1
|
Libera M, Caputo V, Laterza G, Moudoud L, Soggiu A, Bonizzi L, Diotti RA. The Question of HIV Vaccine: Why Is a Solution Not Yet Available? J Immunol Res 2024; 2024:2147912. [PMID: 38628675 PMCID: PMC11019575 DOI: 10.1155/2024/2147912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 02/24/2024] [Indexed: 04/19/2024] Open
Abstract
Ever since its discovery, human immunodeficiency virus type 1 (HIV-1) infection has remained a significant public health concern. The number of HIV-1 seropositive individuals currently stands at 40.1 million, yet definitive treatment for the virus is still unavailable on the market. Vaccination has proven to be a potent tool in combating infectious diseases, as evidenced by its success against other pathogens. However, despite ongoing efforts and research, the unique viral characteristics have prevented the development of an effective anti-HIV-1 vaccine. In this review, we aim to provide an historical overview of the various approaches attempted to create an effective anti-HIV-1 vaccine. Our objective is to explore the reasons why specific methods have failed to induce a protective immune response and to analyze the different modalities of immunogen presentation. This trial is registered with NCT05414786, NCT05471076, NCT04224701, and NCT01937455.
Collapse
Affiliation(s)
- Martina Libera
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Valeria Caputo
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Giulia Laterza
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Louiza Moudoud
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Alessio Soggiu
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- SC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20133 Milan, Italy
| | - Luigi Bonizzi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Roberta A. Diotti
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| |
Collapse
|
2
|
de Souza-Silva GA, Sulczewski FB, Boscardin SB. Recombinant antigen delivery to dendritic cells as a way to improve vaccine design. Exp Biol Med (Maywood) 2023; 248:1616-1623. [PMID: 37750021 PMCID: PMC10723026 DOI: 10.1177/15353702231191185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Dendritic cells are central to the development of immunity, as they are specialized in initiating antigen-specific immune responses. In this review, we briefly present the existing knowledge on dendritic cell biology and how their division in different dendritic cell subsets may impact the development of immune responses. In addition, we explore the use of chimeric monoclonal antibodies that bind to dendritic cell surface receptors, with an emphasis on the C-type lectin family of endocytic receptors, to deliver antigens directly to these cells. Promising preclinical studies have shown that it is possible to modulate the development of immune responses to different pathogens when monoclonal antibodies fused to pathogen-derived antigens are used to deliver the antigen to different subsets of dendritic cells. This approach can be used to improve the efficacy of vaccines against different pathogens.
Collapse
Affiliation(s)
| | - Fernando Bandeira Sulczewski
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciência e Tecnologia, São Paulo, 05401-350, Brazil
| |
Collapse
|
3
|
Sengupta S, Zhang J, Reed MC, Yu J, Kim A, Boronina TN, Board NL, Wrabl JO, Shenderov K, Welsh RA, Yang W, Timmons AE, Hoh R, Cole RN, Deeks SG, Siliciano JD, Siliciano RF, Sadegh-Nasseri S. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design. J Exp Med 2023; 220:e20221654. [PMID: 37058141 PMCID: PMC10114365 DOI: 10.1084/jem.20221654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Distinct CD4+ T cell epitopes have been associated with spontaneous control of HIV-1 replication, but analysis of antigen-dependent factors that influence epitope selection is lacking. To examine these factors, we used a cell-free antigen processing system that incorporates soluble HLA-DR (DR1), HLA-DM (DM), cathepsins, and full-length protein antigens for epitope identification by LC-MS/MS. HIV-1 Gag, Pol, Env, Vif, Tat, Rev, and Nef were examined using this system. We identified 35 novel epitopes, including glycopeptides. Epitopes from smaller HIV-1 proteins mapped to regions of low protein stability and higher solvent accessibility. HIV-1 antigens associated with limited CD4+ T cell responses were processed efficiently, while some protective epitopes were inefficiently processed. 55% of epitopes obtained from cell-free processing induced memory CD4+ T cell responses in HIV-1+ donors, including eight of 19 novel epitopes tested. Thus, an in vitro processing system utilizing the components of Class II processing reveals factors influencing epitope selection of HIV-1 and represents an approach to understanding epitope selection from non-HIV-1 antigens.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josephine Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madison C. Reed
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanna Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aeryon Kim
- Department of Inflammation and Oncology and Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Tatiana N. Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan L. Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Shenderov
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin A. Welsh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | | |
Collapse
|
4
|
Cohen KW, Fiore-Gartland A, Walsh SR, Yusim K, Frahm N, Elizaga ML, Maenza J, Scott H, Mayer KH, Goepfert PA, Edupuganti S, Pantaleo G, Hutter J, Morris DE, De Rosa SC, Geraghty DE, Robb ML, Michael NL, Fischer W, Giorgi EE, Malhi H, Pensiero MN, Ferrari G, Tomaras GD, Montefiori DC, Gilbert PB, McElrath MJ, Haynes BF, Korber BT, Baden LR. Trivalent mosaic or consensus HIV immunogens prime humoral and broader cellular immune responses in adults. J Clin Invest 2023; 133:e163338. [PMID: 36787249 PMCID: PMC9927951 DOI: 10.1172/jci163338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/27/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUNDMosaic and consensus HIV-1 immunogens provide two distinct approaches to elicit greater breadth of coverage against globally circulating HIV-1 and have shown improved immunologic breadth in nonhuman primate models.METHODSThis double-blind randomized trial enrolled 105 healthy HIV-uninfected adults who received 3 doses of either a trivalent global mosaic, a group M consensus (CON-S), or a natural clade B (Nat-B) gp160 env DNA vaccine followed by 2 doses of a heterologous modified vaccinia Ankara-vectored HIV-1 vaccine or placebo. We performed prespecified blinded immunogenicity analyses at day 70 and day 238 after the first immunization. T cell responses to vaccine antigens and 5 heterologous Env variants were fully mapped.RESULTSEnv-specific CD4+ T cell responses were induced in 71% of the mosaic vaccine recipients versus 48% of the CON-S recipients and 48% of the natural Env recipients. The mean number of T cell epitopes recognized was 2.5 (95% CI, 1.2-4.2) for mosaic recipients, 1.6 (95% CI, 0.82-2.6) for CON-S recipients, and 1.1 (95% CI, 0.62-1.71) for Nat-B recipients. Mean breadth was significantly greater in the mosaic group than in the Nat-B group using overall (P = 0.014), prime-matched (P = 0.002), heterologous (P = 0.046), and boost-matched (P = 0.009) measures. Overall T cell breadth was largely due to Env-specific CD4+ T cell responses.CONCLUSIONPriming with a mosaic antigen significantly increased the number of epitopes recognized by Env-specific T cells and enabled more, albeit still limited, cross-recognition of heterologous variants. Mosaic and consensus immunogens are promising approaches to address global diversity of HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02296541.FUNDINGUS NIH grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069412, UL1 RR025758, P30 AI064518, UM1 AI100645, and UM1 AI144371, and Bill & Melinda Gates Foundation grant OPP52282.
Collapse
Affiliation(s)
- Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephen R. Walsh
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Karina Yusim
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Marnie L. Elizaga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hyman Scott
- San Francisco Department of Public Health, San Francisco, California, USA
| | - Kenneth H. Mayer
- Harvard Medical School, Boston, Massachusetts, USA
- The Fenway Institute, Fenway Health, Boston, Massachusetts, USA
| | | | | | | | - Julia Hutter
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Daryl E. Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Merlin L. Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Nelson L. Michael
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Will Fischer
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Harmandeep Malhi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Bette T. Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, and New Mexico Consortium, Los Alamos, New Mexico, USA
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Medeiros GX, Sasahara GL, Magawa JY, Nunes JPS, Bruno FR, Kuramoto AC, Almeida RR, Ferreira MA, Scagion GP, Candido ÉD, Leal FB, Oliveira DBL, Durigon EL, Silva RCV, Rosa DS, Boscardin SB, Coelho V, Kalil J, Santos KS, Cunha-Neto E. Reduced T Cell and Antibody Responses to Inactivated Coronavirus Vaccine Among Individuals Above 55 Years Old. Front Immunol 2022; 13:812126. [PMID: 35300337 PMCID: PMC8921991 DOI: 10.3389/fimmu.2022.812126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
CoronaVac is an inactivated SARS-CoV-2 vaccine that has been rolled out in several low and middle-income countries including Brazil, where it was the mainstay of the first wave of immunization of healthcare workers and the elderly population. We aimed to assess the T cell and antibody responses of vaccinated individuals as compared to convalescent patients. We detected IgG against SARS-CoV-2 antigens, neutralizing antibodies against the reference Wuhan SARS-CoV-2 strain and used SARS-CoV-2 peptides to detect IFN-g and IL-2 specific T cell responses in a group of CoronaVac vaccinated individuals (N = 101) and convalescent (N = 72) individuals. The frequency among vaccinated individuals, of whom 96% displayed T cell and/or antibody responses to SARS-CoV-2, is comparable to 98.5% responses of convalescent individuals. We observed that among vaccinated individuals, men and individuals 55 years or older developed significantly lower anti-RBD, anti-NP and neutralization titers against the Wuhan strain and antigen-induced IL-2 production by T cells. Neutralizing antibody responses for Gamma variant were even lower than for the Wuhan strain. Even though some studies indicated CoronaVac helped reduce mortality among elderly people, considering the appearance of novel variants of concern, CoronaVac vaccinated individuals above 55 years old are likely to benefit from a heterologous third dose/booster vaccine to increase immune response and likely protection.
Collapse
Affiliation(s)
- Giuliana X Medeiros
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Greyce Luri Sasahara
- Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Jhosiene Y Magawa
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - João Paulo S Nunes
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Fernanda R Bruno
- Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Andreia C Kuramoto
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Rafael R Almeida
- Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Marcelo A Ferreira
- Laboratório de Biologia Celular, LIM59, Departamento de Patologia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme P Scagion
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Érika D Candido
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fabyano B Leal
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danielle B L Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Edison L Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Virologia, Plataforma Científica Pasteur da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Carlos V Silva
- Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Daniela S Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP-EPM), São Paulo, Brazil.,Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciências e Tecnologia (INCT), São Paulo, Brazil
| | - Silvia B Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciências e Tecnologia (INCT), São Paulo, Brazil
| | - Verônica Coelho
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil.,Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciências e Tecnologia (INCT), São Paulo, Brazil
| | - Jorge Kalil
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil.,Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciências e Tecnologia (INCT), São Paulo, Brazil
| | - Keity S Santos
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil.,Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciências e Tecnologia (INCT), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, São Paulo, Brazil.,Laboratório de Imunologia, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil.,Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciências e Tecnologia (INCT), São Paulo, Brazil
| |
Collapse
|
6
|
de Castro MV, Santos KS, Apostolico JS, Fernandes ER, Almeida RR, Levin G, Magawa JY, Nunes JPS, Bruni M, Yamamoto MM, Lima AC, Silva MVR, Matos LRB, Coria VR, Castelli EC, Scliar MO, Kuramoto A, Bruno FR, Jacintho LC, Nunes K, Wang JYT, Coelho VP, Neto MM, Maciel RMB, Naslavsky MS, Passos-Bueno MR, Boscardin SB, Rosa DS, Kalil J, Zatz M, Cunha-Neto E. Recurrence of COVID-19 associated with reduced T-cell responses in a monozygotic twin pair. Open Biol 2022; 12:210240. [PMID: 35104433 PMCID: PMC8807054 DOI: 10.1098/rsob.210240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrence of COVID-19 in recovered patients has been increasingly reported. However, the immune mechanisms behind the recurrence have not been thoroughly investigated. The presence of neutralizing antibodies (nAbs) in recurrence/reinfection cases suggests that other types of immune response are involved in protection against recurrence. Here, we investigated the innate type I/III interferon (IFN) response, binding and nAb assays and T-cell responses to severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) with IFN gamma (IFNγ) enzyme-linked spot assay (ELISPOT) in three pairs of young adult monozygotic (MZ) twins with previous confirmed COVID-19, one of them presenting a severe recurrence four months after the initial infection. Twin studies have been of paramount importance to comprehend the immunogenetics of infectious diseases. Each MZ twin pair was previously exposed to SARS-CoV-2, as seen by clinical reports. The six individuals presented similar overall recovered immune responses except for the recurrence case, who presented a drastically reduced number of recognized SARS-CoV-2 T-cell epitopes on ELISPOT as compared to her twin sister and the other twin pairs. Our results suggest that the lack of a broad T-cell response to initial infection may have led to recurrence, emphasizing that an effective SARS-CoV-2-specific T-cell immune response is key for complete viral control and avoidance of clinical recurrence of COVID-19.
Collapse
Affiliation(s)
- Mateus V. de Castro
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Keity S. Santos
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Juliana S. Apostolico
- Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Edgar R. Fernandes
- Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Rafael R. Almeida
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil
| | - Gabriel Levin
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil
| | - Jhosiene Y. Magawa
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - João Paulo S. Nunes
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Mirian Bruni
- Department of Parasitology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marcio M. Yamamoto
- Department of Parasitology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ariane C. Lima
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Monize V. R. Silva
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Larissa R. B. Matos
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vivian R. Coria
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erick C. Castelli
- School of Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Marilia O. Scliar
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andreia Kuramoto
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Fernanda R. Bruno
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Lucas C. Jacintho
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | - Kelly Nunes
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jaqueline Y. T. Wang
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Veronica P. Coelho
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil
| | | | | | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia B. Boscardin
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo SP, Brazil,Department of Parasitology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniela S. Rosa
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Jorge Kalil
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil,Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil,Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
7
|
Ribeiro SP, De Moura Mattaraia VG, Almeida RR, Valentine EJG, Sales NS, Ferreira LCS, Sa-Rocha LC, Jacintho LC, Santana VC, Sidney J, Sette A, Rosa DS, Kalil J, Cunha-Neto E. A promiscuous T cell epitope-based HIV vaccine providing redundant population coverage of the HLA class II elicits broad, polyfunctional T cell responses in nonhuman primates. Vaccine 2021; 40:239-246. [PMID: 34961636 DOI: 10.1016/j.vaccine.2021.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4+and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7-11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Susan Pereira Ribeiro
- Emory University, Atlanta, USA; Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luís Carlos S Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Lucas Cauê Jacintho
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil
| | - Vinicius Canato Santana
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - John Sidney
- La Jolla Institute for Immunology (LJI), LA Jolla, CA, USA
| | | | - Daniela Santoro Rosa
- Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
8
|
Isaguliants M, Krotova O, Petkov S, Jansons J, Bayurova E, Mezale D, Fridrihsone I, Kilpelainen A, Podschwadt P, Agapkina Y, Smirnova O, Kostic L, Saleem M, Latyshev O, Eliseeva O, Malkova A, Gorodnicheva T, Wahren B, Gordeychuk I, Starodubova E, Latanova A. Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells. Microorganisms 2021; 9:1219. [PMID: 34199989 PMCID: PMC8226624 DOI: 10.3390/microorganisms9061219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209-239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Olga Krotova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Dzeina Mezale
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Ilze Fridrihsone
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Athina Kilpelainen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Yulia Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, 119991 Moscow, Russia;
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Mina Saleem
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Anastasia Malkova
- Institute of Medical Biological Research and Technologies, 143090 Krasnoznamensk, Russia;
| | | | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Latanova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Olvera A, Noguera-Julian M, Kilpelainen A, Romero-Martín L, Prado JG, Brander C. SARS-CoV-2 Consensus-Sequence and Matching Overlapping Peptides Design for COVID19 Immune Studies and Vaccine Development. Vaccines (Basel) 2020; 8:E444. [PMID: 32781672 PMCID: PMC7565482 DOI: 10.3390/vaccines8030444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
Synthetic antigens based on consensus sequences that represent circulating viral isolates are sensitive, time saving and cost-effective tools for in vitro immune monitoring and to guide immunogen design. When based on a representative sequence database, such consensus sequences can effectively be used to test immune responses in exposed and infected individuals at the population level. To accelerate immune studies in SARS-CoV-2 infection, we here describe a SARS-CoV-2 2020 consensus sequence (CoV-2-cons) which is based on more than 1700 viral genome entries in NCBI and encompasses all described SARS-CoV-2 open reading frames (ORF), including recently described frame-shifted and length variant ORF. Based on these sequences, we created curated overlapping peptide (OLP) lists containing between 1500 to 3000 peptides of 15 and 18 amino acids in length, overlapping by 10 or 11 residues, as ideal tools for the assessment of SARS-CoV-2-specific T cell immunity. In addition, CoV-2-cons sequence entropy values are presented along with variant sequences to provide increased coverage of the most variable sections of the viral genome. The identification of conserved protein fragments across the coronavirus family and the corresponding OLP facilitate the identification of T cells potentially cross-reactive with related viruses. This new CoV-2-cons sequence, together with the peptides sets, should provide the basis for SARS-CoV-2 antigen synthesis to facilitate comparability between ex-vivo immune analyses and help to accelerate research on SARS-CoV-2 immunity and vaccine development.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.O.); (M.N.-J.); (A.K.); (L.R.-M.)
- Faculty of Sciences and Technology, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| | - Marc Noguera-Julian
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.O.); (M.N.-J.); (A.K.); (L.R.-M.)
- Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| | - Athina Kilpelainen
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.O.); (M.N.-J.); (A.K.); (L.R.-M.)
| | - Luis Romero-Martín
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.O.); (M.N.-J.); (A.K.); (L.R.-M.)
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.O.); (M.N.-J.); (A.K.); (L.R.-M.)
- Germans Trias i Pujol Research Institute (IGTP), 08196 Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.O.); (M.N.-J.); (A.K.); (L.R.-M.)
- Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
10
|
Sorgi S, Bonezi V, Dominguez MR, Gimenez AM, Dobrescu I, Boscardin S, Nakaya HI, Bargieri DY, Soares IS, Silveira ELV. São Paulo School of Advanced Sciences on Vaccines: an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190061. [PMID: 32362926 PMCID: PMC7187638 DOI: 10.1590/1678-9199-jvatitd-2019-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.
Collapse
Affiliation(s)
- Sara Sorgi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Dipartimento di Biotecnologie Mediche, Universita’ degli Studi di Siena, Siena, Italia
| | - Vivian Bonezi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irina Dobrescu
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Silvia Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Daniel Y. Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
11
|
Shadabi E, Liang B, Plummer F, Luo M. Identification and Characterization of Positively Selected Mutations in Nef of Four HIV-1 Major Subtypes from Los Alamos National Laboratory. Curr HIV Res 2019; 16:130-142. [PMID: 29600767 DOI: 10.2174/1570162x16666180330140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human immunodeficiency virus-1 (HIV-1) mutates rapidly to escape host immune pressure. This results in the generation of positively selected mutations (PSM) throughout the viral genome. Escape mutations in Nef, one of the accessory proteins of HIV-1, which plays an important role in viral pathogenicity have previously been identified in several large cohort studies, but the evolution of PSMs overtime in various HIV-1 subtypes remains unknown. METHODS 161 clade A1, 3093 clade B, 647 clade C and 115 clade D HIV-1 nef sequences were obtained from the HIV Database of Los Alamos National Laboratory and aligned using MEGA 6.0. The sequences from each clade were grouped based on the year of collection. Quasi analysis was used to identify PSMs and the number and locations of PSMs were compared among different subtypes. RESULTS PSMs for all four subtypes were distributed across the sequence of Nef, and conserved residues F90, W113, PxxPxR (a.a 72-77) remain unaltered overtime. The frequency of PSMs was stable among subtype B sequences but increased overtime for other subtypes. Phylogenetic analysis shows that sequences containing PSMs tend to cluster together at both inter and intra- subtype levels. CONCLUSION Identification of PSMs and their changes overtime within various subtypes of HIV-1 is important in defining global viral evolutionary patterns that can provide insights for designing therapeutic strategies.
Collapse
Affiliation(s)
- Elnaz Shadabi
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Frank Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Scholzen A, Richard G, Moise L, Baeten LA, Reeves PM, Martin WD, Brauns TA, Boyle CM, Raju Paul S, Bucala R, Bowen RA, Garritsen A, De Groot AS, Sluder AE, Poznansky MC. Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Front Immunol 2019; 10:207. [PMID: 30828331 PMCID: PMC6384241 DOI: 10.3389/fimmu.2019.00207] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007–2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10–28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine.
Collapse
Affiliation(s)
| | | | - Leonard Moise
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Laurie A Baeten
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Timothy A Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
13
|
Teixeira D, Ishimura ME, Apostólico JDS, Viel JM, Passarelli VC, Cunha-Neto E, Rosa DS, Longo-Maugéri IM. Propionibacterium acnes Enhances the Immunogenicity of HIVBr18 Human Immunodeficiency Virus-1 Vaccine. Front Immunol 2018; 9:177. [PMID: 29467764 PMCID: PMC5808300 DOI: 10.3389/fimmu.2018.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023] Open
Abstract
Immunization of BALB/c mice with HIVBr18, a DNA vaccine containing 18 CD4+ T cell epitopes from human immunodeficiency virus (HIV), induced specific CD4+ and CD8+ T cell responses in a broad, polyfunctional and persistent manner. With the aim of increasing the immunogenicity of this vaccine, the effect of Propionibacterium acnes as an adjuvant was evaluated. The adjuvant effects of this bacterium have been extensively demonstrated in both experimental and clinical settings. Herein, administration of two doses of HIVBr18, in the presence of P. acnes, increased the proliferation of HIV-1-specific CD4+ and CD8+ T lymphocytes, the polyfunctional profile of CD4+ T cells, the production of IFN-γ, and the number of recognized vaccine-encoded peptides. One of the bacterial components responsible for most of the adjuvant effects observed was a soluble polysaccharide extracted from the P. acnes cell wall. Furthermore, within 10 weeks after immunization, the proliferation of specific T cells and production of IFN-γ were maintained when the whole bacterium was administered, demonstrating a greater effect on the longevity of the immune response by P. acnes. Even with fewer immunization doses, P. acnes was found to be a potent adjuvant capable of potentiating the effects of the HIVBr18 vaccine. Therefore, P. acnes may be a potential adjuvant to aid this vaccine in inducing immunity or for therapeutic use.
Collapse
Affiliation(s)
- Daniela Teixeira
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Mayari Eika Ishimura
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana de Souza Apostólico
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Jacqueline Miyuki Viel
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Victor Cabelho Passarelli
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Ieda Maria Longo-Maugéri
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Sundaramurthi JC, Ashokkumar M, Swaminathan S, Hanna LE. HLA based selection of epitopes offers a potential window of opportunity for vaccine design against HIV. Vaccine 2017; 35:5568-5575. [PMID: 28888341 DOI: 10.1016/j.vaccine.2017.08.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
The pace of progression to AIDS after HIV infection varies from individual to individual. While some individuals develop AIDS quickly, others are protected from the onset of disease for more than a decade (elite controllers and long term non-progressors). The mechanisms of protection are not yet clearly understood, though various factors including host genetics, immune components and virus attenuation have been elucidated partly. The influence of HLA alleles on HIV-1 infection and disease outcome has been studied extensively. Several HLA alleles are known to be associated with resistance to infection or delayed progression to AIDS after infection. Similarly, certain HLA alleles are reported to be associated with rapid progression to disease. Since HLA alleles influence the outcome of HIV infection differentially, selection of epitopes specifically recognized by protective alleles could serve asa rational means for HIV vaccine design. In this review article, we discuss existing knowledge on HLA alleles and their association with resistance/susceptibility to HIV and its relevance to vaccine design.
Collapse
Affiliation(s)
- Jagadish Chandrabose Sundaramurthi
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Manickam Ashokkumar
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Soumya Swaminathan
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis (ICMR), (Formerly Tuberculosis Research Centre), Chetpet, Chennai 600031, Tamil Nadu, India.
| |
Collapse
|
15
|
Apostólico JDS, Lunardelli VAS, Yamamoto MM, Souza HFS, Cunha-Neto E, Boscardin SB, Rosa DS. Dendritic Cell Targeting Effectively Boosts T Cell Responses Elicited by an HIV Multiepitope DNA Vaccine. Front Immunol 2017; 8:101. [PMID: 28223987 PMCID: PMC5295143 DOI: 10.3389/fimmu.2017.00101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Despite several efforts in the last decades, an efficacious HIV-1 vaccine is still not available. Different approaches have been evaluated, such as recombinant proteins, viral vectors, DNA vaccines, and, most recently, dendritic cell (DC) targeting. This strategy is based on DC features that place them as central for induction of immunity. Targeting is accomplished by the use of chimeric monoclonal antibodies directed to DC surface receptors fused to the antigen of interest. In this work, we targeted eight promiscuous HIV-derived CD4+ T cell epitopes (HIVBr8) to the DEC205+ DCs by fusing the multiepitope immunogen to the heavy chain of αDEC205 (αDECHIVBr8), in the presence of the TLR3 agonist poly (I:C). In addition, we tested a DNA vaccine encoding the same epitopes using homologous or heterologous prime-boost regimens. Our results showed that mice immunized with αDECHIVBr8 presented higher CD4+ and CD8+ T cell responses when compared to mice that received the DNA vaccine (pVAXHIVBr8). In addition, pVAXHIVBr8 priming followed by αDECHIVBr8 boosting induced higher polyfunctional proliferative and cytokine-producing T cell responses to HIV-1 peptides than homologous DNA immunization or heterologous αDEC prime/DNA boost. Based on these results, we conclude that homologous prime-boost and heterologous boosting immunization strategies targeting CD4+ epitopes to DCs are effective to improve HIV-specific cellular immune responses when compared to standalone DNA immunization. Moreover, our results indicate that antigen targeting to DC is an efficient strategy to boost immunity against a multiepitope immunogen, especially in the context of DNA vaccination.
Collapse
Affiliation(s)
- Juliana de Souza Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | | | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Higo Fernando Santos Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Edecio Cunha-Neto
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil; Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
16
|
Lima-Junior JDC, Pratt-Riccio LR. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection. Front Immunol 2016; 7:13. [PMID: 26858717 PMCID: PMC4728299 DOI: 10.3389/fimmu.2016.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 01/13/2023] Open
Abstract
The importance of host and parasite genetic factors in malaria resistance or susceptibility has been investigated since the middle of the last century. Nowadays, of all diseases that affect man, malaria still plays one of the highest levels of selective pressure on human genome. Susceptibility to malaria depends on exposure profile, epidemiological characteristics, and several components of the innate and adaptive immune system that influences the quality of the immune response generated during the Plasmodium lifecycle in the vertebrate host. But it is well known that the parasite's enormous capacity of genetic variation in conjunction with the host genetics polymorphism is also associated with a wide spectrum of susceptibility degrees to complicated or severe forms of the disease. In this scenario, variations in genes of the major histocompatibility complex (MHC) associated with host resistance or susceptibility to malaria have been identified and used as markers in host-pathogen interaction studies, mainly those evaluating the impact on the immune response, acquisition of resistance, or increased susceptibility to infection or vulnerability to disease. However, due to the intense selective pressure, number of cases, and mortality rates, the majority of the reported associations reported concerned Plasmodium falciparum malaria. Studies on the MHC polymorphism and its association with Plasmodium vivax, which is the most widespread Plasmodium and the most prevalent species outside the African continent, are less frequent but equally important. Despite punctual contributions, there are accumulated evidences of human genetic control in P. vivax infection and disease. Herein, we review the current knowledge in the field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA class I and II polymorphisms in relation to host susceptibility, naturally acquired immune response against specific antigens and the implication of this knowledge to overcome the parasite immune evasion. Finally, the potential impact of such polymorphisms on the development of vaccine candidate antigens against P. vivax will be studied.
Collapse
|
17
|
Santana VC, Almeida RR, Ribeiro SP, Ferreira LCDS, Kalil J, Rosa DS, Cunha-Neto E. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses. Mem Inst Oswaldo Cruz 2015; 110:1010-6. [PMID: 26602876 PMCID: PMC4708021 DOI: 10.1590/0074-02760150283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023] Open
Abstract
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific
responses that may limit both transmission and disease progression by controlling
viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have
been associated with control of simian immunodeficiency virus/HIV-1 replication,
supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations.
Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF)
co-administration has been shown to induce potent CD4+ T-cell responses
and to promote accelerated priming and increased migration of antigen-specific
CD4+ T-cells. However, no study has shown whether co-immunisation with
pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+
T-cells. Our group has previously developed a DNA vaccine encoding conserved,
multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which
elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here,
we show that pGM-CSF co-immunisation improved both magnitude and quality of
vaccine-induced T-cell responses, particularly by increasing proliferating
CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis
factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful
for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell
immunity.
Collapse
Affiliation(s)
- Vinicius Canato Santana
- Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rafael Ribeiro Almeida
- Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Susan Pereira Ribeiro
- Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Jorge Kalil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, São Paulo, SP, Brasil
| | - Daniela Santoro Rosa
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, São Paulo, SP, Brasil
| | - Edecio Cunha-Neto
- Divisão de Imunologia Clínica e Alergia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Rosa DS, Ribeiro SP, Fonseca SG, Almeida RR, Santana VC, Apostólico JDS, Kalil J, Cunha-Neto E. Multiple Approaches for Increasing the Immunogenicity of an Epitope-Based Anti-HIV Vaccine. AIDS Res Hum Retroviruses 2015; 31:1077-88. [PMID: 26149745 DOI: 10.1089/aid.2015.0101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of a highly effective vaccine against the human immunodeficiency virus (HIV) will likely be based on rational vaccine design, since traditional vaccine approaches have failed so far. In recent years, an understanding of what type of immune response is protective against infection and/or disease facilitated vaccine design. T cell-based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. In this context, CD4(+) T cells play a direct cytotoxic role and are also important for the generation and maintenance of functional CD8(+) T and B cell responses. The use of MHC-binding algorithms has allowed the identification of novel CD4(+) T cell epitopes that could be used in vaccine design, the so-called epitope-driven vaccine design. Epitope-based vaccines have the ability to focus the immune response on highly antigenic, conserved epitopes that are fully recognized by the target population. We have recently mapped a set of conserved multiple HLA-DR-binding HIV-1 CD4 epitopes and observed interferon (IFN)-γ-producing CD4(+) T cells when we tested these peptides in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals. We then designed multiepitopic DNA vaccines that induced broad and polyfunctional T cell responses in immunized mice. In this review we will focus on alternative strategies to increase the immunogenicity of an epitope-based vaccine against HIV infection.
Collapse
Affiliation(s)
- Daniela Santoro Rosa
- Departament of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Vinicius Canato Santana
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Juliana de Souza Apostólico
- Departament of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
19
|
Mazor R, Tai CH, Lee B, Pastan I. Poor correlation between T-cell activation assays and HLA-DR binding prediction algorithms in an immunogenic fragment of Pseudomonas exotoxin A. J Immunol Methods 2015; 425:10-20. [PMID: 26056938 PMCID: PMC4604018 DOI: 10.1016/j.jim.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/20/2022]
Abstract
The ability to identify immunogenic determinants that activate T-cells is important for the development of new vaccines, allergy therapy and protein therapeutics. In silico MHC-II binding prediction algorithms are often used for T-cell epitope identification. To understand how well those programs predict immunogenicity, we computed HLA binding to peptides spanning the sequence of PE38, a fragment of an anti-cancer immunotoxin, and compared the predicted and experimentally identified T-cell epitopes. We found that the prediction for individual donors did not correlate well with the experimental data. Furthermore, prediction of T-cell epitopes in an HLA heterogenic population revealed that the two strongest epitopes were predicted at multiple cutoffs but the third epitope was predicted negative at all cutoffs and overall 4/9 epitopes were missed at several cutoffs. We conclude that MHC class-II binding predictions are not sufficient to predict the T-cell epitopes in PE38 and should be supplemented by experimental work.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Silva BCMD, Grassi MFR, Coutinho R, Mascarenhas REM, Olavarria VN, Coutinho-Borgo A, Kalil J, Cunha Neto E, Fonseca SG. Mycobacterium tuberculosis epitope-specific interferon-g production in healthy Brazilians reactive and non-reactive to tuberculin skin test. Mem Inst Oswaldo Cruz 2014; 109:999-1004. [PMID: 25494469 PMCID: PMC4325617 DOI: 10.1590/0074-0276140193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022] Open
Abstract
The interferon (IFN)-γ response to peptides can be a useful diagnostic marker of
Mycobacterium tuberculosis (MTB) latent infection. We identified promiscuous and
potentially protective CD4+ T-cell epitopes from the most conserved
regions of MTB antigenic proteins by scanning the MTB antigenic proteins GroEL2,
phosphate-binding protein 1 precursor and 19 kDa antigen with the TEPITOPE algorithm.
Seven peptide sequences predicted to bind to multiple human leukocyte antigen
(HLA)-DR molecules were synthesised and tested with IFN-γ enzyme-linked immunospot
(ELISPOT) assays using peripheral blood mononuclear cells (PBMCs) from 16 Mantoux
tuberculin skin test (TST)-positive and 16 TST-negative healthy donors. Eighty-eight
percent of TST-positive donors responded to at least one of the peptides, compared to
25% of TST-negative donors. Each individual peptide induced IFN-γ production by PBMCs
from at least 31% of the TST-positive donors. The magnitude of the response against
all peptides was 182 ± 230 x 106 IFN-γ spot forming cells (SFC) among
TST-positive donors and 36 ± 62 x 106 SFC among TST-negative donors (p =
0.007). The response to GroEL2 (463-477) was only observed in the TST-positive group.
This combination of novel MTB CD4 T-cell epitopes should be tested in a larger cohort
of individuals with latent tuberculosis (TB) to evaluate its potential to diagnose
latent TB and it may be included in ELISPOT-based IFN-γ assays to identify
individuals with this condition.
Collapse
Affiliation(s)
| | | | - Raimundo Coutinho
- Laboratório Avançado de Saúde Pública, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | | | | | | | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração, São Paulo, SP, Brasil
| | - Edecio Cunha Neto
- Laboratório de Imunologia, Instituto do Coração, São Paulo, SP, Brasil
| | | |
Collapse
|
21
|
Gowthaman U, Agrewala JN. In silicomethods for predicting T-cell epitopes: Dr Jekyll or Mr Hyde? Expert Rev Proteomics 2014; 6:527-37. [DOI: 10.1586/epr.09.71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Ribeiro SP, de Souza Apostólico J, Almeida RR, Kalil J, Cunha-Neto E, Rosa DS. Bupivacaine enhances the magnitude and longevity of HIV-specific immune response after immunization with a CD4 epitope-based DNA vaccine. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Wiens KE, Swaminathan H, Copin R, Lun DS, Ernst JD. Equivalent T cell epitope promiscuity in ecologically diverse human pathogens. PLoS One 2013; 8:e73124. [PMID: 23951341 PMCID: PMC3739752 DOI: 10.1371/journal.pone.0073124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Background The HLA (human leukocyte antigen) molecules that present pathogen-derived epitopes to T cells are highly diverse. Correspondingly, many pathogens such as HIV evolve epitope variants in order to evade immune recognition. In contrast, another persistent human pathogen, Mycobacterium tuberculosis, has highly conserved epitope sequences. This raises the question whether there is also a difference in the ability of these pathogens’ epitopes to bind diverse HLA alleles, referred to as an epitope’s binding promiscuity. To address this question, we compared the in silico HLA binding promiscuity of T cell epitopes from pathogens with distinct infection strategies and outcomes of human exposure. Methods We used computer algorithms to predict the binding affinity of experimentally-verified microbial epitope peptides to diverse HLA-DR, HLA-A and HLA-B alleles. We then analyzed binding promiscuity of epitopes derived from HIV and M. tuberculosis. We also analyzed promiscuity of epitopes from Streptococcus pyogenes, which is known to exhibit epitope diversity, and epitopes of Bacillus anthracis and Clostridium tetani toxins, as these bacteria do not depend on human hosts for their survival or replication, and their toxin antigens are highly immunogenic human vaccines. Results We found that B. anthracis and C. tetani epitopes were the most promiscuous of the group that we analyzed. However, there was no consistent difference or trend in promiscuity in epitopes contained in HIV, M. tuberculosis, and S. pyogenes. Conclusions Our results show that human pathogens with distinct immune evasion strategies and epitope diversities exhibit equivalent levels of T cell epitope promiscuity. These results indicate that differences in epitope promiscuity do not account for the observed differences in epitope variation and conservation.
Collapse
Affiliation(s)
- Kirsten E. Wiens
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Harish Swaminathan
- Department of Computer Science and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Richard Copin
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Desmond S. Lun
- Department of Computer Science and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
| | - Joel D. Ernst
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, Division of Infectious Disease, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Krotova O, Starodubova E, Petkov S, Kostic L, Agapkina J, Hallengärd D, Viklund A, Latyshev O, Gelius E, Dillenbeck T, Karpov V, Gottikh M, Belyakov IM, Lukashov V, Isaguliants MG. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells. PLoS One 2013; 8:e62720. [PMID: 23667513 PMCID: PMC3648577 DOI: 10.1371/journal.pone.0062720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.
Collapse
Affiliation(s)
- Olga Krotova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Agapkina
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alecia Viklund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Vadim Karpov
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Marina Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor M. Belyakov
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, and the Department of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vladimir Lukashov
- DI Ivanovsky Institute of Virology, Moscow, Russia
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- * E-mail:
| |
Collapse
|
25
|
Brinks V, Weinbuch D, Baker M, Dean Y, Stas P, Kostense S, Rup B, Jiskoot W. Preclinical Models Used for Immunogenicity Prediction of Therapeutic Proteins. Pharm Res 2013; 30:1719-28. [DOI: 10.1007/s11095-013-1062-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/15/2013] [Indexed: 02/06/2023]
|
26
|
Duvvuri VR, Duvvuri B, Jamnik V, Gubbay JB, Wu J, Wu GE. T cell memory to evolutionarily conserved and shared hemagglutinin epitopes of H1N1 viruses: a pilot scale study. BMC Infect Dis 2013; 13:204. [PMID: 23641949 PMCID: PMC3649888 DOI: 10.1186/1471-2334-13-204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 2009 pandemic influenza was milder than expected. Based on the apparent lack of pre-existing cross-protective antibodies to the A (H1N1)pdm09 strain, it was hypothesized that pre-existing CD4+ T cellular immunity provided the crucial immunity that led to an attenuation of disease severity. We carried out a pilot scale study by conducting in silico and in vitro T cellular assays in healthy population, to evaluate the pre-existing immunity to A (H1N1)pdm09 strain. METHODS Large-scale epitope prediction analysis was done by examining the NCBI available (H1N1) HA proteins. NetMHCIIpan, an eptiope prediction tool was used to identify the putative and shared CD4+ T cell epitopes between seasonal H1N1 and A (H1N1)pdm09 strains. To identify the immunogenicity of these putative epitopes, human IFN-γ-ELISPOT assays were conducted using the peripheral blood mononuclear cells from fourteen healthy human donors. All donors were screened for the HLA-DRB1 alleles. RESULTS Epitope-specific CD4+ T cellular memory responses (IFN-γ) were generated to highly conserved HA epitopes from majority of the donors (93%). Higher magnitude of the CD4+ T cell responses was observed in the older adults. The study identified two HA2 immunodominant CD4+ T cell epitopes, of which one was found to be novel. CONCLUSIONS The current study provides a compelling evidence of HA epitope specific CD4+ T cellular memory towards A (H1N1)pdm09 strain. These well-characterized epitopes could recruit alternative immunological pathways to overcome the challenge of annual seasonal flu vaccine escape.
Collapse
|
27
|
Almeida RR, Rosa DS, Ribeiro SP, Santana VC, Kallás EG, Sidney J, Sette A, Kalil J, Cunha-Neto E. Broad and cross-clade CD4+ T-cell responses elicited by a DNA vaccine encoding highly conserved and promiscuous HIV-1 M-group consensus peptides. PLoS One 2012; 7:e45267. [PMID: 23028895 PMCID: PMC3445454 DOI: 10.1371/journal.pone.0045267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Collapse
Affiliation(s)
- Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Division of Immunology-Federal University of São Paulo-UNIFESP, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Vinicius Canato Santana
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Esper Georges Kallás
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - John Sidney
- Center for Infectious Disease, Allergy and Asthma Research, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- Center for Infectious Disease, Allergy and Asthma Research, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jorge Kalil
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
28
|
Nayak JL, Sant AJ. Loss in CD4 T-cell responses to multiple epitopes in influenza due to expression of one additional MHC class II molecule in the host. Immunology 2012; 136:425-36. [PMID: 22747522 DOI: 10.1111/j.1365-2567.2012.03599.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An understanding of factors controlling CD4 T-cell immunodominance is needed to pursue CD4 T-cell epitope-driven vaccine design, yet our understanding of this in humans is limited by the complexity of potential MHC class II molecule expression. In the studies described here, we took advantage of genetically restricted, well-defined mouse strains to better understand the effect of increasing MHC class II molecule diversity on the CD4 T-cell repertoire and the resulting anti-influenza immunodominance hierarchy. Interferon-γ ELISPOT assays were implemented to directly quantify CD4 T-cell responses to I-A(b) and I-A(s) restricted peptide epitopes following primary influenza virus infection in parental and F(1) hybrid strains. We found striking and asymmetric declines in the magnitude of many peptide-specific responses in F(1) animals. These declines could not be accounted for by the lower surface density of MHC class II on the cell or by antigen-presenting cells failing to stimulate T cells with lower avidity T-cell receptors. Given the large diversity of MHC class II expressed in humans, these findings have important implications for the rational design of peptide-based vaccines that are based on the premise that CD4 T-cell epitope specificity can be predicted by a simple cataloguing of an individual's MHC class II genotype.
Collapse
Affiliation(s)
- Jennifer L Nayak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
29
|
Abstract
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.
Collapse
|
30
|
Jones GJ, Bagaini F, Hewinson RG, Vordermeier HM. The use of binding-prediction models to identify M. bovis-specific antigenic peptides for screening assays in bovine tuberculosis. Vet Immunol Immunopathol 2011; 141:239-45. [DOI: 10.1016/j.vetimm.2011.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/08/2011] [Accepted: 03/02/2011] [Indexed: 11/28/2022]
|
31
|
Muller NG, Alencar R, Jamal L, Hammer J, Sidney J, Sette A, Brindeiro RM, Kalil J, Cunha-Neto E, Moraes SL. CD4+ T cells from HIV-1-infected patients recognize wild-type and mutant human immunodeficiency virus-1 protease epitopes. Clin Exp Immunol 2011; 164:90-9. [PMID: 21352200 DOI: 10.1111/j.1365-2249.2011.04319.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 protease is a known target of CD8+ T cell responses, but it is the only HIV-1 protein in which no fully characterized HIV-1 protease CD4 epitopes have been identified to date. We investigated the recognition of HIV-1 protease by CD4+ T cells from 75 HIV-1-infected, protease inhibitor (PI)-treated patients, using the 5,6-carboxyfluorescein diacetate succinimidyl ester-based proliferation assay. In order to identify putative promiscuous CD4+ T cell epitopes, we used the TEPITOPE algorithm to scan the sequence of the HXB2 HIV-1 protease. Protease regions 4-23, 45-64 and 73-95 were identified; 32 sequence variants of the mentioned regions, encoding frequent PI-induced mutations and polymorphisms, were also tested. On average, each peptide bound to five of 15 tested common human leucocyte antigen D-related (HLA-DR) molecules. More than 80% of the patients displayed CD4+ as well as CD8+ T cell recognition of at least one of the protease peptides. All 35 peptides were recognized. The response was not associated with particular HLA-DR or -DQ alleles. Our results thus indicate that protease is a frequent target of CD4+ along with CD8+ proliferative T cell responses by the majority of HIV-1-infected patients under PI therapy. The frequent finding of matching CD4(+) and CD8+ T cell responses to the same peptides may indicate that CD4+ T cells provide cognate T cell help for the maintenance of long-living protease-specific functional CD8+ T cells.
Collapse
Affiliation(s)
- N G Muller
- Division of Clinical Immunology and Allergy, Department of Medicine, School of Medicine Heart Institute (InCor) Institute of Tropical Medicine, University of São Paulo, São Paulo, SP 01246-000, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rosa DS, Ribeiro SP, Almeida RR, Mairena EC, Postól E, Kalil J, Cunha-Neto E. A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+ T cell responses. PLoS One 2011; 6:e16921. [PMID: 21347287 PMCID: PMC3037933 DOI: 10.1371/journal.pone.0016921] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/05/2011] [Indexed: 12/11/2022] Open
Abstract
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4+ T cells are important for the generation and maintenance of functional CD8+ cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4+ T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4+/CD8+ T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4+ and CD8+ T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4+ T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4+ T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4+ T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8+ T cells and antibody responses- elicited by other HIV immunogens.
Collapse
Affiliation(s)
- Daniela Santoro Rosa
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Division of Immunology-Federal University of São Paulo-UNIFESP, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Eliane Conti Mairena
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edilberto Postól
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
Differences in HIV-specific T cell responses between HIV-exposed and -unexposed HIV-seronegative individuals. J Virol 2011; 85:3507-16. [PMID: 21270166 DOI: 10.1128/jvi.02444-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1-specific T lymphocyte responses in individuals exposed to HIV-1 but who remain persistently seronegative (HESNs) have been reported in some but not all previous studies. This study was designed to resolve unequivocally the question of whether HESNs make HIV-1-specific T cell responses. We performed a blind investigation to measure HIV-1-specific T cell responses in both HIV-1-serodiscordant couples and HIV-1-unexposed seronegative controls (HUSNs). We found low-frequency HIV-1-specific T cells in both HESNs and HUSNs but show that the response rates were higher over time in the former (P = 0.01). Furthermore, the magnitudes of the HIV-1-specific T cell responses were significantly higher among responding HESNs than among HUSNs over time (P = 0.002). In both groups, responses were mediated by CD4 T cells. The responses were mapped to single peptides, which often corresponded to epitopes restricted by multiple HLA-DR types that have previously been detected in HIV-1-infected patients. HIV-1-specific T cell responses in HUSNs and some HESNs likely represent cross-reactivity to self or foreign non-HIV-1 antigens. The significantly greater T cell responses in HESNs, including in two who were homozygous for CCR5Δ32, demonstrates that HIV-1-specific T cell responses can be induced or augmented by exposure to HIV-1 without infection.
Collapse
|
34
|
Ribeiro SP, Rosa DS, Fonseca SG, Mairena EC, Postól E, Oliveira SC, Guilherme L, Kalil J, Cunha-Neto E. A vaccine encoding conserved promiscuous HIV CD4 epitopes induces broad T cell responses in mice transgenic to multiple common HLA class II molecules. PLoS One 2010; 5:e11072. [PMID: 20552033 PMCID: PMC2884037 DOI: 10.1371/journal.pone.0011072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/19/2010] [Indexed: 11/19/2022] Open
Abstract
Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, “promiscuous” (multiple HLA-DR-binding) B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8). Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.
Collapse
Affiliation(s)
- Susan Pereira Ribeiro
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Simone Gonçalves Fonseca
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Eliane Conti Mairena
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edilberto Postól
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Lima-Junior JC, Banic DM, Tran TM, Meyer VSE, De-Simone SG, Santos F, Porto LCS, Marques MTQ, Moreno A, Barnwell JW, Galinski MR, Oliveira-Ferreira J. Promiscuous T-cell epitopes of Plasmodium merozoite surface protein 9 (PvMSP9) induces IFN-gamma and IL-4 responses in individuals naturally exposed to malaria in the Brazilian Amazon. Vaccine 2010; 28:3185-91. [PMID: 20189487 DOI: 10.1016/j.vaccine.2010.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/28/2010] [Accepted: 02/11/2010] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax merozoite surface protein (PvMSP9) stimulates both cellular and humoral immune responses in individuals who are naturally infected by this parasite species. To identify immunodominant human T-cell epitopes in PvMSP9, we used the MHC class II binding peptide prediction algorithm ProPred. Eleven synthetic peptides representing predicted putative promiscuous T-cell epitopes were tested in IFN-gamma and IL-4 ELISPOT assays using peripheral blood mononuclear cells (PBMC) derived from 142 individuals from Rondonia State, Brazil who had been naturally exposed to P. vivax infections. To determine whether the predicted epitopes are preferentially recognized in the context of multiple alleles, MHC Class II typing of the cohort was also performed. Five synthetic peptides elicited robust cellular responses, and the overall frequencies of IFN-gamma and IL-4 responders to at least one of the promiscuous peptides were 62% and 46%, respectively. The frequencies of IFN-gamma and IL-4 responders to each peptide were not associated with a particular HLA-DRB1 allelic group since most of the peptides induced a response in individuals of 12 out of 13 studied allelic groups. The prediction of promiscuous epitopes using ProPred led to the identification of immunodominant epitopes recognized by PBMC from a significant proportion of a genetically heterogeneous population exposed to malaria infections. The combination of several such T-cell epitopes in a vaccine construct may increase the frequency of responders and the overall efficacy of subunit vaccines in genetically distinct populations.
Collapse
Affiliation(s)
- J C Lima-Junior
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vingert B, Perez-Patrigeon S, Jeannin P, Lambotte O, Boufassa F, Lemaître F, Kwok WW, Theodorou I, Delfraissy JF, Thèze J, Chakrabarti LA. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. PLoS Pathog 2010; 6:e1000780. [PMID: 20195518 PMCID: PMC2829066 DOI: 10.1371/journal.ppat.1000780] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/20/2010] [Indexed: 12/11/2022] Open
Abstract
HIV controllers are rare individuals who spontaneously control HIV replication in the absence of antiretroviral treatment. Emerging evidence indicates that HIV control is mediated through very active cellular immune responses, though how such responses can persist over time without immune exhaustion is not yet understood. To investigate the nature of memory CD4+ T cells responsible for long-term anti-HIV responses, we characterized the growth kinetics, Vbeta repertoire, and avidity for antigen of patient-derived primary CD4+ T cell lines. Specific cell lines were obtained at a high rate for both HIV controllers (16/17) and efficiently treated patients (19/20) in response to the immunodominant Gag293 peptide. However, lines from controllers showed faster growth kinetics than those of treated patients. After normalizing for growth rates, IFN-gamma responses directed against the immunodominant Gag293 peptide showed higher functional avidity in HIV controllers, indicating differentiation into highly efficient effector cells. In contrast, responses to Gag161, Gag263, or CMV peptides did not differ between groups. Gag293-specific CD4+ T cells were characterized by a diverse Vbeta repertoire, suggesting that multiple clones contributed to the high avidity CD4+ T cell population in controllers. The high functional avidity of the Gag293-specific response could be explained by a high avidity interaction between the TCR and the peptide-MHC complex, as demonstrated by MHC class II tetramer binding. Thus, HIV controllers harbor a pool of memory CD4+ T cells with the intrinsic ability to recognize minimal amounts of Gag antigen, which may explain how they maintain an active antiviral response in the face of very low viremia.
Collapse
Affiliation(s)
- Benoît Vingert
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | | | - Patricia Jeannin
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Olivier Lambotte
- Institut National de la Santé et de la Recherche Médicale (INSERM) U802, Le Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Fabrice Lemaître
- G5 Dynamiques des Réponses Immunes, Institut Pasteur, Paris, France
- INSERM U668, Equipe Avenir, Institut Pasteur, Paris, France
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | | | - Jean-François Delfraissy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U802, Le Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Jacques Thèze
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Lisa A. Chakrabarti
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
- * E-mail:
| | | |
Collapse
|
37
|
CD4+ T cell epitope discovery and rational vaccine design. Arch Immunol Ther Exp (Warsz) 2010; 58:121-30. [PMID: 20155490 DOI: 10.1007/s00005-010-0067-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/08/2009] [Indexed: 12/15/2022]
Abstract
T cell epitope-driven vaccine design employs bioinformatic algorithms to identify potential targets of vaccines against infectious diseases or cancer. Potential epitopes can be identified with major histocompatibility complex (MHC)-binding algorithms, and the ability to bind to MHC class I or class II indicates a predominantly CD4(+) or CD8(+) T cell response. Furthermore, an epitope-based vaccine can circumvent evolutionary events favoring immune escape present in native proteins from pathogens. It can also focus on only the most relevant epitopes (i.e. conserved and promiscuous) recognized by the majority of the target population. Mounting evidence points to the critical role of CD4(+) T cells in natural antigen encounter and active immunization. In this paper the need for CD4(+) T cell help in vaccine development, the selection of CD4(+) T cell epitopes for an epitope-based vaccine, and how the approach can be used to induce a protective effect are reviewed.
Collapse
|
38
|
Major histocompatibility complex class II molecule-human immunodeficiency virus peptide analysis using a microarray chip. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:567-73. [PMID: 19225081 DOI: 10.1128/cvi.00441-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Identification of major histocompatibility complex (MHC) class II binding peptides is a crucial step in rational vaccine design and immune monitoring. We designed a novel MHC class II molecule-peptide microarray binding assay and evaluated 346 peptides from already identified human immunodeficiency virus (HIV) epitopes and an additional set (n = 206) of 20-mer peptides, overlapping by 15 amino acid residues, from HIV type 1B (HIV-1B) gp160 and Nef as a paradigm. Peptides were attached via the N-terminal part to a linker that covalently binds to the epoxy glass slide. The 552 peptides were printed in triplicate on a single peptide microarray chip and tested for stable formation of MHC class II molecule-peptide complexes using recombinant soluble DRB1*0101(DR1), DRB1*1501(DR2), and DRB1*0401(DR4) molecules. Cluster analysis revealed unique patterns of peptide binding to all three, two, or a single MHC class II molecule. MHC class II binding peptides reside within previously described immunogenic regions of HIV gp160 and Nef, yet we could also identify new MHC class II binding peptides from gp160 and Nef. Peptide microarray chips allow the comprehensive and simultaneous screening of a high number of candidate peptide epitopes for MHC class II binding, guided by subsequent quality data extraction and binding pattern cluster analysis.
Collapse
|
39
|
Castelli FA, Houitte D, Munier G, Szely N, Lecoq A, Briand JP, Muller S, Maillere B. Immunoprevalence of the CD4+ T-cell response to HIV Tat and Vpr proteins is provided by clustered and disperse epitopes, respectively. Eur J Immunol 2008; 38:2821-31. [PMID: 18828138 DOI: 10.1002/eji.200738072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have suggested including nonstructural proteins as Tat and Vpr in HIV vaccines. However, little is known about the CD4+ T-cell response that these small proteins induce in humans. We have therefore evaluated these responses by in vitro priming experiments of CD4+ T lymphocytes harvested in healthy donors. In the Tat protein, only one peptide primed CD4+ T cells of eight HLA unrelated healthy donors. T cells induced by this peptide recognized immature DC loaded with the native Tat protein and are restricted by multiple HLA-DR molecules, in agreement with its binding capacity. This peptide was therefore processed in an appropriate manner and was highly immunoprevalent. CD4+ T-cell response to Vpr peptides was more disperse and involved six different peptides depending on the HLA-DR molecules of the donors. Two overlapping peptides were T-cell stimulating in at least half of the donors. T-cell response to Vpr in multiple donors is the result of a combination of several CD4+ T-cell epitopes with good to moderate immunoprevalence. Altogether, our results show that the frequency of responders to HIV Tat or Vpr proteins relies on one or multiple CD4+ T-cell epitopes, respectively.
Collapse
Affiliation(s)
- Florence A Castelli
- CEA, Institute of Biology and technologies (iBiTecS), SIMOPRO, Gif Sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 2008; 9 Suppl 12:S22. [PMID: 19091022 PMCID: PMC2638162 DOI: 10.1186/1471-2105-9-s12-s22] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Initiation and regulation of immune responses in humans involves recognition of peptides presented by human leukocyte antigen class II (HLA-II) molecules. These peptides (HLA-II T-cell epitopes) are increasingly important as research targets for the development of vaccines and immunotherapies. HLA-II peptide binding studies involve multiple overlapping peptides spanning individual antigens, as well as complete viral proteomes. Antigen variation in pathogens and tumor antigens, and extensive polymorphism of HLA molecules increase the number of targets for screening studies. Experimental screening methods are expensive and time consuming and reagents are not readily available for many of the HLA class II molecules. Computational prediction methods complement experimental studies, minimize the number of validation experiments, and significantly speed up the epitope mapping process. We collected test data from four independent studies that involved 721 peptide binding assays. Full overlapping studies of four antigens identified binding affinity of 103 peptides to seven common HLA-DR molecules (DRB1*0101, 0301, 0401, 0701, 1101, 1301, and 1501). We used these data to analyze performance of 21 HLA-II binding prediction servers accessible through the WWW. RESULTS Because not all servers have predictors for all tested HLA-II molecules, we assessed a total of 113 predictors. The length of test peptides ranged from 15 to 19 amino acids. We tried three prediction strategies - the best 9-mer within the longer peptide, the average of best three 9-mer predictions, and the average of all 9-mer predictions within the longer peptide. The best strategy was the identification of a single best 9-mer within the longer peptide. Overall, measured by the receiver operating characteristic method (AROC), 17 predictors showed good (AROC > 0.8), 41 showed marginal (AROC > 0.7), and 55 showed poor performance (AROC < 0.7). Good performance predictors included HLA-DRB1*0101 (seven), 1101 (six), 0401 (three), and 0701 (one). The best individual predictor was NETMHCIIPAN, closely followed by PROPRED, IEDB (Consensus), and MULTIPRED (SVM). None of the individual predictors was shown to be suitable for prediction of promiscuous peptides. Current predictive capabilities allow prediction of only 50% of actual T-cell epitopes using practical thresholds. CONCLUSION The available HLA-II servers do not match prediction capabilities of HLA-I predictors. Currently available HLA-II prediction servers offer only a limited prediction accuracy and the development of improved predictors is needed for large-scale studies, such as proteome-wide epitope mapping. The requirements for accuracy of HLA-II binding predictions are stringent because of the substantial effect of false positives.
Collapse
Affiliation(s)
- Hong Huang Lin
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
41
|
Kozaczynska K, Cornelissen M, Reiss P, Zorgdrager F, van der Kuyl AC. HIV-1 sequence evolution in vivo after superinfection with three viral strains. Retrovirology 2007; 4:59. [PMID: 17716368 PMCID: PMC2020475 DOI: 10.1186/1742-4690-4-59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/23/2007] [Indexed: 12/26/2022] Open
Abstract
With millions of people infected worldwide, the evolution of HIV-1 in vivo has been the subject of much research. Although recombinant viruses were detected early in the epidemic, evidence that HIV-1 dual infections really occurred came much later. Dual infected patients, consisting of coinfected (second infection before seroconversion) and superinfected (second infection after seroconversion) individuals, opened up a new area of HIV-1 evolution studies. Here, we describe the in-depth analysis of HIV-1 over time in a patient twice superinfected with HIV-1, first with a subtype B (B2) strain and then with CRF01_AE after initial infection with a subtype B (B1) strain. The nucleotide evolution of gag and env-V3 of the three strains followed a similar pattern: a very low substitution rate in the first 2–3 years of infection, with an increase in synonymous substitutions thereafter. Convergent evolution at the protein level was rare: only a single amino acid in a gag p24 epitope showed convergence in the subtype B strains. Reversal of CTL-epitope mutations were also rare, and did not converge. Recombinant viruses were observed between the two subtype B strains. Luciferase-assays suggested that the CRF01_AE long terminal repeat (LTR) constituted the strongest promoter, but this was not reflected in the plasma viral load. Specific real-time PCR assays based upon the env gene showed that strain B2 and CRF01_AE RNA was present in equal amounts, while levels of strain B1 were 100-fold lower. All three strains were detected in seminal plasma, suggesting that simultaneous transmission is possible.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Evolution, Molecular
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genome, Viral/genetics
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/isolation & purification
- Humans
- Mutation, Missense
- RNA, Viral/blood
- Recombination, Genetic
- Semen/virology
- Sequence Analysis, DNA
- T-Lymphocytes, Cytotoxic/immunology
- Viral Load
- Viremia/virology
Collapse
Affiliation(s)
- Karolina Kozaczynska
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Peter Reiss
- Department of Internal Medicine, Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|