1
|
Kemp SA, Kamelian K, Cuadros DF, Cheng MTK, Okango E, Hanekom W, Ndung'u T, Pillay D, Bonsall D, Wong EB, Tanser F, Siedner MJ, Gupta RK. HIV transmission dynamics and population-wide drug resistance in rural South Africa. Nat Commun 2024; 15:3644. [PMID: 38684655 PMCID: PMC11059351 DOI: 10.1038/s41467-024-47254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Despite expanded antiretroviral therapy (ART) in South Africa, HIV-1 transmission persists. Integrase strand transfer inhibitors (INSTI) and long-acting injectables offer potential for superior viral suppression, but pre-existing drug resistance could threaten their effectiveness. In a community-based study in rural KwaZulu-Natal, prior to widespread INSTI usage, we enroled 18,025 individuals to characterise HIV-1 drug resistance and transmission networks to inform public health strategies. HIV testing and reflex viral load quantification were performed, with deep sequencing (20% variant threshold) used to detect resistance mutations. Phylogenetic and geospatial analyses characterised transmission clusters. One-third of participants were HIV-positive, with 21.7% having detectable viral loads; 62.1% of those with detectable viral loads were ART-naïve. Resistance to older reverse transcriptase (RT)-targeting drugs was found, but INSTI resistance remained low (<1%). Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance, particularly to rilpivirine (RPV) even in ART-naïve individuals, was concerning. Twenty percent of sequenced individuals belonged to transmission clusters, with geographic analysis highlighting higher clustering in peripheral and rural areas. Our findings suggest promise for INSTI-based strategies in this setting but underscore the need for RPV resistance screening before implementing long-acting cabotegravir (CAB) + RPV. The significant clustering emphasises the importance of geographically targeted interventions to effectively curb HIV-1 transmission.
Collapse
Affiliation(s)
- Steven A Kemp
- Department of Medicine, University of Cambridge, Cambridge, UK
- Pandemic Science Institute, Big Data Institute, University of Oxford, Oxford, UK
| | - Kimia Kamelian
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Diego F Cuadros
- Digital Epidemiology Laboratory, Digital Futures, University of Cincinnati, Cincinnati, OH, USA
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elphas Okango
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
| | - Thumbi Ndung'u
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
| | | | - David Bonsall
- Pandemic Science Institute, Big Data Institute, University of Oxford, Oxford, UK
| | - Emily B Wong
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
| | - Frank Tanser
- University of Stellenbosch, Cape Town, South Africa
| | - Mark J Siedner
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- University of KwaZulu-Natal, Durban, South Africa
- Harvard University, Cambridge, MA, England
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
2
|
Ndashimye E, Reyes PS, Arts EJ. New antiretroviral inhibitors and HIV-1 drug resistance: more focus on 90% HIV-1 isolates? FEMS Microbiol Rev 2023; 47:fuac040. [PMID: 36130204 PMCID: PMC9841967 DOI: 10.1093/femsre/fuac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 01/21/2023] Open
Abstract
Combined HIV antiretroviral therapy (cART) has been effective except if drug resistance emerges. As cART has been rolled out in low-income countries, drug resistance has emerged at higher rates than observed in high income countries due to factors including initial use of these less tolerated cART regimens, intermittent disruptions in drug supply, and insufficient treatment monitoring. These socioeconomic factors impacting drug resistance are compounded by viral mechanistic differences by divergent HIV-1 non-B subtypes compared to HIV-1 subtype B that largely infects the high-income countries (just 10% of 37 million infected). This review compares the inhibition and resistance of diverse HIV-1 subtypes and strains to the various approved drugs as well as novel inhibitors in clinical trials. Initial sequence variations and differences in replicative fitness between HIV-1 subtypes pushes strains through different fitness landscapes to escape from drug selective pressure. The discussions here provide insight to patient care givers and policy makers on how best to use currently approved ART options and reduce the emergence of drug resistance in ∼33 million individuals infected with HIV-1 subtype A, C, D, G, and recombinants forms. Unfortunately, over 98% of the literature on cART resistance relates to HIV-1 subtype B.
Collapse
Affiliation(s)
- Emmanuel Ndashimye
- Department of Microbiology and Immunology, Western University Schulich School of Medicine & Dentistry, Western University, N6A 3K7, London, Ontario, Canada
- Joint Clinical Research Centre, -Center for AIDS Research Laboratories, 256, Kampala, Uganda
| | - Paul S Reyes
- Department of Microbiology and Immunology, Western University Schulich School of Medicine & Dentistry, Western University, N6A 3K7, London, Ontario, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University Schulich School of Medicine & Dentistry, Western University, N6A 3K7, London, Ontario, Canada
| |
Collapse
|
3
|
Singh K, Sarafianos SG, Sönnerborg A. Long-Acting Anti-HIV Drugs Targeting HIV-1 Reverse Transcriptase and Integrase. Pharmaceuticals (Basel) 2019; 12:E62. [PMID: 31010004 PMCID: PMC6631967 DOI: 10.3390/ph12020062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the major factors contributing to HIV-1 drug resistance is suboptimal adherence to combination antiretroviral therapy (cART). Currently, recommended cART for HIV-1 treatment is a three-drug combination, whereas the pre-exposure prophylaxis (PrEP) regimens consist of one or two antivirals. Treatment regimens require adherence to a once or twice (in a subset of patients) daily dose. Long-acting formulations such as injections administered monthly could improve adherence and convenience, and thereby have potential to enhance the chances of expected outcomes, although long-lasting drug concentrations can also contribute to clinical issues like adverse events and development of drug resistance. Globally, two long-acting antivirals have been approved, and fifteen are in clinical trials. More than half of investigational long-acting antivirals target HIV-1 reverse transcriptase (HIV-1 RT) and/or integrase (HIV-1 IN). Here, we discuss the status and potential of long-acting inhibitors, including rilpivirine (RPV), dapivirine (DPV), and 4-ethynyl-2-fluoro-2-deoxyadenosine (EFdA; also known as MK-8591), which target RT, and cabotegravir (CAB), which targets IN. The outcomes of various clinical trials appear quite satisfactory, and the future of long-acting HIV-1 regimens appears bright.
Collapse
Affiliation(s)
- Kamal Singh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Anders Sönnerborg
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
| |
Collapse
|
4
|
Fily F, Ayikobua E, Ssemwanga D, Nicholas S, Kaleebu P, Delaugerre C, Pasquier E, Amoros Quiles I, Balkan S, Schramm B. HIV-1 drug resistance testing at second-line regimen failure in Arua, Uganda: avoiding unnecessary switch to an empiric third-line. Trop Med Int Health 2019; 23:1075-1083. [PMID: 30058269 DOI: 10.1111/tmi.13131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The number of patients on second-line antiretroviral therapy is growing, but data on HIV drug resistance patterns at failure in resource-constrained settings are scarce. We aimed to describe drug resistance and investigate the factors associated with extensive resistance to nucleoside/nucleotide reverse transcriptase inhibitors (NRTI), in patients failing second-line therapy in the HIV outpatient clinic at Arua Regional Referral Hospital, Uganda. METHODS We included patients who failed on second-line therapy (two consecutive viral loads ≥1000 copies/mm3 by SAMBA-1 point-of-care test) and who had a drug resistance test performed between September 2014 and March 2017. Logistic regression was used to investigate factors associated with NRTI genotypic sensitivity score (GSS) ≤1. RESULTS Seventy-eight patients were included: 42% female, median age 31 years and median time of 29 months on second-line therapy. Among 70 cases with drug resistance test results, predominant subtypes were A (47%) and D (40%); 18.5% had ≥1 major protease inhibitor mutation; 82.8% had ≥1 NRTI mutation and 38.5% had extensive NRTI resistance (NRTI GSS ≤1). A nadir CD4 count ≤100/ml was associated with NRTI GSS ≤1 (OR 4.2, 95% CI [1.3-15.1]). Thirty (42.8%) patients were switched to third-line therapy, composed of integrase inhibitor and protease inhibitor (60% darunavir/r) +/- NRTI. A follow-up viral load was available for 19 third-line patients at 12 months: 84.2% were undetectable. CONCLUSIONS Our study highlights the need for access to drug resistance tests to avoid unnecessary switches to third-line therapy, but also for access to third-line drugs, in particular integrase inhibitors. Low nadir CD4 count might be an indicator of third-line drug requirement for patients failing second-line therapy.
Collapse
Affiliation(s)
- F Fily
- Epicentre, Paris, France.,Service des Maladies Respiratoires et Infectieuses, Hôpital Broussais, Saint-Malo, France
| | - E Ayikobua
- Médecins Sans Frontières-France, Paris, France
| | - D Ssemwanga
- MRC/UVRI Uganda Virus Research Unit, Entebbe, Uganda
| | | | - P Kaleebu
- MRC/UVRI Uganda Virus Research Unit, Entebbe, Uganda
| | - C Delaugerre
- Laboratoire de Virologie, Hôpital Saint Louis, AP-HP, Paris, France.,Université Paris-Diderot, Paris, France
| | - E Pasquier
- Epicentre, Paris, France.,Médecins Sans Frontières-France, Paris, France
| | | | - S Balkan
- Médecins Sans Frontières-France, Paris, France
| | | |
Collapse
|
5
|
Becerra JC, Bildstein LS, Gach JS. Recent Insights into the HIV/AIDS Pandemic. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:451-475. [PMID: 28357381 PMCID: PMC5354571 DOI: 10.15698/mic2016.09.529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Transmission of HIV, the causative agent of AIDS, occurs predominantly through bodily fluids. Factors that significantly alter the risk of HIV transmission include male circumcision, condom use, high viral load, and the presence of other sexually transmitted diseases. Pathology/Symptomatology: HIV infects preferentially CD4+ T lymphocytes, and Monocytes. Because of their central role in regulating the immune response, depletion of CD4+ T cells renders the infected individual incapable of adequately responding to microorganisms otherwise inconsequential. Epidemiology, incidence and prevalence: New HIV infections affect predominantly young heterosexual women and homosexual men. While the mortality rates of AIDS related causes have decreased globally in recent years due to the use of highly active antiretroviral therapy (HAART) treatment, a vaccine remains an elusive goal. Treatment and curability: For those afflicted HIV infection remains a serious illness. Nonetheless, the use of advanced therapeutics have transformed a dire scenario into a chronic condition with near average life spans. When to apply those remedies appears to be as important as the remedies themselves. The high rate of HIV replication and the ability to generate variants are central to the viral survival strategy and major barriers to be overcome. Molecular mechanisms of infection: In this review, we assemble new details on the molecular events from the attachment of the virus, to the assembly and release of the viral progeny. Yet, much remains to be learned as understanding of the molecular mechanisms used in viral replication and the measures engaged in the evasion of immune surveillance will be important to develop effective interventions to address the global HIV pandemic.
Collapse
Affiliation(s)
- Juan C. Becerra
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| | | | - Johannes S. Gach
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Treatment failure and drug resistance in HIV-positive patients on tenofovir-based first-line antiretroviral therapy in western Kenya. J Int AIDS Soc 2016; 19:20798. [PMID: 27231099 PMCID: PMC4882399 DOI: 10.7448/ias.19.1.20798] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/31/2016] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
Introduction Tenofovir-based first-line antiretroviral therapy (ART) is recommended globally. To evaluate the impact of its incorporation into the World Health Organization (WHO) guidelines, we examined treatment failure and drug resistance among a cohort of patients on tenofovir-based first-line ART at the Academic Model Providing Access to Healthcare, a large HIV treatment programme in western Kenya. Methods We determined viral load (VL), drug resistance and their correlates in patients on ≥six months of tenofovir-based first-line ART. Based on enrolled patients’ characteristics, we described these measures in those with (prior ART group) and without (tenofovir-only group) prior non-tenofovir-based first-line ART using Wilcoxon rank sum and Fisher's exact tests. Results Among 333 participants (55% female; median age 41 years; median CD4 336 cells/µL), detectable (>40 copies/mL) VL was found in 18%, and VL>1000 copies/mL (WHO threshold) in 10%. Virologic failure at both thresholds was significantly higher in 217 participants in the tenofovir-only group compared with 116 in the prior ART group using both cut-offs (24% vs. 7% with VL>40 copies/mL; 15% vs. 1% with VL>1000 copies/mL). Failure in the tenofovir-only group was associated with lower CD4 values and advanced WHO stage. In 35 available genotypes from 51 participants in the tenofovir-only group with VL>40 copies/mL (69% subtype A), any resistance was found in 89% and dual-class resistance in 83%. Tenofovir signature mutation K65R occurred in 71% (17/24) of the patients infected with subtype A. Patients with K65R had significantly lower CD4 values, higher WHO stage and more resistance mutations. Conclusions In this Kenyan cohort, tenofovir-based first-line ART resulted in good (90%) virologic suppression including high suppression (99%) after switch from non-tenofovir-based ART. Lower virologic suppression (85%) and high observed resistance levels (89%) in the tenofovir-only group impact future treatment options, support recommendations for widespread VL monitoring in such resource limited settings to identify early treatment failure and suggest consideration of individualized resistance testing to design effective subsequent regimens.
Collapse
|
7
|
Subtype-specific analysis of the K65R substitution in HIV-1 that confers hypersusceptibility to a novel nucleotide-competing reverse transcriptase inhibitor. Antimicrob Agents Chemother 2015; 59:3189-96. [PMID: 25779585 DOI: 10.1128/aac.00315-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/20/2022] Open
Abstract
Compound A is a novel nucleotide-competing HIV-1 reverse transcriptase (RT) inhibitor (NcRTI) that selects for a unique W153L substitution that confers hypersusceptibility to tenofovir, while the K65R substitution in RT confers resistance against tenofovir and enhances susceptibility to NcRTIs. Although the K65R substitution is more common in subtype C viruses, the impact of subtype variability on NcRTI susceptibility has not been studied. In the present study, we performed experiments with compound A by using purified recombinant RT enzymes and viruses of subtypes B and C and circulating recombinant form CRF_A/G. We confirmed the hypersusceptibility of K65R substitution-containing RTs to compound A for subtype C, CRF_A/G, and subtype B. Steady-state kinetic analysis showed that K65R RTs enhanced the susceptibility to compound A by increasing binding of the inhibitor to the nucleotide binding site of RT in a subtype-independent manner, without significantly discriminating against the natural nucleotide substrate. These data highlight the potential utility of NcRTIs, such as compound A, for treatment of infections with K65R substitution-containing viruses, regardless of HIV-1 subtype.
Collapse
|
8
|
Singh K, Flores JA, Kirby KA, Neogi U, Sonnerborg A, Hachiya A, Das K, Arnold E, McArthur C, Parniak M, Sarafianos SG. Drug resistance in non-B subtype HIV-1: impact of HIV-1 reverse transcriptase inhibitors. Viruses 2014; 6:3535-62. [PMID: 25254383 PMCID: PMC4189038 DOI: 10.3390/v6093535] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
Human immunodeficiency virus (HIV) causes approximately 2.5 million new infections every year, and nearly 1.6 million patients succumb to HIV each year. Several factors, including cross-species transmission and error-prone replication have resulted in extraordinary genetic diversity of HIV groups. One of these groups, known as group M (main) contains nine subtypes (A-D, F-H and J-K) and causes ~95% of all HIV infections. Most reported data on susceptibility and resistance to anti-HIV therapies are from subtype B HIV infections, which are prevalent in developed countries but account for only ~12% of all global HIV infections, whereas non-B subtype HIV infections that account for ~88% of all HIV infections are prevalent primarily in low and middle-income countries. Although the treatments for subtype B infections are generally effective against non-B subtype infections, there are differences in response to therapies. Here, we review how polymorphisms, transmission efficiency of drug-resistant strains, and differences in genetic barrier for drug resistance can differentially alter the response to reverse transcriptase-targeting therapies in various subtypes.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Jacqueline A Flores
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Karen A Kirby
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden.
| | - Anders Sonnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm 141 86, Sweden.
| | - Atsuko Hachiya
- Clinical Research Center, Department of Infectious Diseases and Immunology, National Hospital Organization, Nagoya Medical Center, Nagoya 460-0001, Japan.
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA.
| | - Carole McArthur
- Department of Oral and Craniofacial Science , School of Dentistry, University of Missouri, Kansas City, MO 64108, USA.
| | - Michael Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Stefan G Sarafianos
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
9
|
HIV-1 subtype is an independent predictor of reverse transcriptase mutation K65R in HIV-1 patients treated with combination antiretroviral therapy including tenofovir. Antimicrob Agents Chemother 2012. [PMID: 23183438 DOI: 10.1128/aac.01668-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtype-dependent selection of HIV-1 reverse transcriptase resistance mutation K65R was previously observed in cell culture and small clinical investigations. We compared K65R prevalence across subtypes A, B, C, F, G, and CRF02_AG separately in a cohort of 3,076 patients on combination therapy including tenofovir. K65R selection was significantly higher in HIV-1 subtype C. This could not be explained by clinical and demographic factors in multivariate analysis, suggesting subtype sequence-specific K65R pathways.
Collapse
|
10
|
The Impact of HIV Genetic Polymorphisms and Subtype Differences on the Occurrence of Resistance to Antiretroviral Drugs. Mol Biol Int 2012; 2012:256982. [PMID: 22792462 PMCID: PMC3390109 DOI: 10.1155/2012/256982] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/12/2012] [Indexed: 12/20/2022] Open
Abstract
The vast majority of reports on drug resistance deal with subtype B infections in developed countries, and this is largely due to historical delays in access to antiretroviral therapy (ART) on a worldwide basis. This notwithstanding the concept that naturally occurring polymorphisms among different non-B subtypes can affect HIV-1 susceptibility to antiretroviral drugs (ARVs) is supported by both enzymatic and virological data. These findings suggest that such polymorphisms can affect both the magnitude of resistance conferred by some major mutations as well as the propensity to acquire certain resistance mutations, even though such differences are sometimes difficult to demonstrate in phenotypic assays. It is mandatory that tools are optimized to assure accurate measurements of drug susceptibility in non-B subtypes and to recognize that each subtype may have a distinct resistance profile and that differences in resistance pathways may also impact on cross-resistance and the choice of regimens to be used in second-line therapy. Although responsiveness to first-line therapy should not theoretically be affected by considerations of viral subtype and drug resistance, well-designed long-term longitudinal studies involving patients infected by viruses of different subtypes should be carried out.
Collapse
|
11
|
Abstract
Low- to middle-income countries bear the overwhelming burden of the human immunodeficiency virus type 1 (HIV-1) epidemic in terms of the numbers of their citizens living with HIV/AIDS (acquired immunodeficiency syndrome), the high degrees of viral diversity often involving multiple HIV-1 clades circulating within their populations, and the social and economic factors that compromise current control measures. Distinct epidemics have emerged in different geographical areas. These epidemics differ in their severity, the population groups they affect, their associated risk behaviors, and the viral strains that drive them. In addition to inflicting great human cost, the high burden of HIV infection has a major impact on the social and economic development of many low- to middle-income countries. Furthermore, the high degrees of viral diversity associated with multiclade HIV epidemics impacts viral diagnosis and pathogenicity and treatment and poses daunting challenges for effective vaccine development.
Collapse
Affiliation(s)
- Yiming Shao
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | | |
Collapse
|
12
|
Skoura L, Metallidis S, Buckton AJ, Mbisa JL, Pilalas D, Papadimitriou E, Papoutsi A, Haidich AB, Chrysanthidis T, Tsachouridou O, Antoniadou ZA, Kollaras P, Nikolaidis P, Malisiovas N. Molecular and epidemiological characterization of HIV-1 infection networks involving transmitted drug resistance mutations in Northern Greece. J Antimicrob Chemother 2011; 66:2831-7. [PMID: 21933785 DOI: 10.1093/jac/dkr386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the contribution of transmission clusters to transmitted drug resistance (TDR) in newly diagnosed antiretroviral-naive HIV-1-infected patients in Northern Greece during 2000-07. METHODS The prevalence of TDR was estimated in 369 individuals who were diagnosed with HIV-1 infection in the period 2000-07 at the National AIDS Reference Laboratory of Northern Greece. Phylogenetic analysis was performed using a maximum likelihood method on partial pol sequences. TDR was defined in accordance with the surveillance drug resistance mutation list (2009 update). RESULTS The overall prevalence of TDR in our population was 12.5% [46/369, 95% confidence interval (CI) 9.1%-15.8%], comprising 7.6% (28/369) resistant to nucleoside reverse transcriptase inhibitors, 5.4% (20/369) resistant to non-nucleoside reverse transcriptase inhibitors and 3.3% (12/369) resistant to protease inhibitors. Dual class resistance was identified in 3.8% (14/369). Infection with subtype A was the sole predictor associated with TDR in multivariate analysis (odds ratio 2.15, 95% CI 1.10-4.19, P = 0.025). Phylogenetic analyses revealed three statistically robust transmission clusters involving drug-resistant strains, including one cluster of 12 patients, 10 of whom were infected with a strain carrying both T215 revertants and Y181C mutations. CONCLUSIONS Our findings underline the substantial impact of transmission networks on TDR in our population.
Collapse
Affiliation(s)
- Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | | | | |
Collapse
|
14
|
Wainberg MA, Brenner BG. Role of HIV Subtype Diversity in the Development of Resistance to Antiviral Drugs. Viruses 2010; 2:2493-508. [PMID: 21994627 PMCID: PMC3185584 DOI: 10.3390/v2112493] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/26/2010] [Accepted: 10/28/2010] [Indexed: 12/13/2022] Open
Abstract
Despite the fact that over 90% of HIV-1 infected people worldwide harbor non-subtype B variants of HIV-1, knowledge of resistance mutations in non-B HIV-1 and their clinical relevance is limited. Due to historical delays in access to antiretroviral therapy (ART) on a worldwide basis, the vast majority of reports on drug resistance deal with subtype B infections in developed countries. However, both enzymatic and virological data support the concept that naturally occurring polymorphisms among different nonB subtypes can affect HIV-1 susceptibility to antiretroviral drugs (ARVs), the magnitude of resistance conferred by major mutations, and the propensity to acquire some resistance mutations. Tools need to be optimized to assure accurate measurements of drug susceptibility of non-B subtypes. Furthermore, there is a need to recognize that each subtype may have a distinct resistance profile and that differences in resistance pathways may also impact on cross-resistance and the selection of second-line regimens. It will be essential to pay attention to newer drug combinations in well designed long-term longitudinal studies involving patients infected by viruses of different subtypes.
Collapse
Affiliation(s)
- Mark A Wainberg
- McGill University AIDS Centre, Jewish General Hospital, 3755 Cote-Ste-Catherine Road, Montreal, Quebec, H3T 1E2, Canada; E-Mail:
| | | |
Collapse
|
15
|
Xu HT, Quan Y, Asahchop E, Oliveira M, Moisi D, Wainberg MA. Comparative biochemical analysis of recombinant reverse transcriptase enzymes of HIV-1 subtype B and subtype C. Retrovirology 2010; 7:80. [PMID: 20929562 PMCID: PMC2959035 DOI: 10.1186/1742-4690-7-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/07/2010] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 subtype C infections account for over half of global HIV infections, yet the vast focus of HIV-1 research has been on subtype B viruses which represent less than 12% of the global pandemic. Since HIV-1 reverse transcriptase (RT) is a major target of antiviral therapy, and since differential drug resistance pathways have been observed among different HIV subtypes, it is important to study and compare the enzymatic activities of HIV-1 RT derived from each of subtypes B and C as well as to determine the susceptibilities of these enzymes to various RT inhibitors in biochemical assays. Methods Recombinant subtype B and C HIV-1 RTs in heterodimeric form were purified from Escherichia coli and enzyme activities were compared in cell-free assays. The efficiency of (-) ssDNA synthesis was measured using gel-based assays with HIV-1 PBS RNA template and tRNA3Lys as primer. Processivity was assayed under single-cycle conditions using both homopolymeric and heteropolymeric RNA templates. Intrinsic RNase H activity was compared using 5'-end labeled RNA template annealed to 3'-end recessed DNA primer in a time course study in the presence and absence of a heparin trap. A mis-incorporation assay was used to assess the fidelity of the two RT enzymes. Drug susceptibility assays were performed both in cell-free assays using recombinant enzymes and in cell culture phenotyping assays. Results The comparative biochemical analyses of recombinant subtype B and subtype C HIV-1 reverse transcriptase indicate that the two enzymes are very similar biochemically in efficiency of tRNA-primed (-) ssDNA synthesis, processivity, fidelity and RNase H activity, and that both enzymes show similar susceptibilities to commonly used NRTIs and NNRTIs. Cell culture phenotyping assays confirmed these results. Conclusions Overall enzyme activity and drug susceptibility of HIV-1 subtype C RT are comparable to those of subtype B RT. The use of RT inhibitors (RTIs) against these two HIV-1 enzymes should have comparable effects.
Collapse
Affiliation(s)
- Hong-Tao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Lack of minority K65R-resistant viral populations detected after repeated treatment interruptions of tenofovir/zidovudine and lamivudine in a resource-limited setting. J Acquir Immune Defic Syndr 2010; 54:215-6. [PMID: 20505473 DOI: 10.1097/qai.0b013e3181cc1058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Clinical and genotypic findings in HIV-infected patients with the K65R mutation failing first-line antiretroviral therapy in Nigeria. J Acquir Immune Defic Syndr 2010; 52:228-34. [PMID: 19644383 DOI: 10.1097/qai.0b013e3181b06125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The HIV-1 epidemic in African countries is largely due to non-B HIV-1 subtypes. Patterns and frequency of antiretroviral drug resistance mutations observed in these countries may differ from those in the developed world, where HIV-1 subtype B predominates. METHODS HIV-1 subtype and drug resistance mutations were assayed among Nigerian patients with treatment failure on first-line therapy (plasma HIV RNA >1000 copies/mL). Sequence analysis of the reverse transcriptase and protease gene revealed drug resistance mutations and HIV-1 viral subtype. Specific patterns of mutations and clinical characteristics are described in patients with the K65R mutation. RESULTS Since 2005, 338 patients were evaluated. The most prevalent subtypes were CRF02_AG [152 of 338 (44.9%)] and G [128 of 338 (37.9%)]. Three hundred seven of 338 (90.8%) patients had previously received stavudine and/or zidovudine + lamivudine + efavirenz or nevirapine; 41 of 338 (12.1%) had received tenofovir (TDF). The most common nucleoside reverse transcriptase inhibitor mutations observed were M184V (301, 89.1%) and K70R (91, 26.9%). The K65R mutation was present in 37 of 338 patients (10.9%). The Q151M (P < 0.05), K219R, and T69del (P < 0.01) mutations were more common in patients with K65R who had not received TDF. CONCLUSIONS The K65R mutation is increasingly recognized and is a challenging finding among patients with non-B HIV subtypes, whether or not they have been exposed to TDF.
Collapse
|
18
|
HIV Genetic Diversity and Drug Resistance. Viruses 2010; 2:503-531. [PMID: 21994646 PMCID: PMC3185604 DOI: 10.3390/v2020503] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/11/2009] [Accepted: 02/01/2010] [Indexed: 02/07/2023] Open
Abstract
Most of the current knowledge on antiretroviral (ARV) drug development and resistance is based on the study of subtype B of HIV-1, which only accounts for 10% of the worldwide HIV infections. Cumulative evidence has emerged that different HIV types, groups and subtypes harbor distinct biological properties, including the response and susceptibility to ARV. Recent laboratory and clinical data highlighting such disparities are summarized in this review. Variations in drug susceptibility, in the emergence and selection of specific drug resistance mutations, in viral replicative capacity and in the dynamics of resistance acquisition under ARV selective pressure are discussed. Clinical responses to ARV therapy and associated confounding factors are also analyzed in the context of infections by distinct HIV genetic variants.
Collapse
|
19
|
Resistance and viral subtypes: how important are the differences and why do they occur? Curr Opin HIV AIDS 2009; 2:94-102. [PMID: 19372873 DOI: 10.1097/coh.0b013e32801682e2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The global HIV-1 pandemic has evolved to include 11 subtypes and 34 circulating recombinant forms. Our knowledge of HIV-1 response to antiretroviral drugs and emergent drug resistance has, however, been limited to subtype B infections circulating in Europe and North America, with little comparative information on non-B subtypes representing approximately 90% of worldwide epidemics. This review summarizes publications in the past year that highlight intersubtype differences influencing viral susceptibility to antiretroviral drugs and emergent drug resistance. RECENT FINDINGS Cumulative findings from clinical studies suggest that antiretroviral therapy will be of benefit in the overall treatment of non-B subtype infections, and result in drug-resistance profiles comparable to those observed for subtype B infections. Nevertheless, the 10-15% sequence diversity in the Pol region contributes to intersubtype differences in response to particular nucleoside and non-nucleoside analogues, as well as protease inhibitors. Distinct signature mutations and mutational pathways are identified for specific non-B subtypes. The implications of subtype on clinical outcome and interpretative algorithms are described. SUMMARY Understanding intersubtype differences in drug resistance is important in optimizing treatment strategies in resource-poor settings. Hopefully, this may assist in the design of prophylactic approaches to prevent HIV-1 horizontal and vertical HIV-1 transmission.
Collapse
|
20
|
|
21
|
Rajesh L, Karunaianantham R, Narayanan PR, Swaminathan S. Antiretroviral drug-resistant mutations at baseline and at time of failure of antiretroviral therapy in HIV type 1-coinfected TB patients. AIDS Res Hum Retroviruses 2009; 25:1179-85. [PMID: 19895208 DOI: 10.1089/aid.2009.0110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is limited information on the prevalence and pattern of HIV drug-resistant mutations (DRMs) among HIV-1-coinfected tuberculosis (TB) patients before and after antiretroviral treatment. Patients with HIV-1 and TB were recruited into a clinical trial from two different once-daily antiretroviral regimens and followed for a period of 6 months after ART initiation. Patients were treated with standard short-course anti-TB treatment (2EHRZ3/4RH3) and were randomized to receive ddI/3TC with either nevirapine or efavirenz, once daily. Genotypic drug resistance (DR) testing was carried out for the pol gene at baseline and at the time of virological failure. At baseline, major DRMs with respect to NNRTIs (G190GA) and TAMs (T215S and I) were observed in 3 out of 107 patients. Of 15 treatment failures, 14 had more than one major NRTI and NNRTI mutation. V106M was the major NNRTI mutation that emerged in EFZ and Y181C in the NVP group. Among NRTI mutations, M184V was the commonest followed by L74I/V. Primary drug resistance to antiretroviral drugs was low among HIV-1 co-infected TB patients in south India. A once-daily regimen of ddI/3TC/EFZ or NVP results in a specific pattern of NNRTI mutations and negligible thymidine analog mutations (TAMs).
Collapse
|
22
|
Turner D, Shahar E, Katchman E, Kedem E, Matus N, Katzir M, Hassoun G, Pollack S, Kessner R, Wainberg MA, Avidor B. Prevalence of the K65R resistance reverse transcriptase mutation in different HIV-1 subtypes in Israel. J Med Virol 2009; 81:1509-12. [DOI: 10.1002/jmv.21567] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Martinez-Cajas JL, Pai NP, Klein MB, Wainberg MA. Differences in resistance mutations among HIV-1 non-subtype B infections: a systematic review of evidence (1996-2008). J Int AIDS Soc 2009; 12:11. [PMID: 19566959 PMCID: PMC2713201 DOI: 10.1186/1758-2652-12-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 06/30/2009] [Indexed: 11/23/2022] Open
Abstract
Ninety percent of HIV-1-infected people worldwide harbour non-subtype B variants of HIV-1. Yet knowledge of resistance mutations in non-B HIV-1 and their clinical relevance is limited. Although a few reviews, editorials and perspectives have been published alluding to this lack of data among non-B subtypes, no systematic review has been performed to date.With this in mind, we conducted a systematic review (1996-2008) of all published studies performed on the basis of non-subtype B HIV-1 infections treated with antiretroviral drugs that reported genotype resistance tests. Using an established search string, 50 studies were deemed relevant for this review.These studies reported genotyping data from non-B HIV-1 infections that had been treated with either reverse transcriptase inhibitors or protease inhibitors. While most major resistance mutations in subtype B were also found in non-B subtypes, a few novel mutations in non-B subtypes were recognized. The main differences are reflected in the discoveries that: (i) the non-nucleoside reverse transcriptase inhibitor resistance mutation, V106M, has been seen in subtype C and CRF01_AE, but not in subtype B, (ii) the protease inhibitor mutations L89I/V have been reported in C, F and G subtypes, but not in B, (iii) a nelfinavir selected non-D30N containing pathway predominated in CRF01_AE and CRF02_AG, while the emergence of D30N is favoured in subtypes B and D, (iv) studies on thymidine analog-treated subtype C infections from South Africa, Botswana and Malawi have reported a higher frequency of the K65R resistance mutation than that typically seen with subtype B.Additionally, some substitutions that seem to impact non-B viruses differentially are: reverse transcriptase mutations G196E, A98G/S, and V75M; and protease mutations M89I/V and I93L.Polymorphisms that were common in non-B subtypes and that may contribute to resistance tended to persist or become more frequent after drug exposure. Some, but not all, are recognized as minor resistance mutations in B subtypes. These observed differences in resistance pathways may impact cross-resistance and the selection of second-line regimens with protease inhibitors. Attention to newer drug combinations, as well as baseline genotyping of non-B isolates, in well-designed longitudinal studies with long duration of follow up are needed.
Collapse
Affiliation(s)
- Jorge L Martinez-Cajas
- Department of Medicine, Infectious Diseases, Queen's University, Kingston, Ontario, Canada
| | - Nitika P Pai
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Marina B Klein
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Monno L, Scudeller L, Brindicci G, Saracino A, Punzi G, Chirianni A, Lagioia A, Ladisa N, Lo Caputo S, Angarano G. Genotypic analysis of the protease and reverse transcriptase of non-B HIV type 1 clinical isolates from naïve and treated subjects. Antiviral Res 2009; 83:118-26. [PMID: 19549585 DOI: 10.1016/j.antiviral.2009.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 12/31/2022]
Abstract
One hundred and ninety-two pol sequences of drug-naïve and drug-experienced subjects infected with non-B HIV-1 subtypes were analyzed to identify treatment-related amino acid changes which might be relevant for drug-resistance and possibly not included in the accepted mutation list for the B subtype. The correspondence analysis identified non-B-specific and subtype-specific polymorphisms which should not be mistaken for mutations. Multiple chi(2) were performed to detect the differences between naïve vs treated subjects and between different subtypes. To verify the contribution of each single mutation to the resistance levels as predicted by the Virtual Phenotype-LM, simple univariate linear regression was used with fold resistance as a dependent variable and individual mutations as predictors. Commonly accepted protease (PR) and reverse transcriptase (RT) positions along with mutants at RT positions 118 and 90 were significantly associated with treatment. Two unusual PR (K14R and I66F) and five RT positions (E28K, S68G, H221Y, L228R/H and P294A) were also associated with treatment (p<0.01). Only minimal variations were observed with respect to commonly accepted amino acid changes. All amino acid changes correlated with treatment influenced the resistance levels to each single drug. Our findings demonstrate that there are no substantial differences regarding known resistance-associated mutations and the newly emergent substitutions between non-B and B subtype strains.
Collapse
Affiliation(s)
- Laura Monno
- Clinic of Infectious Diseases, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
HIV Drug Resistance Pattern Among HAART-Exposed Patients With Suboptimal Virological Response in Ouagadougou, Burkina Faso. J Acquir Immune Defic Syndr 2008; 49:17-25. [DOI: 10.1097/qai.0b013e318182d2bc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Gupta RK, Pillay D. HIV resistance and the developing world. Int J Antimicrob Agents 2007; 29:510-7. [PMID: 17346940 DOI: 10.1016/j.ijantimicag.2007.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/05/2007] [Indexed: 01/01/2023]
Abstract
Rollout of antiretroviral therapy (ART) in resource-limited countries has been identified as a global public health priority. Human immunodeficiency virus (HIV) treatment in the industrialised world is routinely accompanied by regular virological monitoring. By contrast, the implementation of ART in resource-limited settings requires use of standard first- and second-line therapy. One major consequence is the likely emergence of high-level resistance during first-line therapy since most people will stay on a virologically failing regimen for longer periods, potentially compromising the efficacy of second-line therapy. The evidence regarding resistance to triple-drug ART relates to the time at which virological failure occurs in populations from developed countries, with little data from resource-poor contexts where monitoring strategies, HIV subtypes and drug combinations are likely to differ.
Collapse
|
27
|
Held DM, Kissel JD, Thacker SJ, Michalowski D, Saran D, Ji J, Hardy RW, Rossi JJ, Burke DH. Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers. J Virol 2007; 81:5375-84. [PMID: 17329328 PMCID: PMC1900219 DOI: 10.1128/jvi.01923-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptase (RT) remains a primary target in therapies directed at human immunodeficiency virus type 1 (HIV-1). RNA aptamers that bind RT from HIV-1 subtype B have been shown to protect human cells from infection and to reduce viral infectivity, but little is known about the sensitivity of the inhibition to amino sequence variations of the RT target. Therefore, we assembled a panel of 10 recombinant RTs from phylogenetically diverse lentiviral isolates (including strains of HIV-1, simian immunodeficiency virus SIVcpz, and HIV-2). After validating the panel by measuring enzymatic activities and inhibition by small-molecule drugs, dose-response curves for each enzyme were established for four pseudoknot RNA aptamers representing two structural subfamilies. All four aptamers potently inhibited RTs from multiple HIV-1 subtypes. For aptamers carrying family 1 pseudoknots, natural resistance was essentially all-or-none and correlated with the identity of the amino acid at position 277. In contrast, natural resistance to aptamers carrying the family 2 pseudoknots was much more heterogeneous, both in degree (gradation of 50% inhibitory concentrations) and in distribution across clades. Site-directed and subunit-specific mutagenesis identified a common R/K polymorphism within the p66 subunit as a primary determinant of resistance to family 1, but not family 2, pseudoknot aptamers. RNA structural diversity therefore translates into a nonoverlapping spectrum of mutations that confer resistance, likely due to differences in atomic-level contacts with RT.
Collapse
Affiliation(s)
- Daniel M Held
- Department of Molecular Microbiology & Immunology and Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW HIV knowledge is based on subtype B, common in resource-rich settings, whereas globally non-B subtypes predominate. Inter-subtype pol diversity encompasses multiple genotypic differences among HIV variants, the consequence of which is unknown. This review summarizes publications from the past year relevant to the impact of HIV diversity on drug resistance evolution and its potential clinical implications. RECENT FINDINGS The benefit of antiretroviral therapy in non-B infected patients is ongoing, though subtype heterogeneity in rates of disease progression is observed. Pol inter-subtype diversity is high, and known subtype B drug resistance mutations occur in non-B subtypes. New mutations and subtype-specific mutation rates are identified, however, unexplained drug susceptibilities are seen, and additional insight is offered on structural pathogenic mechanisms of resistance in non-B subtypes. These differences may affect genotypic interpretation and our ability to apply drug resistance to patient care. SUMMARY Current evidence suggests good treatment response and comparable drug resistance evolution in HIV-1 B and non-B infected patients, with increasingly emerging differences. Impact of inter-subtype diversity on drug susceptibility and on evolution of drug resistance should continue to be a major research focus to increase our understanding and ability to improve global patient care.
Collapse
Affiliation(s)
- Rami Kantor
- Division of Infectious Diseases, The Miriam Hospital, Providence, Rhode Island 02906, USA.
| |
Collapse
|
29
|
Gale CV, Yirrell DL, Campbell E, Van der Paal L, Grosskurth H, Kaleebu P. Genotypic variation in the pol gene of HIV type 1 in an antiretroviral treatment-naive population in rural southwestern Uganda. AIDS Res Hum Retroviruses 2006; 22:985-92. [PMID: 17067268 DOI: 10.1089/aid.2006.22.985] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The majority of studies of HIV-1 drug resistance have involved subtype B viruses. Here we have characterized subtype distribution and determined the levels of polymorphism at protease (PR) and reverse transcriptase (RT) drug resistance positions, in antiretroviral treatment-naive HIV-positive Ugandan patients. We have also investigated codon usage variability at these positions and assessed intersubtype recombination within the pol gene. The study population consisted of 187 patients, from a cohort established by the UK Medical Research Council Programme on AIDS in Uganda in 1990. Results indicate that 28.3% of patients were infected with subtype A (n = 53), 64.2% subtype D (n = 120), 6.4% A/D recombinant (n = 12), and 1.1% subtype C (n = 2). Variation in amino acid usage at drug resistance-associated positions was minimal between the two main subtypes (A and D) in RT, but there was appreciable variation in PR. Codon usage, however, was considerably more variable between subtypes A and D in both PR and RT. Thus, while no natural high-level resistance to antiretroviral therapy was detected in this cohort, subtypes A and D may possess different genetic barriers to be overcome in order to achieve resistance. With the increasing introduction of antiretroviral therapy into Africa, such information will be vital in our understanding and evaluation of the development of drug resistance as it occurs, and how to interpret resistance data the type of which has rarely previously been seen. This analysis also significantly increases the number of Ugandan PR and RT sequences characterized to date.
Collapse
|
30
|
Brenner BG, Oliveira M, Doualla-Bell F, Moisi DD, Ntemgwa M, Frankel F, Essex M, Wainberg MA. HIV-1 subtype C viruses rapidly develop K65R resistance to tenofovir in cell culture. AIDS 2006; 20:F9-13. [PMID: 16816549 DOI: 10.1097/01.aids.0000232228.88511.0b] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genotypic diversity among HIV-1 subtypes and circulating recombinant forms (CRF) may lead to distinct pathways to drug resistance. This study evaluated subtype-related differences in the development of resistance in culture to tenofovir. METHODS Genotyping determined nucleotide diversity among subtypes. Representative subtype B, C, CRF1_AE, CRF2_AG, G, and HIV-2 isolates were selected for resistance to tenofovir, lamivudine and didanosine in cell culture. Phenotypic assays determined the effects of the K65R substitution in reverse transcriptase (RT) on drug susceptibility. RESULTS Subtype C isolates show unique polymorphisms in RT codons 64 (AAG-->AAA), 65 (AAA-->AAG), and 66 (AAA-->AAG), absent in other subtypes. The K65R mutation (AAG-->AGG) arose with tenofovir by week 12 in four subtype C selections. In contrast, no tenofovir resistance arose in four subtype B (> 34-74 weeks), one each of CRF2_AG and G (> 30-33 weeks), and three HIV-2 (> 27-28 weeks) selections. K65R appeared after 55 and 73 weeks in two CRF1_AE selections with tenofovir. In contrast, times to the appearance of M184V with lamivudine pressure (weeks 8-14) did not vary among subtypes. Selective didanosine pressure resulted in the appearance of M184V and L74V after 38 weeks in two of four subtype C selections. The K65R transitions in subtype C and other subtypes (AGG and AGA) conferred similar 6.5-10-fold resistance to tenofovir and five to 25-fold cross-resistance to each of abacavir, lamivudine, and didanosine, while not affecting zidovudine susceptibility. CONCLUSION Tenofovir -based regimens will need to be carefully monitored in subtype C infections for the possible selection of K65R.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill University AIDS Centre, Jewish General Hospital, 3755 Côte Ste Catherine Road, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|