1
|
Fu L, Lei C, Chen Y, Zhu R, Zhuang M, Dong L, Ye X, Zheng L, Gong D. TNF-α-1031T/C gene polymorphism as a predictor of malnutrition in patients with gastric cancer. Front Nutr 2023; 10:1208375. [PMID: 37533569 PMCID: PMC10393265 DOI: 10.3389/fnut.2023.1208375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Malnutrition is a complex clinical syndrome, the exact mechanism of which is yet not fully understood. Studies have found that malnutrition is associated with anorexia and inadequate intake, tumor depletion, leptin, tumor-induced metabolic abnormalities in the body, and catabolic factors produced by the tumor in the circulation and cytokines produced by the host immune system. Among these, single nucleotide polymorphisms (SNPs) are present in the gene encoding the pro-inflammatory cytokine TNF-α. Aim The objective of this study was to investigate TNF-α -1,031 T/C gene polymorphism as an unfavorable predictor of malnutrition in patients with gastric cancer. Methods The study group consisted of 220 gastric cancer patients treated at Affiliated Jinhua Hospital, Zhejiang University School of Medicine. Malnutrition was mainly assessed by the Global Consensus on Malnutrition Diagnostic Criteria (GLIM). DNA was extracted from peripheral leukocytes of whole blood samples using an animal DNA extraction kit. DNA was amplified using a 1.1× T3 Super PCR mixture and genotyped using SNP1 software. Results There are three major genetic polymorphisms in TNF-α. Among the 220 patients with gastric cancer, there were 7 patients with the CC genotype, 61 with the CT genotype and 152 with the TT genotype. Compared to patients with the TT genotype, patients with the C allele had an approximately 2.5-fold higher risk of developing malnutrition (p = 0.003; OR = 0.406). On the basis of multivariate analysis, patients with the CC genotype had an approximately 20.1-fold higher risk of developing malnutrition (p = 0.013; OR = 20.114), while those with the CT genotype had an almost 3.7-fold higher risk of malnutrition (p = 0.002; OR = 3.218). Conclusion SNP (-1,031 T/C) of the TNF-α may be a useful marker in the assessment of the risk of nutritional deficiencies in gastric cancer patients. Patients with gastric cancer carrying the C allele should be supported by early nutritional intervention, but more research is still needed to explore confirmation.
Collapse
Affiliation(s)
- Liang Fu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Changzhen Lei
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yingxun Chen
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ruiyun Zhu
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Minling Zhuang
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liping Dong
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xianghong Ye
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Lushan Zheng
- Department of Nursing, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
A Multivariate Pattern Analysis of Metabolic Profile in Neurologically Impaired Children and Adolescents. CHILDREN-BASEL 2021; 8:children8030186. [PMID: 33804501 PMCID: PMC7998889 DOI: 10.3390/children8030186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The prevalence of pediatric metabolic syndrome is usually closely linked to overweight and obesity; however, this condition has also been described in children with disabilities. We performed a multivariate pattern analysis of metabolic profiles in neurologically impaired children and adolescents in order to reveal patterns and crucial biomarkers among highly interrelated variables. PATIENTS AND METHODS We retrospectively reviewed 44 cases of patients (25M/19F, mean age 12.9 ± 8.0) with severe disabilities. Clinical and anthropometric parameters, body composition, blood pressure, and metabolic and endocrinological assessment (fasting blood glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, triglycerides, glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, gamma-glutamyl transpeptidase) were recorded in all patients. As a control group, we evaluated 120 healthy children and adolescents (61M/59F, mean age 12.9 ± 2.7). RESULTS In the univariate analysis, the children-with-disabilities group showed a more dispersed distribution, thus with higher variability of the features related to glucose metabolism and insulin resistance (IR) compared to the healthy controls. The principal component (PC1), which emerged from the PC analysis conducted on the merged dataset and characterized by these variables, was crucial in describing the differences between the children-with-disabilities group and controls. CONCLUSION Children and adolescents with disabilities displayed a different metabolic profile compared to controls. Metabolic syndrome (MetS), particularly glucose metabolism and IR, is a crucial point to consider in the treatment and care of this fragile pediatric population. Early detection of the interrelated variables and intervention on these modifiable risk factors for metabolic disturbances play a central role in pediatric health and life expectancy in patients with a severe disability.
Collapse
|
3
|
Mondello P, Mian M, Aloisi C, Famà F, Mondello S, Pitini V. Cancer Cachexia Syndrome: Pathogenesis, Diagnosis, and New Therapeutic Options. Nutr Cancer 2014; 67:12-26. [DOI: 10.1080/01635581.2015.976318] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Vaughan VC, Martin P, Lewandowski PA. Cancer cachexia: impact, mechanisms and emerging treatments. J Cachexia Sarcopenia Muscle 2013; 4:95-109. [PMID: 23097000 PMCID: PMC3684701 DOI: 10.1007/s13539-012-0087-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Many forms of cancer present with a complex metabolic profile characterised by loss of lean body mass known as cancer cachexia. The physical impact of cachexia contributes to decreased patient quality of life, treatment success and survival due to gross alterations in protein metabolism, increased oxidative stress and systemic inflammation. The psychological impact also contributes to decreased quality of life for both patients and their families. Combination therapies that target multiple pathways, such as eicosapentaenoic acid administered in combination with exercise, appetite stimulants, antioxidants or anti-inflammatories, have potential in the treatment of this complex syndrome and require further development.
Collapse
Affiliation(s)
- Vanessa C Vaughan
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | | | | |
Collapse
|
5
|
Steinman J, DeBoer MD. Treatment of cachexia: melanocortin and ghrelin interventions. VITAMINS AND HORMONES 2013; 92:197-242. [PMID: 23601426 DOI: 10.1016/b978-0-12-410473-0.00008-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cachexia is a condition typified by wasting of fat and LBM caused by anorexia and further endocrinological modulation of energy stores. Diseases known to cause cachectic symptoms include cancer, chronic kidney disease, and chronic heart failure; these conditions are associated with increased levels of proinflammatory cytokines and increased resting energy expenditure. Early studies have suggested the central melanocortin system as one of the main mediators of the symptoms of cachexia. Pharmacological and genetic antagonism of these pathways attenuates cachectic symptoms in laboratory models; effects have yet to be studied in humans. In addition, ghrelin, an endogenous orexigenic hormone with receptors on melanocortinergic neurons, has been shown to ameliorate symptoms of cachexia, at least in part, by an increase in appetite via melanocortin modulation, in addition to its anticatabolic and anti-inflammatory effects. These effects of ghrelin have been confirmed in multiple types of cachexia in both laboratory and human studies, suggesting a positive future for cachexia treatments.
Collapse
Affiliation(s)
- Jeremy Steinman
- Division of Pediatric Endocrinology, Department of Pediatrics, P.O. Box 800386, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
6
|
Glucocorticoid treatment, immobility, and constipation are associated with nutritional risk. Eur J Nutr 2011; 50:665-71. [DOI: 10.1007/s00394-011-0177-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 02/15/2011] [Indexed: 12/21/2022]
|
7
|
Müller TD, Perez-Tilve D, Tong J, Pfluger PT, Tschöp MH. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J Cachexia Sarcopenia Muscle 2010; 1:159-167. [PMID: 21475701 PMCID: PMC3060653 DOI: 10.1007/s13539-010-0012-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/02/2010] [Indexed: 01/30/2023] Open
Abstract
The gastrointestinal "hunger" hormone ghrelin is the only known circulating peripheral molecule with the ability to decrease body fat utilization and to increase body weight gain. Accordingly, due to ghrelin's effects to promote food intake while decreasing energy expenditure ghrelin may offer potential as a drug for treatment of eating/wasting disorders and cachexia. Therapeutic potential of ghrelin and ghrelin analogues to promote food intake and body weight gain was recently indicated in several clinical studies. The recent discovery of the ghrelin O-acyltransferase as the key enzyme responsible for ghrelin acylation has further deepened our understanding of ghrelin activation, thereby paving the way for more efficient targeting of the ghrelin pathway. Here, we summarize the current knowledge pertaining to the potential of the endogenous ghrelin system as a drug target for the treatment of eating/wasting disorders and cachexia.
Collapse
Affiliation(s)
- Timo D. Müller
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Diego Perez-Tilve
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Jenny Tong
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Paul T. Pfluger
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| | - Matthias H. Tschöp
- Division of Endocrinology, Department of Medicine, University of Cincinnati, Metabolic Diseases Institute, Cincinnati, OH USA
| |
Collapse
|
8
|
Ashitani JI, Matsumoto N, Nakazato M. Ghrelin and its therapeutic potential for cachectic patients. Peptides 2009; 30:1951-6. [PMID: 19595727 DOI: 10.1016/j.peptides.2009.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/02/2009] [Accepted: 07/02/2009] [Indexed: 12/14/2022]
Abstract
The discovery of ghrelin has resulted in the development of approaches to appetite, enabling a better understanding of the mechanisms regulating appetite through molecular analyses. Ghrelin is a 28-amino acid peptide that was isolated from the stomach only a decade ago, and has recently been investigated as a potential therapeutic endogenous agent. This peptide increases appetite, adjusts energy balance, suppresses inflammation, and enhances the release of growth hormone from the pituitary gland. Although many bioactive substances such as peptide YY, leptin, adiponectin and obestatin are involved in appetite control, ghrelin is the only known peptide to signal starvation information from a peripheral organ to the central nervous system, contributing to an increase in appetite. Clinical trials have revealed the effectiveness of ghrelin in increasing lean body mass and activity in cachectic patients. As shown in clinical research on humans and basic research using animal models, cachexia often occurs in response to excess release of proinflammatory cytokines and induces further appetite loss, which aggravates the physiological status of underlying diseases. Ghrelin functions as a protector against the vicious cycle of the cachectic paradigm through orexigenic, anabolic and anti-inflammatory effects, so administration of ghrelin may be able to improve quality of life in cachectic patients. We show here a significant role of ghrelin in the pathophysiology of cachectic diseases and the possibility of clinical applications.
Collapse
Affiliation(s)
- Jun-ichi Ashitani
- Division of Neurology, Respirology, Endocrinology and Metabolism, The Third Department of Internal Medicine, Miyazaki University School of Medicine, Kihara 5200, Miyazaki 889-1692, Japan.
| | | | | |
Collapse
|
9
|
Carr EA, Holcombe SJ. Nutrition of Critically Ill Horses. Vet Clin North Am Equine Pract 2009; 25:93-108, vii. [DOI: 10.1016/j.cveq.2008.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
10
|
Tonet A, Karnikowski M, Moraes C, Gomes L, Karnikowski M, Córdova C, Nóbrega O. Association between the -174 G/C promoter polymorphism of the interleukin-6 gene and cardiovascular disease risk factors in Brazilian older women. Braz J Med Biol Res 2007; 41:47-53. [DOI: 10.1590/s0100-879x2006005000190] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/24/2007] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - L Gomes
- Universidade Católica de Brasília
| | | | - C Córdova
- Universidade Católica de Brasília, Brasil
| | | |
Collapse
|
11
|
Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Rossi Fanelli F. Prevention and treatment of cancer cachexia: new insights into an old problem. Eur J Cancer 2005; 42:31-41. [PMID: 16314085 DOI: 10.1016/j.ejca.2005.07.026] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/22/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Cancer cachexia (CC) is a multifactorial paraneoplastic syndrome characterized by anorexia, body weight loss, loss of adipose tissue and skeletal muscle, accounting for at least 20% of deaths in neoplastic patients. CC significantly impairs quality of life and response to anti-neoplastic therapies, increasing morbidity and mortality of cancer patients. Muscle wasting is the most important phenotypic feature of CC and the principal cause of function impairment, fatigue and respiratory complications, mainly related to a hyperactivation of muscle proteolytic pathways. Most therapeutic strategies to CC have proven to be only partially effective . The inhibition of catabolic processes in muscle has been attempted pharmacologically with encouraging results in animal models. However, data in the clinical setting are still scanty and contradictory. Stimulation of muscle anabolism could represent a promising and valid therapeutic alternative for cancer-related muscle wasting. This goal may be currently achieved with the conventional, short-acting and adverse side effect-rich anabolic steroids. Insulin-like growth factor-1 (IGF-1) plays a critical role in muscle homeostasis, hypertrophy and regeneration. IGF-1 overexpression at the muscular level by gene therapy reverses muscle hypotrophy secondary to catabolic conditions and induces muscle hypertrophy increasing muscle mass and strength. This allows the speculation that this approach could also prove effective in modulating cancer-induced muscle wasting, while avoiding the potentially hazardous side effects of systemic IGF-1 administration. The present review will focus on the potential biochemical and molecular targets of CC therapy, and will define the rationale for a novel, gene therapy-based approach.
Collapse
Affiliation(s)
- Maurizio Muscaritoli
- Department of Clinical Medicine, University 'La Sapienza', Viale dell'Universita 37, 00185 Rome, Italy.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Muscaritoli M, Bossola M, Bellantone R, Rossi Fanelli F. Therapy of muscle wasting in cancer: what is the future? Curr Opin Clin Nutr Metab Care 2004; 7:459-66. [PMID: 15192450 DOI: 10.1097/01.mco.0000134366.07148.2e] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The aim of the present review is to provide insights into the future therapeutic approaches to cancer-related muscle wasting that flow from the progressive knowledge of mechanisms regulating muscle mass in health and disease. RECENT FINDINGS Cancer cachexia is a severely debilitating and life-threatening paraneoplastic syndrome accounting for approximately 20% of cancer deaths. The prominent clinical feature of cancer cachexia is the progressive loss of muscle mass, which is substantially not reversible with any of the currently available nutritional, metabolic or pharmacological approaches. Cancer cachexia has long been considered a late event in the natural history of cancer patients, thus condemning them to merely palliative interventions. The accumulating evidence that the metabolic and molecular derangements ultimately leading to muscle wasting are operating early after tumour onset, even when weight loss is minimal or absent, is strengthening the view that cancer cachexia should be considered an early phenomenon. SUMMARY Currently, despite scientific and economic efforts, the therapy of cancer-related muscle wasting has a poor success rate. Present knowledge of the intracellular mechanisms involved in muscle homeoastasis is prompting continuous research aimed at developing more effective and selective therapeutic tools for the prevention and treatment of muscle loss in cancer.
Collapse
|
14
|
Costa Rosa LFBP. Exercise as a Time-conditioning Effector in Chronic Disease: a Complementary Treatment Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2004; 1:63-70. [PMID: 15257327 PMCID: PMC442120 DOI: 10.1093/ecam/neh018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 02/29/2004] [Indexed: 01/26/2023]
Abstract
Exercise has been widely believed to be a preventive and therapeutic aid in the treatment of various pathophysiological conditions such as cardiovascular disease and cancer. A common problem associated with such pathologies is cachexia, characterized by progressive weight loss and depletion of lean and fat body mass, and is linked to poor prognosis. As this syndrome comprises changes in many physiological systems, it is tempting to assume that the modulation of the psychoneuroimmunoendocrine axis could attenuate or even prevent cachexia progression in cancer patients. Cancer cachexia is characterized by a disruption in the rhythmic secretion of melatonin, an important time-conditioning effector. This hormone, secreted by the pineal gland, transmits circadian and seasonal information to all organs and cells of the body, synchronizing the organism with the photoperiod. Considering that exercise modulates the immune response through at least two different mechanisms-metabolic and neuroendocrine-we propose that the adoption of a regular exercise program as a complementary strategy in the treatment of cancer patients, with the exercise bouts regularly performed at the same time of the day, will ameliorate cachexia symptoms and increase survival and quality of life.
Collapse
Affiliation(s)
- Luis F. B. P. Costa Rosa
- Laboratory of Metabolism, Department of Histology and Embryology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
15
|
Abstract
A nutritional plan should be incorporated into every treatment plan of the critically ill patient. Weight loss and cachexia are the result of prevalence of catabolic processes over anabolic processes in addition to absolute or relative increased demands and decreased food intake.
Collapse
Affiliation(s)
- Bettina M Dunkel
- University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, PA 19348, USA
| | | |
Collapse
|
16
|
Roudebush P, Davenport DJ, Novotny BJ. The use of nutraceuticals in cancer therapy. Vet Clin North Am Small Anim Pract 2004; 34:249-69, viii. [PMID: 15032131 DOI: 10.1016/j.cvsm.2003.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The high prevalence of nutraceutical use among human patients with cancer suggests that the use of nutraceuticals in pet animals with cancer is probably common. Dogs with a wide variety of malignant diseases have significant alterations in carbohydrate, protein, and fat metabolism. These metabolic alterations may be ameliorated by using functional foods relatively low in soluble carbohydrate, moderate amounts of protein that includes sources of arginine, and moderate amounts of fat supplemented with omega-3 long-chain polyunsaturated fatty acids. Well-controlled clinical studies in a variety of species with cancer, including rodents, people, and dogs, have documented that increased dietary and serum levels of omega-3 fatty acids are associated with a number of health benefits, including improved disease-free interval, survival time, and quality of life. Other nutraceuticals of interest in patients with cancer include antioxidant vitamins, trace minerals, glutamine, protease inhibitors, garlic, tea polyphenols, vitamin A, and shark cartilage.
Collapse
Affiliation(s)
- Philip Roudebush
- Technical Information Services, Hill's Pet Nutrition, Inc. Hill's Science and Technology Center, PO Box 1658, Topeka, KS 66601, USA.
| | | | | |
Collapse
|
17
|
Abstract
Cancer cachexia is a poorly understood syndrome of anorexia, weight loss, and muscle wasting that negatively impacts quality of life and survival in cancer patients. Research has clearly implicated pro-inflammatory cytokines in the biology of cancer cachexia. More recent research implicates products of arachidonic acid and suggests that cachexia may be a chronic inflammatory condition rather than a nutritional aberration. To date, nutritional support to slow weight loss has focused primarily on increasing calorie intake. Alternatively, many foods contain factors that can modulate the synthesis or activity of pro-inflammatory mediators, especially the synthesis of prostaglandin E2 from arachidonic acid. These factors and foods are sometimes called nutraceuticals, and research is needed to evaluate their efficacy in combating cancer cachexia.
Collapse
Affiliation(s)
- Donna O McCarthy
- National Institute of Nursing Research, 31 Center Drive, Room 5B-13, Bethesda, MD 20892-2178, USA.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW During ageing there may be the onset of a chronic inflammatory state. This review examines the underlying causes of this phenomenon and the role that genotype plays in its intensity. RECENT FINDINGS There are predisposing factors for the chronic inflammation that occurs during ageing. These include increased oxidative stress, a decrease in ovarian function, a decrease in stress-induced glucocorticoid sensitivity of pro-inflammatory cytokine production in men, and an increased incidence of asymptomatic bacteriuria. Obesity induces chronic inflammation. Inflammation is a key factor in the progressive loss of lean tissue and impaired immune function observed in ageing. Polymorphisms in the promoter regions of pro- and anti-inflammatory cytokine genes influence the level of cytokine production and the ageing process. Thus, a genotype for high pro-inflammatory cytokine production results in high cytokine production and may accelerate the rate of tissue loss. Conversely, polymorphisms in the genes for anti-inflammatory cytokines may result in a slowing of tissue loss. In the healthy aged male population, the former polymorphisms are under-represented and the latter over-represented, indicating a genetically determined survival advantage in maintaining inflammation at a low level. Nutrients with anti-inflammatory properties, such as vitamin E and n-3 polyunsaturated fatty acid, may reduce the level of chronic inflammation and thereby ameliorate tissue and functional loss during ageing. New evidence suggests that, for the latter nutrient, gene-nutrient interactions occur that alter the effectiveness of dietary therapy. SUMMARY Ageing is associated with increased levels of chronic inflammation. This plays a major role in the decline in immune function and lean body mass. Anti-inflammatory nutrient therapy may slow the rate of decline. The pro- and anti-inflammatory cytokine genotype is linked negatively and positively, respectively, with life-span, because of its influence on inflammation.
Collapse
Affiliation(s)
- Robert F Grimble
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton SO16 7PX, UK.
| |
Collapse
|
19
|
Nandi J, Meguid MM, Inui A, Xu Y, Makarenko IG, Tada T, Chen C. Central mechanisms involved with catabolism. Curr Opin Clin Nutr Metab Care 2002; 5:407-18. [PMID: 12107377 DOI: 10.1097/00075197-200207000-00010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Catabolism conjures up an end-metabolic process in which muscle and fat tissue are broken down into their constituent parts to provide nutrients for the body, secondary to a noxious stimulus that prevents the organism from adequately nourishing itself. However, catabolism is a primary event, initiated in the brain in response to perceived or real stresses or noxious stimuli, which has a secondary effect of inhibiting food intake and consequently the break down of skeletal muscle and adipose tissues to provide nutrients for the body to survive. RECENT FINDINGS This is achieved via a cascade of neurohormonal monoaminergic and peptidergic mediators in the central nervous system, invoking the cortex, the limbic system and the hypothalamus. Among the most detailed mediators studied are corticotropin-releasing factor and serotonin which, via the hypothalamic-pituitary-adrenal axis and the sympathetic and parasympathetic nervous system, stimulate catecholamines and cortisol and inhibit anabolic hormones, insulin, leptin, ghrelin, including neuropeptide Y and other neuropeptides, among them the paracrine-acting cytokines. Simultaneously, there occurs stimulation of the counter-regulatory hormones cortisol, glucagon and the melanocortin family of neuropeptides. SUMMARY The net effect is anorexia, with the inhibition of food intake, body weight loss, delayed gastric emptying and functions, the stimulation of gluconeogenesis, glycogenolysis and ketogenesis as sources of metabolic fuel, which if unabated leads ultimately to cachexia. The use of antagonists and the removal of stress or noxious stimuli experimentally test different pathways of this dynamic metabolic picture. Several studies have demonstrated important progress towards our understanding of the central mechanisms involved in anorexia and weight loss, which we summarize in this review.
Collapse
Affiliation(s)
- Jyotirmoy Nandi
- Department of Medicine, Gastroenterology Division, University Hospital, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|