1
|
Gabriel EM, Wiche Salinas TR, Gosselin A, Larouche-Anctil E, Durand M, Landay AL, El-Far M, Tremblay CL, Routy JP, Ancuta P. Overt IL-32 isoform expression at intestinal level during HIV-1 infection is negatively regulated by IL-17A. AIDS 2021; 35:1881-1894. [PMID: 34101628 PMCID: PMC8416712 DOI: 10.1097/qad.0000000000002972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Untreated HIV infection was previously associated with IL-32 overexpression in gut/intestinal epithelial cells (IEC). Here, we explored IL-32 isoform expression in the colon of people with HIV (PWH) receiving antiretroviral therapy (ART) and IL-32 triggers/modulators in IEC. DESIGN Sigmoid colon biopsies (SCB) and blood were collected from ART-treated PWH (HIV + ART; n = 17; mean age: 56 years; CD4+ cell counts: 679 cells/μl; time on ART: 72 months) and age-matched HIV-uninfected controls (HIVneg; n = 5). The IEC line HT-29 was used for mechanistic studies. METHODS Cells from SCB and blood were isolated by enzymatic digestion and/or gradient centrifugation. HT-29 cells were exposed to TLR1-9 agonists, TNF-α, IL-17A and HIV. IL-32α/β/γ/D/ε/θ and IL-17A mRNA levels were quantified by real-time RT-PCR. IL-32 protein levels were quantified by ELISA. RESULTS IL-32β/γ/ε isoform transcripts were detectable in the blood and SCB, with IL-32β mRNA levels being predominantly expressed in both compartments and at significantly higher levels in HIV + ART compared to HIVneg. IL-17A transcripts were only detectable in SCB, with increased IL-17A levels in HIVneg compared with HIV + ART and negatively correlated with IL-32β mRNA levels. IL-32β/γ/ε isoform mRNA were detected in HT-29 cells upon exposure to TNF-α, Poly I:C (TLR3 agonist), Flagellin (TLR-5 agonist) and HIV. IL-17A significantly decreased both IL-32 β/γ/ε mRNA and cell-associated IL-32 protein levels induced upon TNF-α and Poly I:C triggering. CONCLUSION We document IL-32 isoforms abundant in the colon of ART-treated PWH and reveal the capacity of the Th17 hallmark cytokine IL-17A to attenuate IL-32 overexpression in a model of inflamed IEC.
Collapse
Affiliation(s)
- Etiene Moreira Gabriel
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Tomas Raul Wiche Salinas
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Madeleine Durand
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Cécile L. Tremblay
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Pierre Routy
- McGill University Health Centre, Montreal, Québec, Canada
- Chronic Viral Illness Service and Hematology Department, McGill University Health Centre, Montréal, Québec, Canada
| | - Petronela Ancuta
- CHUM Research Centre, Montréal, Québec, Canada
- Department de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Flores-Teviño SM, Borkow G, Rodriguez-Padilla C. Antiviral propierties of 5,5'-dithiobis-2-nitrobenzoic acid and bacitracin against T-tropic human immunodeficiency virus type 1. Virol J 2011; 8:137. [PMID: 21435237 PMCID: PMC3078101 DOI: 10.1186/1743-422x-8-137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/24/2011] [Indexed: 11/10/2022] Open
Abstract
Bacitracin and the membrane-impermeant thiol reagent 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) are agents known to inhibit protein disulfide isomerase (PDI), a cell-surface protein critical in HIV-1 entry therefore they are fusion inhibitors (FI). Here we investigated the possibility that Bacitracin and or DTNB might have other antiviral activities besides FI. By means of residual activity assays, we found that both compounds showed antiviral activity only to viruses T-tropic HIV-1 strain. Cell-based fusion assays showed inhibition on HeLa-CD4-LTR-β-gal (CD4) and HL2/3 cells treated with Bacitracin, and DTNB with the latest compound we observed fusion inhibition on both cells but strikingly in HL2/3 cells (expressing Env) indicating a possible activity on both, the cell membrane and the viral envelope. A time-of-addition experiment showed that both compounds act on HIV entry inhibition but DTNB also acts at late stages of the viral cycle. Lastly, we also found evidence of long-lasting host cell protection in vitro by DTNB, an important pharmacodynamic parameter for a topical microbicide against virus infection, hours after the extracellular drug was removed; this protection was not rendered by Bacitracin. These drugs proved to be leading compounds for further studies against HIV showing antiviral characteristics of interest.
Collapse
Affiliation(s)
- Humberto H Lara
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, Mexico.
| | | | | | | | | | | |
Collapse
|
3
|
Trujillo JR, Rogers R, Molina RM, Dangond F, McLane MF, Essex M, Brain JD. Noninfectious entry of HIV-1 into peripheral and brain macrophages mediated by the mannose receptor. Proc Natl Acad Sci U S A 2007; 104:5097-102. [PMID: 17360361 PMCID: PMC1821124 DOI: 10.1073/pnas.0611263104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Indexed: 11/18/2022] Open
Abstract
Although protein receptors on the plasma membrane involved in the initial steps of productive HIV-1 infection have been well characterized, little is known about interactions between cellular carbohydrate receptors and HIV-1. Here, we report the involvement of a carbohydrate receptor, the macrophage mannose receptor (MR), and its role in supporting HIV-1 binding and entry. HIV-1 can enter the cytoplasm of human macrophages and microglia as well as murine macrophages by MR, although no subsequent viral replication was observed. Correspondingly, HIV-1 entry into Cos-7 cells after induction of expression of MR by transfection with MR-cDNA did not demonstrate viral replication. Our studies suggest that whereas MR may serve as a binding and an entry site, the MR-mediated pathway does not lead to productive HIV-1 infection. In addition, we report that recombinant HIV-1 gp120 blocks MR-mediated phagocytosis in human and murine alveolar macrophages and microglial cells. Therefore, characterization of the HIV-1 noninfectious MR-mediated phagocytic pathway may foster advances in HIV-1 vaccine design and an improved understanding of HIV-1/AIDS pathogenesis and host defenses.
Collapse
Affiliation(s)
- J. Roberto Trujillo
- *Molecular and Integrative Physiological Sciences, Department of Environmental Health
- Department of Immunology and Infectious Diseases, and
| | - Rick Rogers
- Biomedical Imaging Laboratory, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115; and
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Ramon M. Molina
- *Molecular and Integrative Physiological Sciences, Department of Environmental Health
| | - Fernando Dangond
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Max Essex
- Department of Immunology and Infectious Diseases, and
| | - Joseph D. Brain
- *Molecular and Integrative Physiological Sciences, Department of Environmental Health
| |
Collapse
|
4
|
Dixon DW, Gill AF, Giribabu L, Vzorov AN, Alam AB, Compans RW. Sulfonated naphthyl porphyrins as agents against HIV-1. J Inorg Biochem 2005; 99:813-21. [PMID: 15708803 DOI: 10.1016/j.jinorgbio.2004.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 12/10/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Sulfonated 5,10,15,20-tetra(1-naphthyl)porphyrin (T1NapS) and 5,10,15,20-tetra(2-naphthyl)porphyrin (T2NapS) and their copper and iron chelates show activity against the human immunodeficiency virus (HIV-1). The porphyrins were prepared by sulfonation of the parent structures with sulfuric acid. More highly sulfonated structures were prepared by sulfonation for longer times. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry showed species with as many as eight sulfonates. Some of the mass spectral peaks for the copper chelates were consistent with loss of water, apparently from intramolecular sulfone formation between two adjacent naphthalene rings that took place during copper insertion. The compounds could be separated using capillary electrophoresis; addition of beta- or gamma-cyclodextrin gave substantially better separation of the components. Activity against HIV was evaluated using an epithelial HeLa-CD4-CCR5 cell line; EC50 values for HIV-1 IIIB and HIV-1 JR-FL ranged from 1 to 15 microg/ml. The compounds exhibit low toxicity for human epithelial cells and have potential as microbicides which might be used to provide protection against sexual transmission of HIV.
Collapse
Affiliation(s)
- Dabney W Dixon
- Department of Chemistry, Georgia State University, Box 4098, Atlanta, GA 30303, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Maresca M, Mahfoud R, Garmy N, Kotler DP, Fantini J, Clayton F. The virotoxin model of HIV-1 enteropathy: involvement of GPR15/Bob and galactosylceramide in the cytopathic effects induced by HIV-1 gp120 in the HT-29-D4 intestinal cell line. J Biomed Sci 2003; 10:156-66. [PMID: 12566994 DOI: 10.1007/bf02256007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Malabsorption and diarrhea are common, serious problems in AIDS patients, and are in part due to the incompletely understood entity HIV enteropathy. Our prior in vitro work has shown that increased transepithelial permeability and glucose malabsorption, similar to HIV enteropathy, are caused by HIV surface protein gp120, although the mechanism remains unclear. RESULTS We studied the effects of HIV surface protein gp120 on the differentiated intestinal cell line HT-29-D4, specifically the effects on microtubules, transepithelial resistance, and sodium glucose cotransport. gp120 induced extensive microtubule depolymerization, an 80% decrease in transepithelial resistance, and a 70% decrease in sodium-dependent glucose transport, changes closely paralleling those of HIV enteropathy. The effects on transepithelial resistance were used to study potential inhibitors. Neutralizing antibodies to GPR15/Bob but not to CXCR4 (the coreceptor allowing infection with these HIV strains) inhibited these effects. Antibodies to galactosylceramide (GalCer) and a synthetic analog of GalCer also inhibited the gp120-induced changes, suggesting the involvement of GalCer-enriched lipid rafts in gp120 binding to intestinal epithelial cells. CONCLUSION We conclude that direct HIV infection and gp120-induced cytopathic effects are distinct phenomena. While in vivo confirmation is needed to prove this, gp120 could be a virotoxin significantly contributing to HIV enteropathy.
Collapse
Affiliation(s)
- Marc Maresca
- Institut Méditerranéen de Recherche en Nutrition, UMR-INRA 1111, Faculté des Sciences de St-Jérôme, Marseille, France
| | | | | | | | | | | |
Collapse
|
6
|
Bouhlal H, Chomont N, Haeffner-Cavaillon N, Kazatchkine MD, Belec L, Hocini H. Opsonization of HIV-1 by semen complement enhances infection of human epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3301-6. [PMID: 12218150 DOI: 10.4049/jimmunol.169.6.3301] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present study we demonstrate that both X4- and R5-tropic HIV-1 strains are able to infect the human epithelial cell line HT-29. Infection was enhanced 2-fold when HIV was added to semen before contact with the cell cultures. The enhancing effect of semen was complement dependent, as evidenced by blockage of generation of C3a/C3a(desArg) in semen by heat or EDTA treatment of semen and suppression of semen-dependent enhancement with mAbs directed to complement receptor type 3 (CD11b/CD18) and soluble CD16. Infection of HT-29 cells was assessed by the release of p24 Ag in cultures and semiquantitative PCR of the HIV-1 pol gene. Inhibition of infection of HT-29 by stromal cell-derived factor 1 was decreased in the case of semen-opsonized X4- and R5-tropic virus compared with unopsonized virus. In contrast, inhibition of infection by RANTES was increased for opsonized X4-tropic HIV-1 compared with unopsonized virus. Taken together these observations indicate that activation of complement in semen may play an enhancing role in mucosal transmission of HIV-1 by facilitating infection of epithelial cells and/or enhancing infection of complement receptor-expressing target cells in the mucosa.
Collapse
Affiliation(s)
- Hicham Bouhlal
- Institut National de la Santé et de la Recherche Médicale, Unité 430, and Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
7
|
Ancuta P, Bakri Y, Chomont N, Hocini H, Gabuzda D, Haeffner-Cavaillon N. Opposite effects of IL-10 on the ability of dendritic cells and macrophages to replicate primary CXCR4-dependent HIV-1 strains. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4244-53. [PMID: 11238678 DOI: 10.4049/jimmunol.166.6.4244] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the effect of IL-10 on replication of primary CXCR4-dependent (X4) HIV-1 strains by monocyte-derived dendritic cells (DCs) and macrophages (M Phis). M Phis efficiently replicated CXCR4-dependent HIV-1 (X4 HIV-1) strains NDK and VN44, whereas low levels of p24 were detected in supernatants of infected DCs. IL-10 significantly increased X4 HIV-1 replication by DCs but blocked viral production by M Phis as determined by p24 levels and semiquantitative nested PCR. IL-10 up-regulated CXCR4 mRNA and protein expression on DCs and M Phis, suggesting that IL-10 enhances virus entry in DCs but blocks an entry and/or postentry step in M Phis. The effect of IL-10 on the ability of DCs and M Phis to transmit virus to autologous CD4(+) T lymphocytes was investigated in coculture experiments. DCs exhibited a greater ability than did M Phis to transmit a vigorous infection to CD4(+) T cells despite their very low replication capacity. IL-10 had no effect on HIV-1 replication in DC:T cell cocultures but markedly decreased viral production in M Phi:T cell cocultures. These results demonstrate that IL-10 has opposite effects on the replication of primary X4 HIV-1 strains by DCs and M Phis. IL-10 increases X4-HIV-1 replication in DCs but does not alter their capacity to transmit virus to CD4(+) T lymphocytes. These findings suggest that increased levels of IL-10 observed in HIV-1-infected patients with disease progression may favor the replication of X4 HIV-1 strains in vivo.
Collapse
Affiliation(s)
- P Ancuta
- Unité d'Immunopathologie Humaine, Institut National de la Santé et de la Recherche Médicale, Broussais Hospital, Paris, France.
| | | | | | | | | | | |
Collapse
|