1
|
Ma K, Xu Z, Cheng Y, Chu CP, Zhang T. Molecular Probe with Potential for Combined Boron Neutron Capture and Photothermal Antitumor Therapy. ACS APPLIED BIO MATERIALS 2024; 7:6055-6064. [PMID: 39224079 DOI: 10.1021/acsabm.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Both boron neutron capture therapy (BNCT) and photothermal therapy (PTT) have been applied to tumor treatment in clinical. However, their therapeutic efficacy is limited. For BNCT, the agents not only exhibit poor targeting ability but also permit only a single irradiation session within a course due to significant radiation risks. In the context of PTT, despite enhanced selectivity, the limited photothermal effect fails to meet clinical demands. Hence, the imperative arises to combine these two therapies to enhance tumor-killing capabilities and improve the targeting of BNCT agents by leveraging the advantages of PTT agents. In this study, we synthesized a potential responsive agent by linking 4-mercaptophenylboronic acid (MPBA) and IR-780 dye that served as the agents for BNCT and PTT, respectively, which possesses the dual capabilities of photothermal effects and thermal neutron capture. Results from both in vitro and in vivo research demonstrated that IR780-MPBA effectively inhibits tumor growth through its photothermal effect with no significant toxicity. Furthermore, IR780-MPBA exhibited substantial accumulation in tumor tissues and superior tumor-targeting capabilities compared with MPBA, which demonstrated that IR780-MPBA possesses significant potential as a combined antitumor therapy of PTT and BNCT, presenting a promising approach for antitumor treatments.
Collapse
Affiliation(s)
- Kaiyi Ma
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Zixing Xu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yuan Cheng
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi 214105, China
| | - Chungming Paul Chu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Wuxi 214105, China
| |
Collapse
|
2
|
Guo J, Chen X, Xie H, Li T. Efficacy of adjunctive photodynamic therapy to conventional mechanical debridement for peri-implant mucositis. BMC Oral Health 2024; 24:464. [PMID: 38627721 PMCID: PMC11020816 DOI: 10.1186/s12903-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This meta-analysis was conducted to assess the effectiveness of photodynamic therapy (PDT) as an adjunct to conventional mechanical debridement (CMD) for the management of peri-implant mucositis (p-iM). METHODS We systematically searched four databases (PubMed, Embase, Web of Science, and Cochrane Library) for randomized controlled trials (RCTs) investigating PDT + CMD for p-iM from their inception to March 13, 2023. Meta-analysis was performed using RevMan 5.4 software. RESULTS Seven RCTs met the inclusion criteria. The meta-analysis revealed that PDT + CMD treatment was more effective than CMD alone in reducing probing depth (PD) (Mean Difference [MD]: -1.09, 95% Confidence Interval [CI]: -1.99 to -0.2, P = 0.02) and plaque index (PI) (MD: -2.06, 95% CI: -2.81 to -1.31, P < 0.00001). However, there was no statistically significant difference in the improvement of bleeding on probing (BOP) between the PDT + CMD groups and CMD groups (MD: -0.97, 95% CI: -2.81 to 0.88, P = 0.31). CONCLUSIONS Based on the current available evidence, this meta-analysis indicates that the addition of PDT to CMD significantly improves PD and PI compared to CMD alone in the treatment of p-iM. However, there is no significant difference in improving BOP.
Collapse
Affiliation(s)
- Jincai Guo
- Changsha Stomatological Hospital, No. 389 Youyi road, Tianxin district Changsha, Changsha, Hunan, 410006, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Xueru Chen
- Changsha Stomatological Hospital, No. 389 Youyi road, Tianxin district Changsha, Changsha, Hunan, 410006, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410006, China
| | - Hui Xie
- Changsha Stomatological Hospital, No. 389 Youyi road, Tianxin district Changsha, Changsha, Hunan, 410006, China.
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410006, China.
| | - Tongjun Li
- Changsha Stomatological Hospital, No. 389 Youyi road, Tianxin district Changsha, Changsha, Hunan, 410006, China.
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410006, China.
| |
Collapse
|
3
|
Shirasaka Y, Yamada K, Etoh T, Noguchi K, Hasegawa T, Ogawa K, Kobayashi T, Nishizono A, Inomata M. Cytocidal Effect of Irradiation on Gastric Cancer Cells Infected with a Recombinant Mammalian Orthoreovirus Expressing a Membrane-Targeted KillerRed. Pharmaceuticals (Basel) 2024; 17:79. [PMID: 38256912 PMCID: PMC10818543 DOI: 10.3390/ph17010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The outcomes of unresectable gastric cancer (GC) are unfavorable even with chemotherapy; therefore, a new treatment modality is required. The combination of an oncolytic virus and photodynamic therapy can be one of the promising modalities to overcome this. Mammalian orthoreovirus (MRV) is an oncolytic virus that has been used in clinical trials for several cancers. In this study, we developed and evaluated a recombinant MRV strain type 3 Dearing (T3D) that expresses membrane-targeting KillerRed (KRmem), a phototoxic fluorescent protein that produces cytotoxic reactive oxygen species upon light irradiation. KRmem was fused in-frame to the 3' end of the σ2 viral gene in the S2 segment using a 2A peptide linker, enabling the expression of multiple proteins from a single transcript. RNA electrophoresis, Western blotting, and immunofluorescence analyses confirmed functional insertion of KRmem into the recombinant virus. The growth activity of the recombinant virus was comparable to that of the wild-type MRV in a cultured cell line. The recombinant virus infected two GC cell lines (MKN45P and MKN7), and a significant cytocidal effect was observed in MKN45P cells infected with the recombinant virus after light irradiation. Thus, recombinant MRV-expressing KRmem has the potential to serve as a novel treatment tool for GC.
Collapse
Affiliation(s)
- Yoshinori Shirasaka
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan; (Y.S.); (T.H.); (K.O.); (M.I.)
| | - Kentaro Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki City 889-2192, Miyazaki, Japan;
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan;
| | - Tsuyoshi Etoh
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan; (Y.S.); (T.H.); (K.O.); (M.I.)
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan
| | - Kazuko Noguchi
- Laboratory of Veterinary Public Health, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki City 889-2192, Miyazaki, Japan;
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan;
| | - Takumi Hasegawa
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan; (Y.S.); (T.H.); (K.O.); (M.I.)
| | - Katsuhiro Ogawa
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan; (Y.S.); (T.H.); (K.O.); (M.I.)
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City 565-0871, Osaka, Japan;
| | - Akira Nishizono
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan;
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasamamachi, Yufu City 879-5593, Oita, Japan; (Y.S.); (T.H.); (K.O.); (M.I.)
| |
Collapse
|
4
|
Swapna LA, Alawad AO, Abdullah AlAmri L, Sayed Abdul N, Qamar Z, Vempalli S, Niazi FH. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy in patients with nicotine stomatitis. Photodiagnosis Photodyn Ther 2023; 41:103152. [PMID: 36469966 DOI: 10.1016/j.pdpdt.2022.103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
Abstract
AIM This study aimed to treat smoker's palate (SP) using 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT). METHODS A total of 24 patients with SP were divided into two groups: group-I (test group; n = 12); and group-II (control group; n = 12). Group-I patients were treated with 5-ALA-mediated PDT, while group-II patients were advised to cease the smoking habit during the entire duration of the study and later. PDT was repeated on days 3, 7, and 14 (i.e., a total of four sittings including day 0 [baseline]). Later, the participants were called for follow-up after week-4 (1st follow-up), week-6 (2nd follow-up), and week-8 (3rd follow-up) after the completion of the treatment. The SPSS version 22.0 was used for data analysis. RESULTS Group-I patients showed a statistically significant improvement when all three time points were assessed (p < 0.0001). Similarly, the same trend was observed in the group-II participants (p < 0.001), however, the difference between both groups (i.e., group-I [test group] and group-II [control group]) was larger. CONCLUSION The findings of this clinical trial indicated a promising and satisfactory decrease in the clinical features of the smoker's palate without any adverse impacts utilizing 5-aminolevulinic acid-mediated photodynamic therapy. Hence, 5-ALA-mediated PDT appeared to be a promising treatment option together with smoking cessation.
Collapse
Affiliation(s)
- Lingam Amara Swapna
- Department of Surgical and Diagnostics Sciences, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | - Abdullah O Alawad
- National Center of Biotechnology, King Abdulaziz Center for Science and Technology, Life Sciences and Environment Research Institute, Riyadh, Saudi Arabia.
| | - Leena Abdullah AlAmri
- Department of Surgical and Diagnostics Sciences, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | - Nishath Sayed Abdul
- Department of OMFS and Diagnostic Sciences (Oral Pathology), Faculty of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Zeeshan Qamar
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Swetha Vempalli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Fayez Hussain Niazi
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Obitz D, Gkika KS, Heller M, Keyes TE, Metzler-Nolte N. A phototoxic thulium complex exhibiting intracellular ROS production upon 630 nm excitation in cancer cells. Chem Commun (Camb) 2023; 59:1943-1946. [PMID: 36656026 DOI: 10.1039/d2cc06209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A lanthanide(III) complex with a thulium metal centre connected via a terpyridine unit to a light harvesting antenna with strong absorption in the therapeutic window [>590 nm] was synthesised and tested as a possible photosensitiser (PS) in photodynamic therapy (PDT). The complex exhibited significant phototoxic activity on cancer cells upon irradiation in the therapeutic window and from intracellular and solution studies ROS production was identified as the compound's phototoxic mode of action. In cell viability assays, a 10-fold lowered IC50 value was obtained upon irradiation compared to the dark control.
Collapse
Affiliation(s)
- Daniel Obitz
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44780, Germany.
| | - Karmel S Gkika
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Marvin Heller
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44780, Germany.
| | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44780, Germany.
| |
Collapse
|
6
|
Mosaddad SA, Namanloo RA, Aghili SS, Maskani P, Alam M, Abbasi K, Nouri F, Tahmasebi E, Yazdanian M, Tebyaniyan H. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol 2023; 40:91. [PMID: 36749489 DOI: 10.1007/s12032-023-01949-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
A significant mortality rate is associated with oral cancer, particularly in cases of late-stage diagnosis. Since the last decades, oral cancer survival rates have only gradually improved despite advances in treatment. This poor success rate is mainly due to the development of secondary tumors, local recurrence, and regional failure. Invasive treatments frequently have a negative impact on the aesthetic and functional outcomes of survivors. Novel approaches are thus needed to manage this deadly disease in light of these statistics. In photodynamic therapy (PDT), a light-sensitive medication called a photosensitizer is given first, followed by exposure to light of the proper wavelength that matches the absorbance band of the photosensitizer. The tissue oxygen-induced cytotoxic free radicals kill tumor cells directly, harm the microvascular structure, and cause inflammatory reactions at the targeted sites. In the case of early lesions, PDT can be used as a stand-alone therapy, and in the case of advanced lesions, it can be used as adjuvant therapy. The current review article discussed the uses of PDT in oral cancer therapy based on recent advances in this field.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Poorya Maskani
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Nouri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran.
| |
Collapse
|
7
|
Tobiasz A, Nowicka D, Szepietowski JC. Acne Vulgaris-Novel Treatment Options and Factors Affecting Therapy Adherence: A Narrative Review. J Clin Med 2022; 11:jcm11247535. [PMID: 36556150 PMCID: PMC9788443 DOI: 10.3390/jcm11247535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Acne vulgaris is an extremely common skin condition, affecting a large population of adolescents, but at the same time, remaining a quite common issue in the group of adult patients. Its complex pathogenesis includes increased sebum secretion, impaired follicular keratinization, colonization of sebaceous glands with Cutibacterium acne bacteria, and the development of inflammation in pilosebaceous units. Although there are many methods of treatment available targeting the mechanisms mentioned above, a large percentage of patients remain undertreated or non-compliant with treatment. Ineffective treatment results in the formation of acne scars, which has a major impact on the well-being and quality of life of the patients. The aim of this publication was a review of available evidence on widely used and novel methods of topical and systemic treatment of acne, additionally including current literature-based analysis of factors affecting patients' compliance. The strengths and limitations of novel substances for treating acne were discussed. We conclude that an effective acne treatment remains a challenge. A better understanding of current treatment options and factors affecting patients' compliance could be a helpful tool in choosing a proper treatment option.
Collapse
|
8
|
Nanoparticle-mediated corneal neovascularization treatments: Toward new generation of drug delivery systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022; 186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Phototherapy has recently emerged as a promising solution for cancer treatment due to its multifunctionality and minimal invasiveness. Notwithstanding the limited penetration depth of light through skin, the ability of photopharmaceutical device systems to deliver light to desired lesions is important. The device system deploys advanced biocompatible materials and fabrication technologies for electronics, and eventually enables more efficient phototherapy. In this review, we focus on diverse optical electronics to illuminate the lesion site with light. Then, moving on to the phototherapy, we highlight photo-thermal therapy with light absorbing materials, photo-activated chemotherapy with light sensitive materials, and photo-dynamic therapy using photosensitizers. Furthermore, we introduce a drug delivery system that can deliver these photopharmaceutical agents spatiotemporally to the tumor site. To this end, we provide a general overview of materials and devices for phototherapy and discuss critical issues and pending limitations of such phototherapy.
Collapse
|
10
|
A Perylenediimide-Based Zinc-Coordination Polymer for Photosensitized Singlet-Oxygen Generation. ENERGIES 2022. [DOI: 10.3390/en15072437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the face of anthropogenic global warming the design and synthesis of materials, which enable energy transfer processes using sunlight as an energy source, are of high interest. Perylenediimides are a highly absorbing class of chromophores suitable for sunlight absorption and conversion. Therefore, metal–organic frameworks (MOFs) and coordination polymers (CPs) with incorporated organic perylene chromophores are highly interesting materials both for applied, but also fundamental, photophysical research. MOFs/CPs have the advantage of a modular adjustability of interchromophoric distances and angles, and the choice of metal nodes can be used to further tune the material towards the desired photophysical properties. In the present paper, we present a study using a reported organic perylenediimide (PDI) chromophore (H2tpdb) as a linker to be incorporated into coordination polymer and test towards applicability within the photochemical 1O2 generation. In detail, a novel zinc 2D -coordination polymer Zn(tpdb)(DMF)3 is reported, which is synthesized using a solvothermal synthesis with Zn(NO3)2 and a ditopic organic perylene linker. Both the linker and Zn-CP are fully characterized, including SC-XRD, showing a strong aggregation of tightly packed chromophores in the solid state. The photophysical properties are examined and discussed, including the observed shifts within the absorption spectra of the CP are compared to the linker in solution. These shifts are mainly attributed to the for PDIs known H-type aggregation and an additional charge transfer in the framework structure, causing a limited quantum yield of the emission. Finally, the photosensitization of triplet oxygen to singlet oxygen using 1,3-diphenylisobenzofurane (DBPF) as a trapping agent is investigated both for the free linker and the Zn-CP, showing that the perylene chromophore is an efficient photosensitizer and its activity can, in principle, be retained after its incorporation in the coordination polymer.
Collapse
|
11
|
Feng Y, Zhang H, Xie X, Chen Y, Yang G, Wei X, Li N, Li M, Li T, Qin X, Li S, You F, Wu C, Yang H, Liu Y. Cascade-activatable NO release based on GSH-detonated "nanobomb" for multi-pathways cancer therapy. Mater Today Bio 2022; 14:100288. [PMID: 35647513 PMCID: PMC9130115 DOI: 10.1016/j.mtbio.2022.100288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Therapeutic approaches of combining conventional photodynamic therapy (PDT) with other adjuvant treatments to sensitize PDT represent an appealing strategy. Herein, a novel synergetic "nanobomb" strategy based on glutathione (GSH)-responsive biodegradation was proposed to effectively destroy tumors expeditiously and accurately. This "nanobomb" was rationally constructed via the simultaneous encapsulation of methylene blue (MB) and l-arginine (L-Arg) into polyethylene glycol (PEG) modified mesoporous organosilicon nanoparticles (MON). The resulting L-Arg/MB@MP initially exhibited prolonged blood circulation, improved bioavailability, and enhanced tumor accumulation in mice after tail vein injection according to the pharmacokinetic investigations, before the nanoparticles were entirely excreted. Under laser irradiation, L-Arg/MB@MP produced remarkable reactive oxygen species (ROS) directly for PDT therapy, while a portion of ROS may oxidize L-Arg to generate nitric oxide (NO) not only for gas therapy (GT) but also serve as a biological messenger to regulate vasodilation to alleviate the tumor hypoxia. Subsequently, the rapidly released NO was further oxidized to reactive nitrogen species, which together with ROS promote immunogenic cell death by inducing G2/M cell-cycle arrest and apoptosis in cancer cells, and eventually resulting in enhanced anti-tumor immune responses. Moreover, the GSH depletion in tumor tissues induced by L-Arg/MB@MP biodegradation can cooperate with GT to amplify the therapeutic effect of PDT. These results demonstrate that this "nanobomb" provides new ideas for clinical translation to treat tumor patients in terms of synergistic PDT-GT nanotherapy in hypoxic-solid tumors.
Collapse
Affiliation(s)
- Yi Feng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hanxi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Geng Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaodan Wei
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ningxi Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Mengyue Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| |
Collapse
|
12
|
Kim Y, Kim S, Im G, Kim YH, Jeong G, Jeon HR, Kim D, Lee H, Park SY, Cho SM, Bhang SH. Area light source-triggered latent angiogenic molecular mechanisms intensify therapeutic efficacy of adult stem cells. Bioeng Transl Med 2022; 7:e10255. [PMID: 35079630 PMCID: PMC8780080 DOI: 10.1002/btm2.10255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Light-based therapy such as photobiomodulation (PBM) reportedly produces beneficial physiological effects in cells and tissues. However, most reports have focused on the immediate and instant effects of light. Considering the physiological effects of natural light exposure in living organisms, the latent reaction period after irradiation should be deliberated. In contrast to previous reports, we examined the latent reaction period after light exposure with optimized irradiating parameters and validated novel therapeutic molecular mechanisms for the first time. we demonstrated an organic light-emitting diode (OLED)-based PBM (OPBM) strategy that enhances the angiogenic efficacy of human adipose-derived stem cells (hADSCs) via direct irradiation with red OLEDs of optimized wavelength, voltage, current, luminance, and duration, and investigated the underlying molecular mechanisms. Our results revealed that the angiogenic paracrine effect, viability, and adhesion of hADSCs were significantly intensified by our OPBM strategy. Following OPBM treatment, significant changes were observed in HIF-1α expression, intracellular reactive oxygen species levels, activation of the receptor tyrosine kinase, and glycolytic pathways in hADSCs. In addition, transplantation of OLED-irradiated hADSCs resulted in significantly enhanced limb salvage ratio in a mouse model of hindlimb ischemia. Our OPBM might serve as a new paradigm for stem cell culture systems to develop cell-based therapies in the future.
Collapse
Affiliation(s)
- Yu‐Jin Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gwang‐Bum Im
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Yeong Hwan Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gun‐Jae Jeong
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Hye Ran Jeon
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoulRepublic of Korea
| | - Dong‐Ik Kim
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Haeshin Lee
- Department of Chemistry, Center for Nature‐Inspired Technology (CNiT)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sung Young Park
- Department of Chemical and Biological EngineeringKorea National University of TransportationChungjuRepublic of Korea
| | - Sung Min Cho
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
13
|
Barbora A, Yazbak F, Lyssenko S, Nave V, Nakonechny F, Ben Ishai P, Minnes R. Second harmonic generation nanoparticles enables Near-Infrared Photodynamic Therapy from visible light reactive photosensitizer conjugates. PLoS One 2022; 17:e0274954. [PMID: 36173987 PMCID: PMC9522301 DOI: 10.1371/journal.pone.0274954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Combination of photosensitizers (PS) with nanotechnology can improve the therapeutic efficiency of clinical Photodynamic Therapy (PDT) by converting visible light reactive PSs into Near-Infrared (NIR) light responsive molecules using Harmonic Nanoparticles (HNP). To test the PDT efficiency of HNP-PS conjugates, pathogenic S. aureus cell cultures were treated with perovskite (Barium Titanate) Second Harmonic Generation (SHG) nanoparticles conjugated to photosensitizers (PS) (we compared both FDA approved Protoporphyrin IX and Curcumin) and subjected to a femtosecond pulsed Near-Infrared (NIR) laser (800 nm, 232-228 mW, 12-15 fs pulse width at repetition rate of 76.9 MHz) for 10 minutes each. NIR PDT using Barium Titanate (BT) conjugated with Protoporphyrin IX as HNP-PS conjugate reduced the viability of S. aureus cells by 77.3 ± 9.7% while BT conjugated with Curcumin did not elicit any significant effect. Conventional PSs reactive only to visible spectrum light coupled with SHG nanoparticles enables the use of higher tissue penetrating NIR light to generate an efficient photodynamic effect, thereby overcoming low light penetration and tissue specificity of conventional visible light PDT treatments.
Collapse
Affiliation(s)
- Ayan Barbora
- Faculty of Natural Sciences, Department of Physics, Ariel University, Ariel, Israel
| | - Fares Yazbak
- Faculty of Engineering, Department of Chemical Engineering, Ariel University, Ariel, Israel
| | - Svetlana Lyssenko
- Faculty of Natural Sciences, Department of Physics, Ariel University, Ariel, Israel
| | - Vadim Nave
- Faculty of Natural Sciences, Department of Physics, Ariel University, Ariel, Israel
| | - Faina Nakonechny
- Faculty of Engineering, Department of Chemical Engineering, Ariel University, Ariel, Israel
| | - Paul Ben Ishai
- Faculty of Natural Sciences, Department of Physics, Ariel University, Ariel, Israel
| | - Refael Minnes
- Faculty of Natural Sciences, Department of Physics, Ariel University, Ariel, Israel
- * E-mail:
| |
Collapse
|
14
|
Lin MHC, Chang LC, Chung CY, Huang WC, Lee MH, Chen KT, Lai PS, Yang JT. Photochemical Internalization of Etoposide Using Dendrimer Nanospheres Loaded with Etoposide and Protoporphyrin IX on a Glioblastoma Cell Line. Pharmaceutics 2021; 13:pharmaceutics13111877. [PMID: 34834292 PMCID: PMC8621426 DOI: 10.3390/pharmaceutics13111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary neoplasm of the adult central nervous system originating from glial cells. The prognosis of those affected by GBM has remained poor despite advances in surgery, chemotherapy, and radiotherapy. Photochemical internalization (PCI) is a release mechanism of endocytosed therapeutics into the cytoplasm, which relies on the membrane disruptive effect of light-activated photosensitizers. In this study, phototherapy by PCI was performed on a human GBM cell-line using the topoisomerase II inhibitor etoposide (Etop) and the photosensitizer protoporphyrin IX (PpIX) loaded in nanospheres (Ns) made from generation-5 polyamidoamine dendrimers (PAMAM(G5)). The resultant formulation, Etop/PpIX-PAMAM(G5) Ns, measured 217.4 ± 2.9 nm in diameter and 40.5 ± 1.3 mV in charge. Confocal microscopy demonstrated PpIX fluorescence within the endo-lysosomal compartment, and an almost twofold increase in cellular uptake compared to free PpIX by flow cytometry. Phototherapy with 3 min and 5 min light illumination resulted in a greater extent of synergism than with co-administered Etop and PpIX; notably, antagonism was observed without light illumination. Mechanistically, significant increases in oxidative stress and apoptosis were observed with Etop/PpIX-PAMAM(G5) Ns upon 5 min of light illumination in comparison to treatment with either of the agents alone. In conclusion, simultaneous delivery and endo-lysosomal co-localization of Etop and PpIX by PAMAM(G5) Ns leads to a synergistic effect by phototherapy; in addition, the finding of antagonism without light illumination can be advantageous in lowering the dark toxicity and improving photo-selectivity.
Collapse
Affiliation(s)
- Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Wei-Chao Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Kuo-Tai Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (C.-Y.C.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-5-3621000 (ext. 3412); Fax: +886-5-3621000 (ext. 3002)
| |
Collapse
|
15
|
Liu Y, Chen L, Shi Q, Zhao Q, Ma H. Tumor Microenvironment-Responsive Polypeptide Nanogels for Controlled Antitumor Drug Delivery. Front Pharmacol 2021; 12:748102. [PMID: 34776965 PMCID: PMC8578677 DOI: 10.3389/fphar.2021.748102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment-responsive polypeptide nanogels belong to a biomaterial with excellent biocompatibility, easily adjustable performance, biodegradability, and non-toxic properties. They are developed for selective delivery of antitumor drugs into target organs to promote tumor cell uptake, which has become an effective measure of tumor treatment. Endogenous (such as reduction, reactive oxygen species, pH, and enzyme) and exogenous (such as light and temperature) responsive nanogels can release drugs in response to tumor tissues or cells to improve drug distribution and reduce drug side effects. This article systematically introduces the research progress in tumor microenvironment-responsive polypeptide nanogels to deliver antitumor drugs and provides a reference for the development of antitumor nanoformulations.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Linjiao Chen
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Qingyang Shi
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Qing Zhao
- Department of Obstetrics, First Hospital, Jilin University, Changchun, China
| | - Hongshuang Ma
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Permeation pathway of two hydrophobic carbon nanoparticles across a lipid bilayer. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A, Rizzolio F. Carbon dots for cancer nanomedicine: a bright future. NANOSCALE ADVANCES 2021; 3:5183-5221. [PMID: 36132627 PMCID: PMC9419712 DOI: 10.1039/d1na00036e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by lack of specificity and systemic toxicity. In this scenario, nanomaterials could overcome many limitations of conventional approaches by reducing side effects, increasing tumor accumulation and improving the efficacy of drugs. In the past few decades, carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and carbon dots) have attracted significant attention of researchers in various scientific fields including biomedicine due to their unique physical/chemical properties and biological compatibility and are among the most promising materials that have already changed and will keep changing human life. Recently, because of their functionalization and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic cancer drugs. In this review, we present an overview of the development of carbon dot nanomaterials in the nanomedicine field by focusing on their synthesis, and structural and optical properties as well as their imaging, therapy and cargo delivery applications.
Collapse
Affiliation(s)
- Samer Bayda
- Faculty of Sciences, Jinan University Tripoli Lebanon
| | - Emanuele Amadio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Simone Cailotto
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Yahima Frión-Herrera
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute 33081 Aviano Italy
| |
Collapse
|
18
|
Kowalik P, Kamińska I, Fronc K, Borodziuk A, Duda M, Wojciechowski T, Sobczak K, Kalinowska D, Klepka MT, Sikora B. The ROS-generating photosensitizer-free NaYF 4:Yb,Tm@SiO 2upconverting nanoparticles for photodynamic therapy application. NANOTECHNOLOGY 2021; 32:475101. [PMID: 33618335 DOI: 10.1088/1361-6528/abe892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
In this work we adapt rare-earth-ion-doped NaYF4nanoparticles coated with a silicon oxide shell (NaYF4:20%Yb,0.2%Tm@SiO2) for biological and medical applications (for example, imaging of cancer cells and therapy at the nano level). The wide upconversion emission range under 980 nm excitation allows one to use the nanoparticles for cancer cell (4T1) photodynamic therapy (PDT) without a photosensitizer. The reactive oxygen species (ROS) are generated by Tm/Yb ion upconversion emission (blue and UV light). Thein vitroPDT was tested on 4T1 cells incubated with NaYF4:20%Yb,0.2%Tm@SiO2nanoparticles and irradiated with NIR light. After 24 h, cell viability decreased to below 10%, demonstrating very good treatment efficiency. High modification susceptibility of the SiO2shell allows for attachment of biological molecules (specific antibodies). In this work we attached the anti-human IgG antibody to silane-PEG-NHS-modified NaYF4:20%Yb,0.2%Tm@SiO2nanoparticles and a specifically marked membrane model by bio-conjugation. Thus, it was possible to perform a selective search (a high-quality optical method with a very low-level organic background) and eventually damage the targeted cancer cells. The study focuses on therapeutic properties of NaYF4:20%Yb,0.2%Tm@SiO2nanoparticles and demonstrates, upon biological functionalization, their potential for targeted therapy.
Collapse
Affiliation(s)
- P Kowalik
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - I Kamińska
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - K Fronc
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - A Borodziuk
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - M Duda
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - T Wojciechowski
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - K Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - D Kalinowska
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - M T Klepka
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - B Sikora
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
20
|
Karcher J, Kirchner S, Leistner AL, Hald C, Geng P, Bantle T, Gödtel P, Pfeifer J, Pianowski ZL. Selective release of a potent anticancer agent from a supramolecular hydrogel using green light. RSC Adv 2021. [DOI: 10.1039/d0ra08893e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Selective green-light triggered release of an anticancer agent under physiological conditions from a supramolecular hydrogel.
Collapse
Affiliation(s)
- Johannes Karcher
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Susanne Kirchner
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Anna-Lena Leistner
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Christian Hald
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Philipp Geng
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Tobias Bantle
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Peter Gödtel
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Juliana Pfeifer
- Institut für Funktionelle Grenzflächen IFG
- Karlsruher Institut für Technologie
- Germany
| | - Zbigniew L. Pianowski
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
- Institute of Biological and Chemical Systems – FMS
| |
Collapse
|
21
|
Moy LS, Frost D, Moy S. Photodynamic Therapy for Photodamage, Actinic Keratosis, and Acne in the Cosmetic Practice. Facial Plast Surg Clin North Am 2020; 28:135-148. [PMID: 31779937 DOI: 10.1016/j.fsc.2019.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy is the combination of the initial application of a photosensitive chemical on the skin and then using typically a blue filter light of varying spectrums. This treatment protocol has been more useful and functional than other chemical peels and lasers for a variety of conditions. There has been efficacy in antiviral treatments, such as herpetic lesions; malignant cancers of the head and neck; and lung, bladder, and skin cancers. It has been tested for prostate cancers, cervical cancer, colorectal cancer, lung cancer, breast cancer, esophageal cancer, stomach cancer, pancreatic cancer, vaginal cancer, gliomas, and erythroplasia of Queyrat.
Collapse
Affiliation(s)
- Lawrence S Moy
- 1101 North Sepulveda Boulevard, Manhattan Beach, CA 90266, USA.
| | - Debra Frost
- 1101 North Sepulveda Boulevard, Manhattan Beach, CA 90266, USA
| | - Stephanie Moy
- 1101 North Sepulveda Boulevard, Manhattan Beach, CA 90266, USA
| |
Collapse
|
22
|
Kim MM, Darafsheh A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem Photobiol 2020; 96:280-294. [PMID: 32003006 DOI: 10.1111/php.13219] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Effective treatment delivery in photodynamic therapy (PDT) requires coordination of the light source, the photosensitizer, and the delivery device appropriate to the target tissue. Lasers, light-emitting diodes (LEDs), and lamps are the main types of light sources utilized for PDT applications. The choice of light source depends on the target location, photosensitizer used, and light dose to be delivered. Geometry of minimally accessible areas also plays a role in deciding light applicator type. Typically, optical fiber-based devices are used to deliver the treatment light close to the target. The optical properties of tissue also affect the distribution of the treatment light. Treatment light undergoes scattering and absorption in tissue. Most tissue will scatter light, but highly pigmented areas will absorb light, especially at short wavelengths. This review will summarize the basic physics of light sources, and describe methods for determining the dose delivered to the patient.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
23
|
Guha A, Shaharyar MA, Ali KA, Roy SK, Kuotsu K. Smart and Intelligent Stimuli Responsive Materials: An Innovative Step in Drug Delivery System. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212711906666190723142057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background:
In the field of drug delivery, smart and intelligent approaches have gained
significant attention among researchers in order to improve the efficacy of conventional dosage forms.
Material science has played a key role in developing these intelligent systems that can deliver therapeutic
cargo on-demand. Stimuli responsive material based drug delivery systems have emerged as
one of the most promising innovative tools for site-specific delivery. Several endogenous and exogenous
stimuli have been exploited to devise “stimuli-responsive” materials for targeted drug delivery.
Methods:
For better understanding, these novel systems have been broadly classified into two categories:
Internally Regulated Systems (pH, ionic strength, glucose, enzymes, and endogenous receptors)
and Externally Regulated Systems (Light, magnetic field, electric field, ultrasound, and temperature).
This review has followed a systematic approach through separately describing the design, development,
and applications of each stimuli-responsive system in a constructive manner.
Results:
The development includes synthesis and characterization of each system, which has been discussed
in a structured manner. From advantages to drawbacks, a detailed description has been included
for each smart stimuli responsive material. For a complete review in this niche area of drug delivery,
a wide range of therapeutic applications including recent advancement of these smart materials
have been incorporated.
Conclusion:
From the current scenario to future development, a precise overview of each type of system
has been discussed in this article. In summary, it is expected that researchers working in this novel
area will be highly benefited from this scientific review.
Collapse
Affiliation(s)
- Arijit Guha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Md. Adil Shaharyar
- Bengal School of Technology, Sugandha, Hooghly, West Bengal-712102, India
| | - Kazi Asraf Ali
- Bengal School of Technology, Sugandha, Hooghly, West Bengal-712102, India
| | - Sanjit Kr. Roy
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
24
|
Fu X, Peng F, Lee J, Yang Q, Zhang F, Xiong M, Kong G, Meng HM, Ke G, Zhang XB. Aptamer-Functionalized DNA Nanostructures for Biological Applications. Top Curr Chem (Cham) 2020; 378:21. [PMID: 32030541 DOI: 10.1007/s41061-020-0283-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
DNA nanostructures hold great promise for various applications due to their remarkable properties, including programmable assembly, nanometric positional precision, and dynamic structural control. The past few decades have seen the development of various kinds of DNA nanostructures that can be employed as useful tools in fields such as chemistry, materials, biology, and medicine. Aptamers are short single-stranded nucleic acids that bind to specific targets with excellent selectivity and high affinity and play critical roles in molecular recognition. Recently, many attempts have been made to integrate aptamers with DNA nanostructures for a range of biological applications. This review starts with an introduction to the features of aptamer-functionalized DNA nanostructures. The discussion then focuses on recent progress (particularly during the last five years) in the applications of these nanostructures in areas such as biosensing, bioimaging, cancer therapy, and biophysics. Finally, challenges involved in the practical application of aptamer-functionalized DNA nanostructures are discussed, and perspectives on future directions for research into and applications of aptamer-functionalized DNA nanostructures are provided.
Collapse
Affiliation(s)
- Xiaoyi Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jungyeon Lee
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Qi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Mengyi Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gezhi Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
25
|
Karsili TNV, Marchetti B. Oxidative Addition of Singlet Oxygen to Model Building Blocks of the Aerucyclamide A Peptide: A First-Principles Approach. J Phys Chem A 2020; 124:498-504. [PMID: 31877042 DOI: 10.1021/acs.jpca.9b10285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Singlet oxygen (1O2) is a significant source of biodamage in living organisms. 1O2 is a highly reactive excited electronic-state spin-configuration of molecular oxygen and is usually prepared via organic molecule sensitization. Despite the wealth of experimental studies on the 1O2-induced oxidation of several bio-organic molecules, the detailed mechanism of the oxidation process is largely unknown. Using high-level quantum chemical methods, we compute the potential energy profiles of the various electronic states associated with the [4 + 2]-cycloaddition reaction of O2 with a class of model peptide precursors that are based on derivatives of oxazole and thiazole. Experiments have shown that such oxazole/thiazole-based model peptides show a favorable reaction with 1O2. Upon increasing the molecular complexity, the bimolecular rate constant decreases and is attributed to the π-perturbing effects of the substituent of the oxazole/thiazole moiety. Our theoretical predictions are in excellent agreement with the experimental measurements and reveal a deep insight into the myriad electronic states that may hinder/promote the reaction of a given bio-organic molecule with 1O2.
Collapse
Affiliation(s)
- Tolga N V Karsili
- University of Louisiana at Lafayette , Lafayette , Louisiana 70504 , United States
| | - Barbara Marchetti
- University of Louisiana at Lafayette , Lafayette , Louisiana 70504 , United States
| |
Collapse
|
26
|
Li X, Feng X, Sun C, Liu Y, Zhao Q, Wang S. Mesoporous carbon‑manganese nanocomposite for multiple imaging guided oxygen-elevated synergetic therapy. J Control Release 2019; 319:104-118. [PMID: 31881317 DOI: 10.1016/j.jconrel.2019.12.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Despite of the extensive application of photodynamic therapy (PDT)nowadays, several restrictions have emerged such as hydrophobility, undesired phototoxicity and low selectivity of photosensitizer as well as the hypoxic tumor microenvironment. To address these challenges, a multifunctional mesoporous carbon‑manganese nanocomposite (MC-MnO2) is developed to load Chlorin e6 (Ce6) with a high loading capacity. The MC-MnO2 can prevent Ce6 from being activated by the sunlight to reduce unintentional phototoxicity significantly and realize the hypoxia relief via reacting with the H2O2 overexpressed in tumor tissue, meanwhile, the reduced product Mn2+ ion could act as a T1/T2-weighted MRI contrast. Based on the broad absorption of MC-MnO2 within the range of NIR, the nanoparticle has the potential for serving as a photothermal agent and photoacoustic imaging (PAI) agent. The PEG and iRGD are further decorated on MC-MnO2 (iPMC-MnO2) to improve the biocompatibility, targeting and penetration of the nanoparticle. Taking full advantage of the good photothermal effect of iPMC-MnO2, the photothermal therapy (PTT) and enhanced PDT are subtly integrated into one system, developing an intelligent multimodal diagnostic and therapeutic nanoplatform and realizing our "one nanoparticle fits all" dream.
Collapse
Affiliation(s)
- Xian Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Xiaoqiang Feng
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Changshan Sun
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yixuan Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Qinfu Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
27
|
Yang M, Yang T, Mao C. Enhancement of Photodynamic Cancer Therapy by Physical and Chemical Factors. Angew Chem Int Ed Engl 2019; 58:14066-14080. [PMID: 30663185 PMCID: PMC6800243 DOI: 10.1002/anie.201814098] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 12/25/2022]
Abstract
The viable use of photodynamic therapy (PDT) in cancer therapy has never been fully realized because of its undesirable effects on healthy tissues. Herein we summarize some physicochemical factors that can make PDT a more viable and effective option to provide future oncological patients with better-quality treatment options. These physicochemical factors include light sources, photosensitizer (PS) carriers, microwaves, electric fields, magnetic fields, and ultrasound. This Review is meant to provide current information pertaining to PDT use, including a discussion of in vitro and in vivo studies. Emphasis is placed on the physicochemical factors and their potential benefits in overcoming the difficulty in transitioning PDT into the medical field. Many advanced techniques, such as employing X-rays as a light source, using nanoparticle-loaded stem cells and bacteriophage bio-nanowires as a photosensitizer carrier, as well as integration with immunotherapy, are among the future directions.
Collapse
Affiliation(s)
- Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| |
Collapse
|
28
|
Yang M, Yang T, Mao C. Optimierung photodynamischer Krebstherapien auf der Grundlage physikalisch‐chemischer Faktoren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mingying Yang
- College of Animal Science Zhejiang University Hangzhou Zhejiang 310058 China
| | - Tao Yang
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center Institute for Biomedical Engineering, Science and Technology University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| |
Collapse
|
29
|
Wang H, Li W, Zhang D, Li W, Wang Z. Adjunctive photodynamic therapy improves the outcomes of peri‐implantitis: a randomized controlled trial. Aust Dent J 2019; 64:256-262. [PMID: 31152567 DOI: 10.1111/adj.12705] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Affiliation(s)
- H Wang
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - W Li
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - D Zhang
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - W Li
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - Z Wang
- Department of Stomatology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| |
Collapse
|
30
|
Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MMB, Farooq MA, Mavlyanova R, Raza F, Bavi R, Wang B. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm 2019; 564:308-317. [PMID: 31015004 DOI: 10.1016/j.ijpharm.2019.04.055] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/23/2023]
Abstract
Carbon dots are a carbonaceous nanomaterial that were discovered accidentally and are now drawing significant attention as a new quantum-sized fluorescent nanoparticle. Carbon dots are biocompatible, non-toxic, photostable, and easily functionalized with good photoluminescence and water solubility. Due to these unique properties, they are used broadly in live cell imaging, catalysis, electronics, biosensing, power, targeted drug delivery, and other biomedical applications. Here, we review the recent development of carbon dots in nanomedicine from their use in drug carriers to imaging agents to multifunctional theranostic systems. Finally, we discuss the challenges and views on next-generation carbon dot-based theranostics for clinical applications.
Collapse
Affiliation(s)
- Kofi Oti Boakye-Yiadom
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Samuel Kesse
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yaw Opoku-Damoah
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mily Maviah Bazezy Joelle
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rukhshona Mavlyanova
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Faisal Raza
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
31
|
Kim A, Zhou J, Samaddar S, Song SH, Elzey BD, Thompson DH, Ziaie B. An Implantable Ultrasonically-Powered Micro-Light-Source (µLight) for Photodynamic Therapy. Sci Rep 2019; 9:1395. [PMID: 30718792 PMCID: PMC6362227 DOI: 10.1038/s41598-019-38554-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment modality that can selectively target unresectable tumors through optical activation of cytotoxic agents, thus reducing many side effects associated with systemic administration of chemotherapeutic drugs. However, limited light penetration into most biological tissues have so far prevented its widespread adoption beyond dermatology and a few other oncological applications in which a fiber optic can be threaded to the desired locations via an endoscopic approach (e.g., bladder). In this paper, we introduce an ultrasonically powered implantable microlight source, μLight, which enables in-situ localized light delivery to deep-seated solid tumors. Ultrasonic powering allows for small receiver form factor (mm-scale) and power transfer deep into the tissue (several centimeters). The implants consist of piezoelectric transducers measuring 2 × 2 × 2 mm3 and 2 × 4 × 2 mm3 with surface-mounted miniature red and blue LEDs. When energized with 185 mW/cm2 of transmitted acoustic power at 720 kHz, μLight can generate 0.048 to 6.5 mW/cm2 of optical power (depending on size of the piezoelectric element and light wavelength spectrum). This allows powering multiple receivers to a distance of 10 cm at therapeutic light output levels (a delivery of 20-40 J/cm2 light radiation dose in 1-2 hours). In vitro tests show that HeLa cells irradiated with μLights undergo a 70% decrease in average cell viability as compared to the control group. In vivo tests in mice implanted with 4T1-induced tumors (breast cancer) show light delivery capability at therapeutic dose levels. Overall, results indicate implanting multiple µLights and operating them for 1-2 hours can achieve cytotoxicity levels comparable to the clinically reported cases using external light sources.
Collapse
Affiliation(s)
- Albert Kim
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA, USA
| | - Jiawei Zhou
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, West Lafayette, IN, USA
| | - Shayak Samaddar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Seung Hyun Song
- Department of Electronic Engineering, Sookmyung Women's University, Seoul, Republic of Korea
| | - Bennet D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Babak Ziaie
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, West Lafayette, IN, USA.
| |
Collapse
|
32
|
Wang X, Li L, Zhang K, Han Z, Ding Z, Lv M, Wang P, Liu Q, Wang X. Synthesis and evolution of S-Porphin sodium as a potential antitumor agent for photodynamic therapy against breast cancer. Org Chem Front 2019. [DOI: 10.1039/c8qo00959g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The novel sensitizer S-Porphin sodium can generate ROS by radiation with a long wavelength to cause tumor cell death.
Collapse
Affiliation(s)
- Xiao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- The Ministry of Education
- College of Life Sciences
- Shaanxi Normal University
| | - Li Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- The Ministry of Education
- College of Life Sciences
- Shaanxi Normal University
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- The Ministry of Education
- College of Life Sciences
- Shaanxi Normal University
| | - Zhen Han
- Guilin Huiang Biochemistry Pharmaceutical Company
- Ltd
- Guangxi
- China
| | - Zhijian Ding
- Guilin Huiang Biochemistry Pharmaceutical Company
- Ltd
- Guangxi
- China
| | - Mingwei Lv
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- The Ministry of Education
- College of Life Sciences
- Shaanxi Normal University
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- The Ministry of Education
- College of Life Sciences
- Shaanxi Normal University
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- The Ministry of Education
- College of Life Sciences
- Shaanxi Normal University
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry
- The Ministry of Education
- College of Life Sciences
- Shaanxi Normal University
| |
Collapse
|
33
|
Rice SR, Li YR, Busch TM, Kim MM, McNulty S, Dimofte A, Zhu TC, Cengel KA, Simone CB. A Novel Prospective Study Assessing the Combination of Photodynamic Therapy and Proton Radiation Therapy: Safety and Outcomes When Treating Malignant Pleural Mesothelioma. Photochem Photobiol 2019; 95:411-418. [PMID: 30485442 PMCID: PMC6778401 DOI: 10.1111/php.13065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Malignant pleural mesothelioma remains difficult to treat, with high failure rates despite optimal therapy. We present a novel prospective trial combining proton therapy (PT) and photodynamic therapy (PDT) and the largest-ever mesothelioma PT experience (n = 10). PDT photosensitizers included porfimer sodium (2 mg·kg-1 ; 24 h drug-light interval) or 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) (4 mg·m-2 ;48 h) with wavelengths of 630 nm to 60J·cm-2 and 665 nm to 15-45J·cm-2 , respectively. With a median age of 69 years, patients were predominantly male (90%) with epithelioid histology (100%) and stage III-IV disease (100%). PT was delivered to a median of 55.0 CGE/1.8-2.0 CGE (range 50-75 CGE) adjuvantly (n = 8) or as salvage therapy (n = 2) following extended pleurectomy/decortication (ePD)/PDT. Two-year local control was 90%, with distant and regional failure rates of 50% and 30%, respectively. All patients received chemotherapy, and four received immunotherapy. Surgical complications included atrial fibrillation (n = 3), pneumonia (n = 2), and deep vein thrombosis (n = 2). Median survival from PT completion was 19.5 months (30.3 months from diagnosis), and 1- and 2-year survival rates were 58% and 29%. No patient experienced CTCAEv4 grade ≥2 acute or late toxicity. Our prolonged survival in very advanced-stage patients compares favorably to survival for PT without PDT and photon therapy with PDT, suggesting possible spatial or systemic cooperativity and immune effect.
Collapse
Affiliation(s)
- Stephanie R. Rice
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Yun R. Li
- Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sally McNulty
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Andrea Dimofte
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Ghosal K, Ghosh A. Carbon dots: The next generation platform for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:887-903. [PMID: 30606603 DOI: 10.1016/j.msec.2018.11.060] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
Abstract
Among the wide range of carbon family nanomaterials, carbon dots (CDs) one of the promising candidate which has attracted tremendous attention due to its unique advantages such as facile synthesis procedure, easy surface functionalization, outstanding water solubility, low toxicity and excellent photo-physical properties. Due to these unique advantages, CDs are extensively used in catalysis, electronics, sensing, power as well as in biological sectors. In this review we will discuss recent progress in synthesis, structure and fluorescence properties of CDs with special highlight on its biomedical applications, more precisely we will highlight on CDs, for drug/gene delivery, bioimaging and photothermal and photodynamic therapy applications. Furthermore, we discuss the current challenges and future perspective of CDs in the field of biomedical sector.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Department of Polymer Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Ashis Ghosh
- Materials Science Centre, IIT Kharagpur, Kharagpur 721302, India
| |
Collapse
|
35
|
Banstola A, Emami F, Jeong JH, Yook S. Current Applications of Gold Nanoparticles for Medical Imaging and as Treatment Agents for Managing Pancreatic Cancer. Macromol Res 2018. [DOI: 10.1007/s13233-018-6139-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Tian Y, Guo R, Yang W. Multifunctional Nanotherapeutics for Photothermal Combination Therapy of Cancer. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ye Tian
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200433 P. R. China
| | - Ranran Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200433 P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan University Shanghai 200433 P. R. China
| |
Collapse
|
37
|
Ma Y, Pitt JM, Li Q, Yang H. The renaissance of anti-neoplastic immunity from tumor cell demise. Immunol Rev 2018; 280:194-206. [PMID: 29027231 DOI: 10.1111/imr.12586] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer therapies can temporarily reduce tumor burdens by inducing malignant cell death. However, cancer cure is still far from realization because tumors often gain resistance to current treatment and eventually relapse. Accumulating evidence suggests that successful cancer interventions require anti-tumor immunity. Therapy-induced cell stress responses ultimately result in one or more cell death modalities, including apoptosis, autophagy, necroptosis, and pyroptosis. These irreversible dying processes are accompanied by active or passive release of cell death-associated molecular patterns (CDAMPs), which can be sensed by corresponding pattern recognition receptors (PRR) on tumor-infiltrating immune cells. This crosstalk with the immune system can reawaken immune surveillance in the tumor microenvironment (TME). This review focuses on immune-modulatory properties of anti-cancer regimens and CDAMP-mediated communications between cell stress responses and the immune contexture of TME. In addition, we describe how immunogenic cell death can elicit strong and durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Yuting Ma
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Qingqing Li
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Heng Yang
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Raju GSR, Pavitra E, Merchant N, Lee H, Prasad GLV, Nagaraju GP, Huh YS, Han YK. Targeting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems. Cancer Lett 2018; 419:222-232. [DOI: 10.1016/j.canlet.2018.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
|
39
|
Rahman SU, Mosca RC, Govindool Reddy S, Nunez SC, Andreana S, Mang TS, Arany PR. Learning from clinical phenotypes: Low-dose biophotonics therapies in oral diseases. Oral Dis 2018; 24:261-276. [DOI: 10.1111/odi.12796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Affiliation(s)
- SU Rahman
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - RC Mosca
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
- Energetic and Nuclear Research Institute; Radiation Technology Center; São Paulo Brazil
| | - S Govindool Reddy
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - SC Nunez
- Biomedical Engineering and Bioengineering; Universidade Brasil; São Paulo Brazil
| | - S Andreana
- Restorative and Implant Dentistry; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - TS Mang
- Oral and Maxillofacial Surgery; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - PR Arany
- Oral Biology; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| |
Collapse
|
40
|
Liu CP, Wu TH, Liu CY, Chen KC, Chen YX, Chen GS, Lin SY. Self-Supplying O 2 through the Catalase-Like Activity of Gold Nanoclusters for Photodynamic Therapy against Hypoxic Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700278. [PMID: 28509427 DOI: 10.1002/smll.201700278] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/29/2017] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) typically involves oxygen (O2 ) consumption and therefore suffers from greatly limited anticancer therapeutic efficacy in tumor hypoxia. Here, it is reported for the first time that amine-terminated, PAMAM dendrimer-encapsulated gold nanoclusters (AuNCs-NH2 ) can produce O2 for PDT via their intrinsic catalase-like activity. The AuNCs-NH2 not only show optimum H2 O2 consumption via the catalase-like activity over the physiological pH range (i.e., pH 4.8-7.4), but also extend such activity to acidic conditions. The possible mechanism is deduced from that the enriched tertiary amines of dendrimers are easily protonated in acidic solutions to facilitate the preadsorption of OH on the metal surface, thereby favorably triggering the catalase-like reaction. By taking advantage of the exciting feature on AuNCs-NH2 , the possibility to supply O2 via the catalase-like activity of AuNCs-NH2 for PDT against hypoxia of cancer cells was further studied. This proof-of-concept study provides a simple way to combine current O2 -dependent cancer therapy of PDT to overcome cancer cell hypoxia, thus achieving more effective anticancer treatments.
Collapse
Affiliation(s)
- Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan, 350, Taiwan
| | - Chia-Yeh Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan, 350, Taiwan
| | - Kuan-Chung Chen
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, Taiwan
| | - Yu-Xing Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan, 350, Taiwan
| | - Gin-Shin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan, 350, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road, Zhunan, 350, Taiwan
| |
Collapse
|
41
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
42
|
Hu X, Ogawa K, Kiwada T, Odani A. Water-soluble metalloporphyrinates with excellent photo-induced anticancer activity resulting from high tumor accumulation. J Inorg Biochem 2017; 170:1-7. [PMID: 28189031 DOI: 10.1016/j.jinorgbio.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022]
Abstract
To develop a water-soluble and tumor-targeted photosensitizer for photodynamic therapy (PDT), a porphyrin framework containing the metal ion gallium(III) was combined with platinum(II)-based groups to produce two new pentacationic metalloporphyrinates, Ga-4cisPtTPyP (5,10,15,20-tetrakis{cis-diammine-chloro-platinum(II)}(4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate) and Ga-4transPtTPyP (5,10,15,20-tetrakis{trans-diammine-chloro-platinum(II)} (4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate). Both complexes exhibited high singlet oxygen quantum yields (Φ∆) and remarkable photocytotoxicity with appreciable phototoxic indexes (PIs). In particular, Ga-4cisPtTPyP showed a low IC50 value (Colon 26: 0.12μM; Sarcoma 180: 0.08μM) under illumination and its PI up to 1000. With outstanding tumor accumulation (tumor/muscle ratio>9), Ga-4cisPtTPyP almost completely inhibited tumor growth over two weeks in an in vivo PDT assay. These results imply that Ga-4cisPtTPyP could be a promising anticancer agent for use in PDT.
Collapse
Affiliation(s)
- Xiaojun Hu
- Division of Pharmaceutical Sciences, Graduate School of Medical Science, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Tatsuto Kiwada
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Akira Odani
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
43
|
Zhou Y, Chan CF, Kwong DWJ, Law GL, Cobb S, Wong WK, Wong KL. αvβ3-Isoform specific erbium complexes highly specific for bladder cancer imaging and photodynamic therapy. Chem Commun (Camb) 2017; 53:557-560. [DOI: 10.1039/c6cc09246b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have synthesized a bifunctional erbium–porphyrin tumor imaging and PDT agent (Er–R3) that is capable of killing bladder cancer cellsviaits selective binding to the integrin αvβ3isoform overexpressed on the cell membrane.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chi-Fai Chan
- Department of Applied Biology and Chemical Technology
- Hong Kong Polytechnic University
- Hung Hum
- China
| | | | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology
- Hong Kong Polytechnic University
- Hung Hum
- China
| | - Steven Cobb
- Department of Chemistry
- Durham University
- Durham
- UK
| | - Wai-Kwok Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Ka-Leung Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|
44
|
Abstract
Photodynamic therapy (PDT), also known as photoradiation therapy, phototherapy, or photochemo-therapy, involves the use of a photoactive dye (photosensitizer) that is activated by exposure to light of a specific wavelength in the presence of oxygen. The transfer of energy from the activated photosensitizer to available oxygen results in the formation of toxic oxygen species, such as singlet oxygen and free radicals. These very reactive chemical species can damage proteins, lipids, nucleic acids, and other cellular components. Applications of PDT in dentistry are growing rapidly: the treatment of oral cancer, bacterial and fungal infection therapies, and the photodynamic diagnosis (PDD) of the malignant transformation of oral lesions. PDT has shown potential in the treatment of oral leukoplakia, oral lichen planus, and head and neck cancer. Photodynamic antimicrobial chemotherapy (PACT) has been efficacious in the treatment of bacterial, fungal, parasitic, and viral infections. The absence of genotoxic and mutagenic effects of PDT is an important factor for long-term safety during treatment. PDT also represents a novel therapeutic approach in the management of oral biofilms. Disruption of plaque structure has important consequences for homeostasis within the biofilm. Studies are now leading toward selective photosensitizers, since killing the entire flora leaves patients open to opportunistic infections. Dentists deal with oral infections on a regular basis. The oral cavity is especially suitable for PACT, because it is relatively accessible to illumination.
Collapse
Affiliation(s)
- K Konopka
- Department of Microbiology, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| | | |
Collapse
|
45
|
HOXC6 regulates the antitumor effects of pheophorbide a-based photodynamic therapy in multidrug-resistant oral cancer cells. Int J Oncol 2016; 49:2421-2430. [DOI: 10.3892/ijo.2016.3766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/02/2016] [Indexed: 11/05/2022] Open
|
46
|
Hu Y, Masamune K. Flexible coaxial laser endoscope with arbitrarily selected spots in endoscopic view for photodynamic tumor therapy. APPLIED OPTICS 2016; 55:8433-8440. [PMID: 27828153 DOI: 10.1364/ao.55.008433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photodynamic therapy (PDT), which aims to directly destruct tumor cells without any damage to proximal healthy tissue, is widely used in clinics. However, the devices most often employed in hospitals do not readily enable exact control of the irradiated target location. As a result, the laser often irradiates not only the tumor, but also neighboring healthy tissues or blood vessels, with more serious consequences resulting from necrosis. In this paper, we propose a novel flexible coaxial laser endoscope, which localizes the laser illumination only to the selected tumor target, with minimal illumination of the surrounding tissue. In this system, visible light is first transmitted into an imaging-fiber bundle and then reflected by a polarizing beam splitter, which permits initial imaging of the tumor. Once the tumor target is confirmed, an automated stage moves the laser fiber head and focusing lens system to the appropriate position. The laser light is then turned on, passed through a beam splitter, and focused onto the imaging-fiber bundle, ultimately irradiating only the specified target. To evaluate the effectiveness of the device, we first examined the endoscope image quality for MTF50, MTF20, and chromatic aberration, finding high contrast and low aberration. We then measured the laser power at four locations within this system, from the laser fiber head to the endoscope tip. Although some power loss is observed, the power density at the endoscope tip satisfies therapy requirements. Finally, the laser positioning accuracy of our system was measured at 21 positions throughout the endoscope image at distances from 20 mm to 50 mm. We find that the maximum error is less than 1.2 mm, well within clinical requirement. Therefore, we have developed an optimal system for PDT that effectively transmits laser light to the desired target with unprecedented precision, which we anticipate will find wide use in the clinic.
Collapse
|
47
|
Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. NANOSCALE 2016; 8:16091-16156. [PMID: 27714108 DOI: 10.1039/c6nr04489a] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) are novel drug delivery systems that have been attracting more and more attention in recent years, and have been used for the treatment of cancer, infection, inflammation and other diseases. Among the numerous classes of materials employed for constructing NPs, organic polymers are outstanding due to the flexibility of design and synthesis and the ease of modification and functionalization. In particular, NP based amphiphilic polymers make a great contribution to the delivery of poorly-water soluble drugs. For example, natural, biocompatible and biodegradable products like polysaccharides are widely used as building blocks for the preparation of such drug delivery vehicles. This review will detail carbohydrate based amphiphilic polymeric systems for cancer therapy. Specifically, it focuses on the nature of the polymer employed for the preparation of targeted nanocarriers, the synthetic methods, as well as strategies for the application and evaluation of biological activity. Applications of the amphiphilic polymer systems include drug delivery, gene delivery, photosensitizer delivery, diagnostic imaging and specific ligand-assisted cellular uptake. As a result, a thorough understanding of the relationship between chemical structure and biological properties facilitate the optimal design and rational clinical application of the resulting carbohydrate based nano delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland.
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland. and CLINAM Foundation for Clinical Nanomedicine, Alemannengasse 12, Basel, CH-4016, Switzerland.
| |
Collapse
|
48
|
Marchetti B, Karsili TNV. An exploration of the reactivity of singlet oxygen with biomolecular constituents. Chem Commun (Camb) 2016; 52:10996-9. [PMID: 27538187 DOI: 10.1039/c6cc05392k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal reaction between biomolecules and singlet oxygen ((1)O2) is important for rendering the genetic material within toxic cells inactive. Here we present results obtained from state-of-the-art multi-reference computational methods that reveal the mechanistic details of the reaction between (1)O2 and two exemplary biomolecular systems: guanine (Gua) and histidine (His). The results highlight the splitting of the doubly degenerate (1)Δg state of O2 upon complexation and the essentially barrierless potential energy profile of the thermally allowed cycloaddition reaction when the O2 molecule is in its lower energy (1)Δg state.
Collapse
Affiliation(s)
- Barbara Marchetti
- Technische Universität München, Lichtenbergstrasse 4, Garching bei München 85748, Germany.
| | | |
Collapse
|
49
|
Koizumi K, Fujioka T, Yasuoka T, Inoue A, Uchikura Y, Tanaka H, Takagi K, Mori M, Koizumi M, Hashimoto H, Matsumoto T, Matsubara Y, Matsubara K, Nawa A. Clinical investigation of the safety and efficacy of a cervical intraepithelial neoplasia treatment using a hyperthermia device that uses heat induced by alternating magnetic fields. Mol Clin Oncol 2016; 5:310-316. [DOI: 10.3892/mco.2016.929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/13/2016] [Indexed: 11/06/2022] Open
|
50
|
Abstract
From ancient times, light has played a significant role in the treatment of diseases. The modern discoveries (eg, ultraviolet radiation) and modern inventions (eg, the electric generator or the electric lightbulb), as well as balneologic experiences of the treatment with sunlight, contributed to the transition from heliotherapy to artificial light phototherapy at the end of the 19th century. Nils Ryberg Finsen (1860-1904) was the founder of modern phototherapy. He is famous for applying an electric carbon arc torch in treating patients with lupus vulgaris using ultraviolet radiation. Subsequently, phototherapy using artificial light sources gained importance in the treatment of skin diseases with a noninfectious etiology. William Henry Goeckerman (1884-1954) chose an ultraviolet B light to treat psoriasis. Improvement in the effectiveness of dermatologic phototherapy occurred in 1947, when methoxypsoralen was isolated. During the 20th century, phototherapy was applied to new therapeutic areas, such as neonatology, psychiatry, and ophthalmology.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Department of Ophthalmology, Poznań City Hospital, ul. Szwajcarska 3, 61-285 Poznań, Poland; Chair of Ophthalmology, University of Warmia and Mazury, Warszawaska 30, 10-082 Olsztyn, Poland.
| | - Jarosław Sak
- Department of Ethics and Human Philosophy, Medical University of Lublin, 20-059 Lublin, Staszica 4/6,102 (Collegium Maximum), Poland
| | - Jakub Pawlikowski
- Department of Ethics and Human Philosophy, Medical University of Lublin, 20-059 Lublin, Staszica 4/6,102 (Collegium Maximum), Poland
| |
Collapse
|