomaterial. Mass spectrometry and immunofluorescence analyses revealed that the biomaterial matrix produced by culturing human corneal fibroblasts with ascorbic acid (ECM/35d) contains several types of collagens, fibronectin, tenascin and proteoglycans. Results from transfection of CAT/α5-promoter plasmids, Western blot and EMSA analyses indicated that ECM/35d significantly increase expression of α5 in HCECs as a result of alteration in the expression and DNA binding of the transcription factors NFI, Sp1, AP-1 and PAX6. The biological significance of this biomaterial substitute on the expression of the α5 gene may therefore contribute to better understand the function played by the α5β1 integrin during corneal wound healing.
Collapse
Affiliation(s)
- Jennifer Lake
- CUO-Recherche, Centre de recherche FRQS du CHU de Québec, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC. Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 2013; 15:115-36. [PMID: 23701238 DOI: 10.1146/annurev-bioeng-071812-152423] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques that generate self-organizing and self-assembling tissues. This review aims to cogently describe this relatively new research area, with special focus on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These processes help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these engineered tissues, some of which are already in clinical trials, also approach native tissue values. This review endeavors to provide a cohesive summary of work in this field and to highlight the potential of self-organization and the self-assembling process for providing cogent solutions to currently intractable problems in tissue engineering.
Collapse
Affiliation(s)
- Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
48
|
Raghunathan VK, McKee CT, Tocce EJ, Nealey PF, Russell P, Murphy CJ. Nuclear and cellular alignment of primary corneal epithelial cells on topography. J Biomed Mater Res A 2012; 101:1069-79. [PMID: 22965583 DOI: 10.1002/jbm.a.34417] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/03/2012] [Accepted: 08/06/2012] [Indexed: 01/08/2023]
Abstract
The basement membrane of the corneal epithelium presents biophysical cues in the form of topography and compliance that can modulate cytoskeletal dynamics, which, in turn, can result in altering cellular and nuclear morphology and alignment. In this study, the effect of topographic patterns of alternating ridges and grooves on nuclear and cellular shape and alignment was determined. Primary corneal epithelial cells were cultured on either planar or topographically patterned (400-4000 nm pitch) substrates. Alignment of individual cell body was correlated with respective nucleus for the analysis of orientation and elongation. A biphasic response in alignment was observed. Cell bodies preferentially aligned perpendicular to the 800 nm pitch; and with increasing pitch, cells increasingly aligned parallel to the substratum. Nuclear orientation largely followed this trend with the exception of those on 400 nm. On this biomimetic size scale, some nuclei oriented perpendicular to the topography while their cytoskeleton elements aligned parallel. Both nuclei and cell bodies were elongated on topography compared to those on flat surfaces. Our data demonstrate that nuclear orientation and shape are differentially altered by topographic features that are not mandated by alignment of the cell body. This novel finding suggests that nuanced differences in alignment of the nucleus versus the cell body exist and that these differences could have consequences on gene and protein regulation that ultimately regulate cell behaviors. A full understanding of these mechanisms could disclose novel pathways that would better inform evolving strategies in cell, stem cell, and tissue engineering as well as the design and fabrication of improved prosthetic devices.
Collapse
Affiliation(s)
- Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Miron-Mendoza M, Lin X, Ma L, Ririe P, Petroll WM. Individual versus collective fibroblast spreading and migration: regulation by matrix composition in 3D culture. Exp Eye Res 2012; 99:36-44. [PMID: 22838023 PMCID: PMC3571722 DOI: 10.1016/j.exer.2012.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Extracellular matrix (ECM) supplies both physical and chemical signals to cells and provides a substrate through which fibroblasts migrate during wound repair. To directly assess how ECM composition regulates this process, we used a nested 3D matrix model in which cell-populated collagen buttons were embedded in cell-free collagen or fibrin matrices. Time-lapse microscopy was used to record the dynamic pattern of cell migration into the outer matrices, and 3D confocal imaging was used to assess cell connectivity and cytoskeletal organization. Corneal fibroblasts stimulated with PDGF migrated more rapidly into collagen as compared to fibrin. In addition, the pattern of fibroblast migration into fibrin and collagen ECMs was strikingly different. Corneal fibroblasts migrating into collagen matrices developed dendritic processes and moved independently, whereas cells migrating into fibrin matrices had a more fusiform morphology and formed an interconnected meshwork. A similar pattern was observed when using dermal fibroblasts, suggesting that this response is not unique to corneal cells. We next cultured corneal fibroblasts within and on top of standard collagen and fibrin matrices to assess the impact of ECM composition on the cell spreading response. Similar differences in cell morphology and connectivity were observed – cells remained separated on collagen but coalesced into clusters on fibrin. Cadherin was localized to junctions between interconnected cells, whereas fibronectin was present both between cells and at the tips of extending cell processes. Cells on fibrin matrices also developed more prominent stress fibers than those on collagen matrices. Importantly, these spreading and migration patterns were consistently observed on both rigid and compliant substrates, thus differences in ECM mechanical stiffness were not the underlying cause. Overall, these results demonstrate for the first time that ECM protein composition alone (collagen vs. fibrin) can induce a switch from individual to collective fibroblast spreading and migration in 3D culture. Similar processes may also influence cell behavior during wound healing, development, tumor invasion and repopulation of engineered tissues.
Collapse
Affiliation(s)
- Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9057
| | - Xihui Lin
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9057
| | - Lisha Ma
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9057
| | - Peter Ririe
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9057
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9057
| |
Collapse
|
50
|
Saeidi N, Guo X, Hutcheon AEK, Sander EA, Bale SS, Melotti SA, Zieske JD, Trinkaus-Randall V, Ruberti JW. Disorganized collagen scaffold interferes with fibroblast mediated deposition of organized extracellular matrix in vitro. Biotechnol Bioeng 2012; 109:2683-98. [PMID: 22528405 DOI: 10.1002/bit.24533] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/20/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
Many tissue engineering applications require the remodeling of a degradable scaffold either in vitro or in situ. Although inefficient remodeling or failure to fully remodel the temporary matrix can result in a poor clinical outcome, very few investigations have examined in detail, the interaction of regenerative cells with temporary scaffoldings. In a recent series of investigations, randomly oriented collagen gels were directly implanted into human corneal pockets and followed for 24 months. The resulting remodeling response exhibited a high degree of variability which likely reflects differing regenerative/synthetic capacity across patients. Given this variability, we hypothesize that a disorganized, degradable provisional scaffold could be disruptive to a uniform, organized reconstruction of stromal matrix. In this investigation, two established corneal stroma tissue engineering culture systems (collagen scaffold-based and scaffold-free) were compared to determine if the presence of the disorganized collagen gel influenced matrix production and organizational control exerted by primary human corneal fibroblast cells (PHCFCs). PHCFCs were cultured on thin disorganized reconstituted collagen substrate (RCS--five donors: average age 34.4) or on a bare polycarbonate membrane (five donors: average age 32.4 controls). The organization and morphology of the two culture systems were compared over the long-term at 4, 8, and 11/12 weeks. Construct thickness and extracellular matrix organization/alignment was tracked optically with bright field and differential interference contrast (DIC) microscopy. The details of cell/matrix morphology and cell/matrix interaction were examined with standard transmission, cuprolinic blue and quick-freeze/deep-etch electron microscopy. Both the scaffold-free and the collagen-based scaffold cultures produced organized arrays of collagen fibrils. However, at all time points, the amount of organized cell-derived matrix in the scaffold-based constructs was significantly lower than that produced by scaffold-free constructs (controls). We also observed significant variability in the remodeling of RCS scaffold by PHCFCs. PHCFCs which penetrated the RCS scaffold did exert robust local control over secreted collagen but did not appear to globally reorganize the scaffold effectively in the time period of the study. Consistent with our hypothesis, the results demonstrate that the presence of the scaffold appears to interfere with the global organization of the cell-derived matrix. The production of highly organized local matrix by fibroblasts which penetrated the scaffold suggests that there is a mechanism which operates close to the cell membrane capable of controlling fibril organization. Nonetheless, the local control of the collagen alignment produced by cells within the scaffold was not continuous and did not result in overall global organization of the construct. Using a disorganized scaffold as a guide to produce highly organized tissue has the potential to delay the production of useful matrix or prevent uniform remodeling. The results of this study may shed light on the recent attempts to use disorganized collagenous matrix as a temporary corneal replacement in vivo which led to a variable remodeling response.
Collapse
Affiliation(s)
- Nima Saeidi
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|