1
|
Dagenais-Lussier X, Loucif H, Cadorel H, Blumberger J, Isnard S, Bego MG, Cohen ÉA, Routy JP, van Grevenynghe J. USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection. PLoS Pathog 2019; 15:e1008060. [PMID: 31658294 PMCID: PMC6837632 DOI: 10.1371/journal.ppat.1008060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
The loss of Memory CD4 T-cells (Mem) is a major hallmark of HIV-1 immuno-pathogenesis and occurs early during the first months of primary infection. A lot of effort has been put into understanding the molecular mechanisms behind this loss, yet they still have not been fully identified. In this study, we unveil the unreported role of USP18 in the deleterious effects of sustained type I IFN signaling on Mem, including HIV-1-specific CD4 T-cells. We find that interfering with IFN-I signaling pathway in infected patients, notably by targeting the interferon-stimulated gene USP18, resulted in reduced PTEN expression similar to those observed in uninfected control donors. We show that AKT activation in response to cytokine treatment, T-cell receptor (TcR) triggering, as well as HIV-1 Gag stimulation was significantly improved in infected patients when PTEN or USP18 were inhibited. Finally, our data demonstrate that higher USP18 in Mem from infected patients prevent proper cell survival and long-lasting maintenance in an AKT-dependent manner. Altogether, we establish a direct role for type I IFN/USP18 signaling in the maintenance of total and virus-specific Mem and provide a new mechanism for the reduced survival of these populations during primary HIV-1 infection. In this study, we expend our knowledge of how type I interferons (IFN-I) leads to memory CD4 T-cell defective survival by unveiling the molecular mechanism behind such impairments, placing USP18 at its center. Our data further deciphers the specific USP18-related mechanism that is responsible for such impairments by implicating AKT inhibition in a PTEN-dependent manner. Our findings also point to a potential use of neutralizing anti-interferon α/β receptor antibodies to rescue the defective memory CD4 T-cell survival during HIV-1 infection, even in HIV-1 specific CD4 T-cell. To conclude, our findings provide the characterization of the molecular pathway leading to disturbances caused by sustained IFN-I signaling which occurs early during primary HIV-1 infection, complementing current knowledge which placed sustained IFN-I signaling as detrimental to the host during this infection.
Collapse
Affiliation(s)
- Xavier Dagenais-Lussier
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hamza Loucif
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hugo Cadorel
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Juliette Blumberger
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Mariana Gé Bego
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Julien van Grevenynghe
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
- * E-mail:
| | | |
Collapse
|
2
|
Hodara VL, Parodi LM, Keckler MS, Giavedoni LD. Increases in NKG2C Expression on T Cells and Higher Levels of Circulating CD8 + B Cells Are Associated with Sterilizing Immunity Provided by a Live Attenuated SIV Vaccine. AIDS Res Hum Retroviruses 2016; 32:1125-1134. [PMID: 26986800 DOI: 10.1089/aid.2015.0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vaccines based on live attenuated viruses are highly effective immunogens in the simian immunodeficiency virus (SIV)/rhesus macaque animal model and offer the possibility of studying correlates of protection against infection with virulent virus. We utilized a tether system for studying, in naive macaques and animals vaccinated with a live-attenuated vaccine, the acute events after challenge with pathogenic SIV. This approach allowed for the frequent sampling of small blood volumes without sedation or restraining of the animals, thus reducing the confounding effect of sampling stress. Before challenge, vaccinated animals presented significantly higher levels of proliferating and activated B cells than naive macaques, which were manifested by high expression of CD8 on B cells. After SIV challenge, the only changes observed in protected vaccinated macaques were significant increases in expression of the NK marker NKG2C on CD4 and CD8 T cells. We also identified that infection of naive macaques with SIV resulted in a transient peak of expression of CD20 on CD8 T cells and a constant rise in the number of B cells expressing CD8. Finally, analysis of a larger cohort of vaccinated animals identified that, even when circulating levels of vaccine virus are below the limit of detection, live attenuated vaccines induce systemic increases of IP-10 and perforin. These studies indicate that components of both the innate and adaptive immune systems of animals inoculated with a live-attenuated SIV vaccine respond to and control infection with virulent virus. Persistence of the vaccine virus in tissues may explain the elevated cytokine and B-cell activation levels. In addition, our report underpins the utility of the tether system for the intensive study of acute immune responses to viral infections.
Collapse
Affiliation(s)
- Vida L. Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Laura M. Parodi
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | - M. Shannon Keckler
- Division of Healthcare Quality Promotion, Centers for Diseases Control and Prevention, Atlanta, Georgia
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
3
|
Shytaj IL, Norelli S, Chirullo B, Della Corte A, Collins M, Yalley-Ogunro J, Greenhouse J, Iraci N, Acosta EP, Barreca ML, Lewis MG, Savarino A. A highly intensified ART regimen induces long-term viral suppression and restriction of the viral reservoir in a simian AIDS model. PLoS Pathog 2012; 8:e1002774. [PMID: 22737073 PMCID: PMC3380955 DOI: 10.1371/journal.ppat.1002774] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Stably suppressed viremia during ART is essential for establishing reliable simian models for HIV/AIDS. We tested the efficacy of a multidrug ART (highly intensified ART) in a wide range of viremic conditions (10³-10⁷) viral RNA copies/mL) in SIVmac251-infected rhesus macaques, and its impact on the viral reservoir. Eleven macaques in the pre-AIDS stage of the disease were treated with a multidrug combination (highly intensified ART) consisting of two nucleosidic/nucleotidic reverse transcriptase inhibitors (emtricitabine and tenofovir), an integrase inhibitor (raltegravir), a protease inhibitor (ritonavir-boosted darunavir) and the CCR5 blocker maraviroc. All animals stably displayed viral loads below the limit of detection of the assay (i.e. <40 RNA copies/mL) after starting highly intensified ART. By increasing the sensitivity of the assay to 3 RNA copies/mL, viral load was still below the limit of detection in all subjects tested. Importantly, viral DNA resulted below the assay detection limit (<2 copies of DNA/5*10⁵ cells) in PBMCs and rectal biopsies of all animals at the end of the follow-up, and in lymph node biopsies from the majority of the study subjects. Moreover, highly intensified ART decreased central/transitional memory, effector memory and activated (HLA-DR⁺) effector memory CD4⁺ T-cells in vivo, in line with the role of these subsets as the main cell subpopulations harbouring the virus. Finally, treatment with highly intensified ART at viral load rebound following suspension of a previous anti-reservoir therapy eventually improved the spontaneous containment of viral load following suspension of the second therapeutic cycle, thus leading to a persistent suppression of viremia in the absence of ART. In conclusion, we show, for the first time, complete suppression of viral load by highly intensified ART and a likely associated restriction of the viral reservoir in the macaque AIDS model, making it a useful platform for testing potential cures for AIDS.
Collapse
Affiliation(s)
- Iart Luca Shytaj
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Sandro Norelli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Barbara Chirullo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Alessandro Della Corte
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Matt Collins
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | | | - Jack Greenhouse
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Nunzio Iraci
- Dipartimento di Chimica e Tecnologia del Farmaco, Facoltà di Farmacia, Università di Perugia, Perugia, Italy
| | - Edward P. Acosta
- The University of Alabama at Birmingham, Division of Clinical Pharmacology, Birmingham, Alabama, United States of America
| | - Maria Letizia Barreca
- Dipartimento di Chimica e Tecnologia del Farmaco, Facoltà di Farmacia, Università di Perugia, Perugia, Italy
| | - Mark G. Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Andrea Savarino
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
- * E-mail:
| |
Collapse
|
4
|
Gold drug auranofin restricts the viral reservoir in the monkey AIDS model and induces containment of viral load following ART suspension. AIDS 2011; 25:1347-56. [PMID: 21505294 DOI: 10.1097/qad.0b013e328347bd77] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES A small pool of long-lived memory CD4 T cells harboring the retroviral genome is one main obstacle to HIV eradication. We tested the impact of the gold compound, auranofin, on phenotype and viability of CD4 T cells in vitro, and on persistence of lentiviral reservoir cells in vivo. DESIGN In-vitro and in-vivo study. The pro-differentiating effect of auranofin was investigated in human primary CD4 T cells, and its capacity to deplete the viral DNA (vDNA) reservoir was tested in a pilot study involving six SIVmac251-infected macaques with viral loads stably suppressed by antiretroviral therapy (ART) (tenofovir/emtricitabine/raltegravir). The study was then amplified by intensifying ART using darunavir/r and including controls under intensified ART alone. All therapies were eventually suspended and viro-immunological parameters were monitored over time. METHODS Cell subpopulations were quantitated by flow cytometry following proper hematological analyses. Viral load and cell-associated vDNA were quantitated by Taqman real-time PCR. RESULTS In naïve, central memory and transitional memory CD4 T cells, auranofin induced both phenotype changes and cell death which were more pronounced in the memory compartment. In the pilot study in vivo, auranofin transiently decreased the cell-associated vDNA reservoir in peripheral blood. When ART was intensified, a sustained decrease in vDNA was observed only in auranofin-treated monkeys but not in controls treated with intensified ART alone. After therapy suspension, only monkeys that had received auranofin showed a deferred and subsequently blunted viral load rebound. CONCLUSION These findings represent a first step towards a remission of primate lentiviral infections.
Collapse
|
5
|
Hua W, Jiao Y, Zhang H, Zhang T, Chen D, Zhang Y, Chen X, Wu H. Central memory CD4 cells are an early indicator of immune reconstitution in HIV/AIDS patients with anti-retroviral treatment. Immunol Invest 2011; 41:1-14. [PMID: 21563924 DOI: 10.3109/08820139.2011.576739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of central memory cells among the CD4+ T cells and the of activation of CD8+ T cells is believed to be a better indicator of immune restoration in patients on antiretroviral therapy (ART) than the absolute numbers of CD4(+) and CD8+ T cells alone. In the current study, we investigated the changes in the CD4(+) T cell subsets and their association with immune reconstitution and immune activation at early stages of ART. A prospective study was performed in 21 asymptomatic treatment-naive HIV-infected patients with CD4(+) T cells less than 350 cells/μl. Blood samples were evaluated at base line, and at 2, 4, 8 and 12 weeks' post antiretroviral therapy (ART). A biphasic increase of CD4(+) T cells, central memory CD4 cells (CD4 CM) and CD4 naïve cells were observed after ART, with a rapid increase before week 4. Change in CD4 CM at week 4 positively correlated with the change in CD4(+) T cells at weeks 12 post ART, and negatively correlated with the change in CD8(+)CD38(+) T cells at weeks 12 post ART. We conclude that CD4 CM cells are a major contributor to early immune reconstitution in treatment-naive HIV-infected patients with delayed ART, and might be an early indicator for immune reconstitution.
Collapse
Affiliation(s)
- Wei Hua
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Whiting CC, Su LL, Lin JT, Fathman CG. GRAIL: a unique mediator of CD4 T-lymphocyte unresponsiveness. FEBS J 2010; 278:47-58. [PMID: 21078124 DOI: 10.1111/j.1742-4658.2010.07922.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GRAIL (gene related to anergy in lymphocytes, also known as RNF128), an ubiquitin-protein ligase (E3), utilizes a unique single transmembrane protein with a split-function motif, and is an important gatekeeper of T-cell unresponsiveness. Although it may play a role in other CD4 T-cell functions including activation, survival and differentiation, GRAIL is most well characterized as a negative regulator of T-cell receptor responsiveness and cytokine production. Here, we review the recent literature on this remarkable E3 in the regulation of human and mouse CD4 T-cell unresponsiveness.
Collapse
Affiliation(s)
- Chan C Whiting
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
7
|
Lin JT, Lineberry NB, Kattah MG, Su LL, Utz PJ, Fathman CG, Wu L. Naive CD4 t cell proliferation is controlled by mammalian target of rapamycin regulation of GRAIL expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5919-28. [PMID: 19414743 PMCID: PMC2853371 DOI: 10.4049/jimmunol.0803986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we demonstrate that the E3 ubiquitin ligase gene related to anergy in lymphocytes (GRAIL) is expressed in quiescent naive mouse and human CD4 T cells and has a functional role in inhibiting naive T cell proliferation. Following TCR engagement, CD28 costimulation results in the expression of IL-2 whose signaling through its receptor activates the Akt-mammalian target of rapamycin (mTOR) pathway. Activation of mTOR allows selective mRNA translation, including the epistatic regulator of GRAIL, Otubain-1 (Otub1), whose expression results in the degradation of GRAIL and allows T cell proliferation. The activation of mTOR appears to be the critical component of IL-2R signaling regulating GRAIL expression. CTLA4-Ig treatment blocks CD28 costimulation and resultant IL-2 expression, whereas rapamycin and anti-IL-2 treatment block mTOR activation downstream of IL-2R signaling. Thus, all three of these biotherapeutics inhibit mTOR-dependent translation of mRNA transcripts, resulting in blockade of Otub1 expression, maintenance of GRAIL, and inhibition of CD4 T cell proliferation. These observations provide a mechanistic pathway sequentially linking CD28 costimulation, IL-2R signaling, and mTOR activation as important requirements for naive CD4 T cell proliferation through the regulation of Otub1 and GRAIL expression. Our findings also extend the role of GRAIL beyond anergy induction and maintenance, suggesting that endogenous GRAIL regulates general cell cycle and proliferation of primary naive CD4 T cells.
Collapse
Affiliation(s)
- Jack T. Lin
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Neil B. Lineberry
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Michael G. Kattah
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Leon L. Su
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Paul J. Utz
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - C. Garrison Fathman
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | | |
Collapse
|
8
|
Li H, Huang X, Guo C, Wang W, Li Z, Zhang T, Peng Q, Chen X, Wu H. Heightened T-cell proliferation without an elevation of CD4+ T cell spontaneous apoptosis in AIDS patients. Clin Immunol 2008; 129:499-508. [PMID: 18835751 DOI: 10.1016/j.clim.2008.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/22/2008] [Accepted: 08/08/2008] [Indexed: 11/17/2022]
Abstract
T lymphocyte turnover has been studied extensively in HIV infection. The dynamic characteristics of various subsets of T cells in antiretroviral-naive, HIV-1-infected individuals, however, have not been well defined. Here, we performed a cross-sectional study using peripheral blood T cells from 39 antiretroviral-naive, chronically HIV-infected patients, as well as 16 healthy, HIV-negative controls. T-cell subset turnover rates were measured by Ki-67 antigen staining; levels of spontaneous apoptosis and activation in T-cell subsets were also determined by flow cytometry. Surprisingly, with disease progression, the level of T-cell spontaneous apoptosis did not increase significantly, despite a heightened rate of T-cell subset turnover and increased expression of the CD38 activation marker. These data refute the idea that increased T cell turnover is merely a homeostatic process in response to CD4 T cell loss during HIV disease progression, and suggest that future mechanistic studies may be needed for a comprehensive understanding of T-cell dynamics during HIV infection. Such understanding may help to develop new strategies for the immune modulation of clinical disease.
Collapse
Affiliation(s)
- Haiying Li
- Department of Infectious Diseases, Beijing You'an Hospital, Capital Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mason RD, De Rose R, Kent SJ. CD4+ T-cell subsets: what really counts in preventing HIV disease? Expert Rev Vaccines 2008; 7:155-8. [PMID: 18324885 DOI: 10.1586/14760584.7.2.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
van Grevenynghe J, Procopio FA, He Z, Chomont N, Riou C, Zhang Y, Gimmig S, Boucher G, Wilkinson P, Shi Y, Yassine-Diab B, Said EA, Trautmann L, El Far M, Balderas RS, Boulassel MR, Routy JP, Haddad EK, Sekaly RP. Transcription factor FOXO3a controls the persistence of memory CD4(+) T cells during HIV infection. Nat Med 2008; 14:266-74. [PMID: 18311149 DOI: 10.1038/nm1728] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/16/2008] [Indexed: 01/10/2023]
Abstract
The persistence of central memory CD4(+) T cells (T(CM) cells) is a major correlate of immunological protection in HIV/AIDS, as the rate of T(CM) cell decline predicts HIV disease progression. In this study, we show that T(CM) cells and effector memory CD4(+) T cells (T(EM) cells) from HIV(+) elite controller (EC) subjects are less susceptible to Fas-mediated apoptosis and persist longer after multiple rounds of T cell receptor triggering when compared to T(CM) and T(EM) cells from aviremic successfully treated (ST) subjects or from HIV(-) donors. We show that persistence of T(CM) cells from EC subjects is a direct consequence of inactivation of the FOXO3a pathway. Silencing the transcriptionally active form of FOXO3a by small interfering RNA or by introducing a FOXO3a dominant-negative form (FOXO3a Nt) extended the long-term survival of T(CM) cells from ST subjects to a length of time similar to that of T(CM) cells from EC subjects. The crucial role of FOXO3a in the survival of memory cells will help shed light on the underlying immunological mechanisms that control viral replication in EC subjects.
Collapse
Affiliation(s)
- Julien van Grevenynghe
- Laboratoire d'Immunologie, Centre de Recherche, Hôpital Saint-Luc, Centre Hospitalier de l'Université de Montréal, 264 Boulevard Rene-Levesque Est, Montréal, Québec H2X 1P1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells. J Virol 2008; 82:4016-27. [PMID: 18272585 DOI: 10.1128/jvi.02164-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.
Collapse
|
12
|
Short-lived infected cells support virus replication in sooty mangabeys naturally infected with simian immunodeficiency virus: implications for AIDS pathogenesis. J Virol 2008; 82:3725-35. [PMID: 18216113 DOI: 10.1128/jvi.02408-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells. To this end, we treated six SIV-infected SMs with potent antiretroviral therapy (ART) and longitudinally measured the decline in plasma viremia. We applied the same mathematical models used in HIV-infected individuals and observed that SMs naturally infected with SIV also present a two-phase decay of viremia following ART, with the bulk (92 to 99%) of virus replication sustained by short-lived cells (average life span, 1.06 days), and only 1 to 8% occurring in longer-lived cells. In addition, we observed that ART had a limited impact on CD4(+) T cells and the prevailing level of T-cell activation and proliferation in SIV-infected SMs. Collectively, these results suggest that in SIV-infected SMs, similar to HIV type 1-infected humans, short-lived activated CD4(+) T cells, rather than macrophages, are the main source of virus production. These findings indicate that a short in vivo life span of infected cells is a common feature of both pathogenic and nonpathogenic primate lentivirus infections and support a model for AIDS pathogenesis whereby the direct killing of infected cells by HIV is not the main determinant of disease progression.
Collapse
|
13
|
Bostik P, Noble ES, Stephenson ST, Villinger F, Ansari AA. CD4+ T cells from simian immunodeficiency virus disease-resistant sooty mangabeys produce more IL-2 than cells from disease-susceptible species: involvement of p300 and CREB at the proximal IL-2 promoter in IL-2 up-regulation. THE JOURNAL OF IMMUNOLOGY 2007; 178:7720-9. [PMID: 17548609 DOI: 10.4049/jimmunol.178.12.7720] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL-2 is an important cytokine required for the physiological function of CD4(+) T cells. Immunological unresponsiveness-anergy- of CD4(+) T cells is characterized by the inability of these cells to synthesize IL-2. Both progressive HIV infection leading to AIDS in humans and SIV infection in rhesus macaques (RM) are associated with dysregulation of IL-2 synthesis. In certain nonhuman primate species, such as sooty mangabeys (SM), SIV infection does not lead to AIDS. We have shown that this is associated with the resistance of the CD4(+) T cells from SM to undergo anergy in vitro. In this study, we show that CD4(+) T cells from SM spontaneously synthesize 2- to 3-fold higher levels of IL-2 than corresponding cells from RM. Proximal IL-2 promoter constructs derived from SM show significantly higher activity than the RM-derived constructs in primary CD4(+) T cells, which is associated with an element at approximately nt -200. Activity of both constructs was up-regulated by p300 and down-regulated by CREB to a similar degree. Chromatin immunoprecipitation analysis showed significantly higher binding of p300 and lower binding of CREB to the SM promoter in vivo. Two single nucleotide substitutions present in the SM sequence around position -200 and -180 seem to increase the affinity of these sites for the binding of transcription factors, one of which was identified as Oct-1. These unique characteristics of the proximal IL-2 promoter in SM therefore can represent one of the mechanisms contributing to the resistance of these cells to undergo anergy.
Collapse
Affiliation(s)
- Pavel Bostik
- Department of Pathology and Laboratory Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
14
|
Pereira LE, Villinger F, Onlamoon N, Bryan P, Cardona A, Pattanapanysat K, Mori K, Hagen S, Picker L, Ansari AA. Simian immunodeficiency virus (SIV) infection influences the level and function of regulatory T cells in SIV-infected rhesus macaques but not SIV-infected sooty mangabeys. J Virol 2007; 81:4445-56. [PMID: 17314162 PMCID: PMC1900154 DOI: 10.1128/jvi.00026-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 02/12/2007] [Indexed: 01/13/2023] Open
Abstract
Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM, but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition, immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides, there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM, their role in disease resistance in SM remains unclear.
Collapse
Affiliation(s)
- L E Pereira
- Department of Pathology and Lab Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bostik P, Noble ES, Villinger F, Ansari AA. Pathogenic and apathogenic courses of SIV infection are associated with distinct and characteristic regulatory patterns of G1/S and G2/M cell cycle checkpoints in CD4+ T cells. AIDS Res Hum Retroviruses 2006; 22:1122-30. [PMID: 17147499 DOI: 10.1089/aid.2006.22.1122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of both the cell cycle within the CD4(+) T cells and T cell responses is characteristic for pathogenic HIV infection in humans and experimental SIV infection in rhesus macaques. However, SIV infection in sooty mangabeys does not lead to either an AIDS-like disease or such CD4(+) T cell dysregulation. A previous study has highlighted a potential role for cell cycle regulatory proteins in these distinct clinical outcomes. This study was performed to characterize the effect of SIV infection on the expression of cell cycle-related molecules in CD4(+) T cells of rhesus macaques and sooty mangabeys in attempts to define activation-induced gene expression patterns associated with disease resistance or susceptibility. First, T cell receptor (TCR)-mediated cell activation induced gene expression profiles that were unique to CD4(+) T cells from SIV-naive sooty mangabeys and rhesus macaques. More importantly, distinct and reproducible gene expression patterns were detected in CD4(+) T cells as a result of in vivo SIV infection in animals from each of the two species. In addition, SIV infection in both species showed significant differential effects on TCR activation-induced expression with a reproducible alteration of 10 genes highlighted by discordant effects on expression of Cyclin D3, Cyclin B, and RAD17. Therefore SIV infection in rhesus macaques and sooty mangabeys exhibits distinct and reproducible effects on cell cycle regulation in CD4(+) T cells during T cell activation that may be the basis for disease susceptibility vs. resistance in these two species, respectively.
Collapse
Affiliation(s)
- Pavel Bostik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|