1
|
Jao TM, Wu CZ, Cheng CW, Guo CH, Bai CY, Chang LC, Fang TC, Chen JS. uPA deficiency aggravates cBSA-induced membranous nephropathy through Th2-prone immune response in mice. J Transl Med 2023; 103:100146. [PMID: 37004912 DOI: 10.1016/j.labinv.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
Urokinase plasminogen activator (uPA) is a crucial activator of the fibrinolytic system that modulates tissue remodeling, cancer progression, and inflammation. However, its role in membranous nephropathy (MN) remains unclear. To clarify this issue, an established mouse model mimicking human MN induced by cationic bovine serum albumin (cBSA) in BALB/c mice was used, which have a Th2-prone genetic background. To induce MN, cBSA was injected into Plau knockout (Plau-/-) and wild-type (WT) mice. The blood and urine samples were collected to measure biochemical parameters, including serum concentrations of IgG1 and IgG2a, using enzyme-linked immunoassay. The kidneys were histologically examined for the presence of glomerular polyanions, reactive oxygen species (ROS), and apoptosis, and transmission electron microscopy was used to examine subepithelial deposits. Lymphocyte subsets were determined by flow cytometry. Four weeks post-cBSA administration, Plau-/- mice exhibited a significantly high urine protein/creatine ratio, hypoalbuminemia, and hypercholesterolemia compared with WT mice. Histologically, compared with WT mice, Plau-/- mice showed more severe glomerular basement thickening, mesangial expansion, IgG granular deposition, intensified podocyte effacement, irregular thickening of glomerular basement membrane and subepithelial deposits, and abolishment of the glycocalyx. Moreover, increased renal ROS and apoptosis were observed in Plau-/- mice with MN. B lymphocyte subsets and the IgG1/IgG2a ratio were significantly higher in Plau-/- mice after MN induction. Thus, uPA deficiency induces a Th2-dominant immune response, leading to increased subepithelial deposits, ROS, and apoptosis in the kidneys, subsequently exacerbating MN progression in mice. This study provides a novel insight into the role of uPA in MN progression.
Collapse
|
2
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
3
|
Shmakova AA, Popov VS, Romanov IP, Khabibullin NR, Sabitova NR, Karpukhina AA, Kozhevnikova YA, Kurilina EV, Tsokolaeva ZI, Klimovich PS, Rubina KA, Vassetzky YS, Semina EV. Urokinase System in Pathogenesis of Pulmonary Fibrosis: A Hidden Threat of COVID-19. Int J Mol Sci 2023; 24:ijms24021382. [PMID: 36674896 PMCID: PMC9867169 DOI: 10.3390/ijms24021382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.
Collapse
Affiliation(s)
- Anna A. Shmakova
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Iliya P. Romanov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | | | - Nailya R. Sabitova
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | | | | | - Ella V. Kurilina
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Zoya I. Tsokolaeva
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Polina S. Klimovich
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | | | - Ekaterina V. Semina
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Kim JH, Yang H, Kim MW, Cho KS, Kim DS, Yim HE, Atala Z, Ko IK, Yoo JJ. The Delivery of the Recombinant Protein Cocktail Identified by Stem Cell-Derived Secretome Analysis Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury. Front Bioeng Biotechnol 2022; 10:848679. [PMID: 35646873 PMCID: PMC9130839 DOI: 10.3389/fbioe.2022.848679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in cell therapy have shown the potential to treat kidney diseases. As the treatment effects of the cell therapies are mainly attributed to secretomes released from the transplanted cells, the delivery of secretomes or conditioned medium (CM) has emerged as a promising treatment option for kidney disease. We previously demonstrated that the controlled delivery of human placental stem cells (hPSC)-derived CM using platelet-rich plasma (PRP) ameliorated renal damages and restored kidney function in an acute kidney injury (AKI) model in rats. The proteomics study of the hPSC-CM revealed that hPSC secrets several proteins that contribute to kidney tissue repair. Based on our results, this study proposed that the proteins expressed in the hPSC-CM and effective for kidney repair could be used as a recombinant protein cocktail to treat kidney diseases as an alternative to CM. In this study, we analyzed the secretome profile of hPSC-CM and identified five proteins (follistatin, uPAR, ANGPLT4, HGF, VEGF) that promote kidney repair. We investigated the feasibility of delivering the recombinant protein cocktail to improve structural and functional recovery after AKI. The pro-proliferative and anti-apoptotic effects of the protein cocktail on renal cells are demonstrated in vitro and in vivo. The intrarenal delivery of these proteins with PRP ameliorates the renal tubular damage and improved renal function in the AKI-induced rats, yielding similar therapeutic effects compared to the CM delivery. These results indicate that our strategy may provide a therapeutic solution to many challenges associated with kidney repair resulting from the lack of suitable off-the-shelf regenerative medicine products.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Heejo Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kang Su Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Pediatrics, Korea University College of Medicine, Seoul, South Korea
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
5
|
Zou ML, Teng YY, Chen ZH, Liu SY, Jia Y, Zhang KW, Wu JJ, Yuan ZD, Tang XY, Yu S, Ye JX, Li X, Zhou XJ, Yuan FL. The uPA System Differentially Alters Fibroblast Fate and Profibrotic Ability in Skin Fibrosis. Front Immunol 2022; 13:845956. [PMID: 35371006 PMCID: PMC8966095 DOI: 10.3389/fimmu.2022.845956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Skin fibrosis is a common pathological feature of various diseases, and few treatment strategies are available because of the molecular pathogenesis is poorly understood. The urokinase-type plasminogen activator (uPA) system is the major serine protease system, and its components uPA, urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1(PAI-1) are widely upregulated in fibrotic diseases, including hypertrophic scars, keloids, and scleroderma. Here, we found that the successful binding of uPA and uPAR activates the downstream peroxisome proliferator-activated receptor (PPAR) signalling pathway to reduce the proliferation, migration, and contraction of disease-derived fibroblasts, contributing to the alleviation of skin fibrosis. However, increased or robust upregulation of the inhibitor PAI-1 inhibits these effects, suggesting of the involvement of PAI-1 in skin fibrosis. Subsequent in vivo studies showed that uPAR inhibitors increased skin fibrosis in mouse models, while uPA agonists and PAI-1 inhibitors reversed these effects. Our findings demonstrate a novel role for the uPA system and highlights its relationships with skin fibrosis, thereby suggesting new therapeutic approaches targeting the uPA system.
Collapse
Affiliation(s)
- Ming-Li Zou
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Ying-Ying Teng
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhong-Hua Chen
- Institute of Integrated Traditional Chinese and Western Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Si-Yu Liu
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Yu Tang
- Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Shun Yu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-Xing Ye
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xia Li
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Jin Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
6
|
Wei C, Spear R, Hahm E, Reiser J. suPAR, a Circulating Kidney Disease Factor. Front Med (Lausanne) 2021; 8:745838. [PMID: 34692736 PMCID: PMC8526732 DOI: 10.3389/fmed.2021.745838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) is a multifaceted, GPI-anchored three-domain protein. Release of the receptor results in variable levels of soluble uPAR (suPAR) in the blood circulation. suPAR levels have been linked to many disease states. In this mini-review, we discuss suPAR as a key circulating molecule mediating kidney disease with a particular focus on differently spliced isoforms.
Collapse
Affiliation(s)
- Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ryan Spear
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Eunsil Hahm
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
7
|
Butt S, Jeppesen JL, Iversen LV, Fenger M, Eugen-Olsen J, Andersson C, Jacobsen S. Association of soluble urokinase plasminogen activator receptor levels with fibrotic and vascular manifestations in systemic sclerosis. PLoS One 2021; 16:e0247256. [PMID: 33617568 PMCID: PMC7899346 DOI: 10.1371/journal.pone.0247256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE We assessed the association of suPAR (soluble urokinase plasminogen activator receptor) plasma levels with fibrotic and vascular manifestations in patients with systemic sclerosis (SSc). METHODS suPAR plasma levels were measured in 121 consecutive patients with SSc and correlated to pulmonary and vascular features of SSc, including interstitial lung disease as characterized by percentage of predicted CO diffusing capacity (DLco) and forced vital capacity (FVC), pulmonary fibrosis by computed tomography, and pulmonary arterial hypertension, telangiectasias, and digital ulcers. RESULTS Overall, 121 SSc patients (84% females; mean age, 57 ± 12 [range: 22-79] years) were enrolled; 35% had diffuse cutaneous SSc. suPAR plasma levels ranged from 1.3-10.2 [median: 2.9 (p25-p75: 2.3-3.9)] ng/mL. Log(suPAR) levels correlated with DLco (r = -0.41, p <0.0001) and FVC (r = -0.26, p = 0.004), also when adjusted for age, sex, and pulmonary hypertension. A suPAR cut-off level of >2.5 ng/mL showed a sensitivity of 91% for identifying patients with either DLco <50% or FVC < 60% of the predicted values. Similarly, 19 (90%) had a suPAR >2.5 ng/mL among those diagnosed with pulmonary fibrosis vs. 59 (60%) among those who did not (p = 0.008). suPAR values were not associated with vascular manifestations. CONCLUSION suPAR levels strongly correlated with pulmonary involvement in SSc. Future studies should test if suPAR estimation can be used for surveillance of severe pulmonary involvement in SSc.
Collapse
Affiliation(s)
- Sheraz Butt
- Department of Internal Medicine, Amager and Hvidovre University Hospital, Glostrup, Denmark
- * E-mail:
| | - Jørgen L. Jeppesen
- Department of Internal Medicine, Amager and Hvidovre University Hospital, Glostrup, Denmark
| | - Line Vinderslev Iversen
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen, Denmark
- Department of Dermatology and Allergy, Odense University Hospital, Odense, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Amager and Hvidovre University Hospital, Hvidovre, Denmark
| | - Jesper Eugen-Olsen
- Clinical Research Centre, Amager and Hvidovre University Hospital, Hvidovre, Denmark
| | - Charlotte Andersson
- Department of Cardiology, Herlev-Gentofte University Hospital, Hellerup, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Centre for Rheumatology and Spine Disease, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
8
|
Emodin ameliorates tubulointerstitial fibrosis in obstructed kidneys by inhibiting EZH2. Biochem Biophys Res Commun 2020; 534:279-285. [PMID: 33288199 DOI: 10.1016/j.bbrc.2020.11.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Emodin, a major component of Chinese herbal rhubarb, delays the progression of chronic renal failure. However, the effect and working mechanisms of Emodin on renal tubulointerstitial fibrosis remains elusive. We hypothesized that emodin inhibits renal tubulointerstitial fibrosis through EZH2, a histone methyltransferase. Our in vivo and in vitro studies demonstrate that emodin reduced extracellular collagen deposition and inhibited Smad3 and CTGF pro-fibrotic signaling pathways, which were correlated with the down-regulation of EZH2 and reduced trimethylation of histone H3 on lysine 27 (H3k27me3) in NRK-49F fibrotic cells and UUO kidneys. Inhibition of EZH2 by 3-DZNeP blocked or attenuated the anti-fibrotic effect of emodin in UUO kidneys and NRK-49F cells. These data indicate that emodin inhibits renal tubulointerstitial fibrosis in obstructed kidneys and this effect is mediated through EZH2.
Collapse
|
9
|
Association of urokinase and Vitamin D receptor genes SNPs and urolithiasis in an Iraqi population. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Stronati L, Palone F, Negroni A, Colantoni E, Mancuso AB, Cucchiara S, Cesi V, Isoldi S, Vitali R. Dipotassium Glycyrrhizate Improves Intestinal Mucosal Healing by Modulating Extracellular Matrix Remodeling Genes and Restoring Epithelial Barrier Functions. Front Immunol 2019; 10:939. [PMID: 31105713 PMCID: PMC6498413 DOI: 10.3389/fimmu.2019.00939] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
Gut mucosal healing (MH) is considered a key therapeutic target and prognostic parameter in the management of inflammatory bowel disease (IBD). The dipotassium glycyrrhizate (DPG), a salt of the glycoconjugated triterpene glycyrrhizin, has been shown to inhibit the High Mobility Group Box 1 (HMGB1) protein, an allarmin strongly implicated in the pathogenesis of most inflammatory and auto-immune disorders. Here we discuss new insights on how DPG acts on MH comparing the acute phase and the recovery phase from experimental colitis in mice. We found that DPG strongly accelerates MH by differently regulating pro-inflammatory (CXCL1, CXCL3, CXCL5, PTGS2, IL-1β, IL-6, CCL12, CCL7) and wound healing (COL3A1, MMP9, VTN, PLAUR, SERPINE, CSF3, FGF2, FGF7, PLAT, TIMP1) genes as observed only during the recovery phase of colitis. Relevant issue is the identification of extracellular matrix (ECM) remodeling genes, VTN, and PLAUR, as crucial genes to achieve MH during DPG treatment. Furthermore, a noticeable recovery of intestinal epithelial barrier structural organization, wound repair ability, and functionality is observed in two human colorectal adenocarcinoma cell lines exposed to DPG during inflammation. Thus, our study identifies DPG as a potent tool for controlling intestinal inflammation and improving MH.
Collapse
Affiliation(s)
- Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Palone
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Anna Negroni
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Eleonora Colantoni
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Anna Barbara Mancuso
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cesi
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Sara Isoldi
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Roberta Vitali
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| |
Collapse
|
11
|
Huang JM, Ren RY, Bao Y, Guo JC, Xiang W, Jing XZ, Shi J, Zhang GX, Li L, Tian Y, Kang H, Guo FJ. Ulinastatin Inhibits Osteoclastogenesis and Suppresses Ovariectomy-Induced Bone Loss by Downregulating uPAR. Front Pharmacol 2018; 9:1016. [PMID: 30245631 PMCID: PMC6137085 DOI: 10.3389/fphar.2018.01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that uPAR acts a crucial part in cell migration and the modulation of bone homeostasis. As a natural serine protease inhibitor, ulinastatin owns the capacity to reduce proinflammatory factors, downregulate the activation of NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways. Osteoclastogenesis has been demonstrated to be related with low-grade inflammation which involves cell migration, thus we speculate that ulinastatin may have a certain kind of impact on uPAR so as to be a potential inhibiting agent of osteoclastogenesis. In this research, we investigated the role which ulinastatin plays in RANKL-induced osteoclastogenesis both in vivo and in vitro. Ulinastatin inhibited osteoclast formation and bone resorption in a dose-dependent manner in primary bone marrow-derived macrophages (BMMs), and knockdown of uPAR could completely repress the formation of osteoclasts. At the molecular level, ulinastatin suppressed RANKL-induced activation of cathepsin K, TRAP, nuclear factor-κB (NF-κB) and MAPKs, and decreased the expression of uPAR. At the meantime, ulinastatin also decreased the expression of osteoclast marker genes, including cathepsin K, TRAP, RANK, and NFATc1. Besides, ulinastatin prevented bone loss in ovariectomized C57 mice by inhibiting the formation of osteoclasts. To sum up, this research confirmed that ulinastatin has the ability to inhibit osteoclastogenesis and prevent bone loss, and uPAR plays a crucial role in that process. Therefore, ulinastatin could be chosen as an effective alternative therapeutics for osteoclast-related diseases.
Collapse
Affiliation(s)
- Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran-Yue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Bao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Chao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Xiang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Tian
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng-Jin Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
López-Guisa JM, Howsmon R, Munro A, Blair KM, Fisher E, Hermes H, Zager R, Stevens AM. Chimeric maternal cells in offspring do not respond to renal injury, inflammatory or repair signals. CHIMERISM 2017; 2:42-9. [PMID: 21912718 DOI: 10.4161/chim.2.2.16446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022]
Abstract
Maternal microchimerism (MMc) can persist for years in a child, and has been implicated in the pathogenesis of chronic inflammatory autoimmune diseases. Chimeric cells may either contribute to disease by acting as immune targets or expand in response to signals of injury, inflammation or repair. We investigated the role of maternal cells in tissue injury in the absence of autoimmunity by quantifying MMc by quantitative PCR in acute and chronic models of renal injury: (1) reversible acute renal injury, inflammation and regeneration induced by rhabdomyolysis and (2) chronic injury leading to fibrosis after unilateral ureteral obstruction. We found that MMc is common in the mouse kidney. In mice congenic with their mothers neither acute nor chronic renal injury with fibrosis influenced the levels or prevalence of MMc. Maternal cells expressing MHC antigens not shared by offspring (H2(b/d)) were detected at lower levels in all groups of homozygous H2(b/b) or H2(d/d) offspring, with or without renal injury, suggesting that partial tolerance to low levels of alloantigens may regulate the homeostatic levels of maternal cells within tissues. Maternal cells homozygous for H2(b) were lost in H2(b/d) offspring only after acute renal failure, suggesting that an inflammatory stimulus led to loss of tolerance to homozygous maternal cells. The study suggests that elevated MMc previously found in association with human autoimmune diseases may not be a response to non-specific injury or inflammatory signals, but rather a primary event integral to the pathogenesis of autoimmunity.
Collapse
|
13
|
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469:1415-1423. [DOI: 10.1007/s00424-017-2014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022]
|
14
|
Song Y, Peng C, Lv S, Cheng J, Liu S, Wen Q, Guan G, Liu G. Adipose-derived stem cells ameliorate renal interstitial fibrosis through inhibition of EMT and inflammatory response via TGF-β1 signaling pathway. Int Immunopharmacol 2017; 44:115-122. [PMID: 28092863 DOI: 10.1016/j.intimp.2017.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/15/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022]
Abstract
Adipose-derived stem cells (ADSCs) have been successfully used to treat acute kidney injury or acute renal failure. However, the effect of ADSCs on treating renal interstitial fibrosis remains unknown. Here, we assessed the therapeutic efficacy of ADSCs on renal interstitial fibrosis induced by unilateral ureter obstruction (UUO) and explored the potential mechanisms. After 7days of UUO, rats were injected with ADSCs (5×106) or vehicle via tail vein. We found that ADSCs administration significantly ameliorated renal interstitial fibrosis, the occurrence of epithelial-mesenchymal transition (EMT) and inflammatory response. Furthermore, ADSCs administration could inhibit the activation of transforming growth factor-β1 (TGF-β1) signaling pathway, which might play a crucial role in renal interstitial fibrosis of the UUO model rats. These results suggested that ADSCs treatment attenuates renal interstitial fibrosis possibly through inhibition of EMT and inflammatory response via TGF-β1 signaling pathway. Therefore, ADSCs may be an effective therapeutic strategy for the treatment of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Changliang Peng
- Department of Spinal Surgery, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Shasha Lv
- Department of Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Jing Cheng
- Department of Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Shanshan Liu
- Department of Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Qing Wen
- Department of Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Guangju Guan
- Department of Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, China.
| | - Gang Liu
- Department of Nephrology, The Second Hospital of Shandong University, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Palygin O, Ilatovskaya DV, Staruschenko A. Protease-activated receptors in kidney disease progression. Am J Physiol Renal Physiol 2016; 311:F1140-F1144. [PMID: 27733370 DOI: 10.1152/ajprenal.00460.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023] Open
Abstract
Protease-activated receptors (PARs) are members of a well-known family of transmembrane G protein-coupled receptors (GPCRs). Four PARs have been identified to date, of which PAR1 and PAR2 are the most abundant receptors, and have been shown to be expressed in the kidney vascular and tubular cells. PAR signaling is mediated by an N-terminus tethered ligand that can be unmasked by serine protease cleavage. The receptors are activated by endogenous serine proteases, such as thrombin (acts on PARs 1, 3, and 4) and trypsin (PAR2). PARs can be involved in glomerular, microvascular, and inflammatory regulation of renal function in both normal and pathological conditions. As an example, it was shown that human glomerular epithelial and mesangial cells express PARs, and these receptors are involved in the pathogenesis of crescentic glomerulonephritis, glomerular fibrin deposition, and macrophage infiltration. Activation of these receptors in the kidney also modulates renal hemodynamics and glomerular filtration rate. Clinical studies further demonstrated that the concentration of urinary thrombin is associated with glomerulonephritis and type 2 diabetic nephropathy; thus, molecular and functional mechanisms of PARs activation can be directly involved in renal disease progression. We briefly discuss here the recent literature related to activation of PAR signaling in glomeruli and the kidney in general and provide some examples of PAR1 signaling in glomeruli podocytes.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
16
|
Hu N, Duan J, Li H, Wang Y, Wang F, Chu J, Sun J, Liu M, Wang C, Lu C, Wen A. Hydroxysafflor Yellow A Ameliorates Renal Fibrosis by Suppressing TGF-β1-Induced Epithelial-to-Mesenchymal Transition. PLoS One 2016; 11:e0153409. [PMID: 27088510 PMCID: PMC4835075 DOI: 10.1371/journal.pone.0153409] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/29/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Renal fibrosis is the common pathological foundation of many chronic kidney diseases (CKDs). The aim of this study was to investigate whether Hydroxysafflor yellow A (HSYA) can preserve renal function by inhibiting the progression of renal fibrosis and the potential mechanisms. METHODS Renal fibrosis was induced by unilateral ureteral obstruction (UUO) performed on 7-week-old C57BL/6 mice. HSYA (10, 50 and 100 mg/kg) were intragastrically administered. Sham group and model group were administered with the same volume of vehicle. Serum and kidney samples were collected 14 days after the UUO surgery. Serum biochemical indicators were measured by automatic biochemical analyzer. Histological changes were evaluated by HE and Masson staining. In vitro, the anti-fibrotic effect of HSYA was tested on human recombinant transforming growth factor-β1 (TGF-β1) stimulated HK-2 cells. The protein levels of α-SMA, collagen-I and fibronectin in kidney tissue and HK-2 cells were measured by immunohistochemistry and immunofluorescence. The protein levels of apoptosis-relative and TGF-β1/Smad3 signaling were detected by western blot. RESULTS HSYA slowed the development of renal fibrosis both in vivo and in vitro. In UUO rats, renal function index suggested that HSYA treatment decreased the level of serum creatinine (Scr) and blood urea nitrogen (BUN) rose by UUO (P<0.05). HE staining and Masson staining demonstrated that kidney interstitial fibrosis, tubular atrophy, and inflammatory cell infiltration were notably attenuated in the high-dose HSYA group compared with the model group. The expressions of α-SMA, collagen-I and fibronectin were decreased in the UUO kidney and HK-2 cells of the HSYA-treatment group. Moreover, HSYA reduced the apoptotic rate of HK-2 cells stimulated by TGF-β1. Further study revealed that HSYA regulated the TGF-β1/Smads signaling pathway both in kidney tissue and HK-2 cells. CONCLUSIONS These results suggested that HSYA had a protective effect against fibrosis in renal cells, at least partly, through inhibiting TGF-β1/smad3-mediated Epithelial-mesenchymal transition signaling pathway.
Collapse
Affiliation(s)
- Naping Hu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Huihui Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yanhua Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fang Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jianjie Chu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jin Sun
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Chao Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Chengtao Lu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- * E-mail: (ADW); (CTL)
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- * E-mail: (ADW); (CTL)
| |
Collapse
|
17
|
Atkinson JM, Pullen N, Da Silva-Lodge M, Williams L, Johnson TS. Inhibition of Thrombin-Activated Fibrinolysis Inhibitor Increases Survival in Experimental Kidney Fibrosis. J Am Soc Nephrol 2015; 26:1925-37. [PMID: 25411467 PMCID: PMC4520161 DOI: 10.1681/asn.2014030303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/30/2014] [Indexed: 11/03/2022] Open
Abstract
Uncontrolled diabetes, inflammation, and hypertension are key contributors to progressive renal fibrosis and subsequent loss of renal function. Reduced fibrinolysis appears to be a feature of ESRD, but its contribution to the fibrotic program has not been extensively studied. Here, we show that in patients with CKD, the activity levels of serum thrombin-activated fibrinolysis inhibitor and plasmin strongly correlated with the degree of renal function impairment. We made similar observations in rats after subtotal nephrectomy and tested whether pharmacologic inhibition of thrombin-activated fibrinolysis inhibitor with UK-396082 could reduce renal fibrosis and improve renal function. Compared with untreated animals, UK-396082-treated animals had reduced glomerular and tubulointerstitial fibrosis after subtotal nephrectomy. Renal function, as measured by an increase in creatinine clearance, was maintained and the rate of increase in proteinuria was reduced in UK-396082-treated animals. Furthermore, cumulative survival improved from 16% to 80% with inhibition of thrombin-activated fibrinolysis inhibitor. Taken together, these data support the importance of the fibrinolytic axis in regulating renal fibrosis and point to a potentially important therapeutic role for suppression of thrombin-activated fibrinolysis inhibitor activity.
Collapse
Affiliation(s)
- John M Atkinson
- Sheffield Kidney Institute & Academic Nephrology Unit, University of Sheffield, Sheffield, United Kingdom; UCB Celltech Pharmaceuticals, Berkshire, United Kingdom; and
| | - Nick Pullen
- Pfizer Global Research Development, Cambridge, Massachusetts
| | - Michelle Da Silva-Lodge
- Sheffield Kidney Institute & Academic Nephrology Unit, University of Sheffield, Sheffield, United Kingdom
| | - Lynne Williams
- Sheffield Kidney Institute & Academic Nephrology Unit, University of Sheffield, Sheffield, United Kingdom
| | - Tim S Johnson
- Sheffield Kidney Institute & Academic Nephrology Unit, University of Sheffield, Sheffield, United Kingdom; UCB Celltech Pharmaceuticals, Berkshire, United Kingdom; and
| |
Collapse
|
18
|
Kim S, Kim SJ, Yoon HE, Chung S, Choi BS, Park CW, Shin SJ. Fimasartan, a Novel Angiotensin-Receptor Blocker, Protects against Renal Inflammation and Fibrosis in Mice with Unilateral Ureteral Obstruction: the Possible Role of Nrf2. Int J Med Sci 2015; 12:891-904. [PMID: 26640409 PMCID: PMC4643080 DOI: 10.7150/ijms.13187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES A newly developed angiotensin II receptor blocker, fimasartan, is effective in lowering blood pressure through its action on the renin-angiotensin system. Renal interstitial fibrosis, believed to be due to oxidative injury, is an end-stage process in the progression of chronic kidney disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is known to regulate cellular oxidative stress and induce expression of antioxidant genes. In this study we investigated the role of Nrf2 in fimasartan-mediated antioxidant effects in mice with renal fibrosis induced by unilateral ureteral obstruction (UUO). MATERIALS AND METHODS UUO was induced surgically in mice, followed by either no treatment with fimasartan or the intraperitoneal administration of fimasartan (3 mg/kg/day). On day 7, we evaluated the changes in the renin-angiotensin system (RAS) and the expression of Nrf2 and its downstream antioxidant genes, as well as renal inflammation, apoptosis, and fibrosis in the obstructed kidneys. The effect of fimasartan on the Nrf2 pathway was also investigated in HK-2 cells stimulated by tumor necrosis factor-α. RESULTS The mice with surgically induced UUO showed increased renal inflammation and fibrosis as evidenced by histopathologic findings and total collagen content in the kidney. These effects were attenuated in the obstructed kidneys of the fimasartan-treated mice. Fimasartan treatment inhibited RAS activation and the expression of Nox1, Nox2, and Nox4. In contrast, fimasartan upregulated the renal expression of Nrf2 and its downstream signaling molecules (such as NQO1; HO-1; GSTa2 and GSTm3). Furthermore, it increased the expression of antioxidant enzymes, including CuSOD, MnSOD, and catalase. The fimasartan-treated mice had significantly less apoptosis on TUNEL staining, with decreased levels of pro-apoptotic protein and increased levels of anti-apoptotic protein. In the HK-2 cells, fimasartan treatment inhibited RAS activation, decreased expression of mitogen-activated protein kinases (MAPKs), and upregulated the Nrf2 pathway. CONCLUSIONS These results suggest that fimasartan has beneficial effects in reducing renal oxidative stress, inflammation, and fibrosis. Possible mechanisms to explain these effects are inhibition of RAS and MAPKs and upregulation of Nrf2 signaling, with subsequent induction of antioxidant pathways.
Collapse
Affiliation(s)
- Soojeong Kim
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Sung Jun Kim
- 2. Division of of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Hye Eun Yoon
- 2. Division of of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Sungjin Chung
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Bum Soon Choi
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Cheol Whee Park
- 1. Division of of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea
| | - Seok Joon Shin
- 2. Division of of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| |
Collapse
|
19
|
Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 2014; 5:122. [PMID: 25376879 PMCID: PMC4445991 DOI: 10.1186/scrt512] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Fibrosis, or scar formation, is a pathological condition characterized by excessive production and accumulation of collagen, loss of tissue architecture, and organ failure in response to uncontrolled wound healing. Several cellular populations have been implicated, including bone marrow-derived circulating fibrocytes, endothelial cells, resident fibroblasts, epithelial cells, and recently, perivascular cells called pericytes. We previously demonstrated pericyte functional heterogeneity in skeletal muscle. Whether pericyte subtypes are present in other tissues and whether a specific pericyte subset contributes to organ fibrosis are unknown. Methods Here, we report the presence of two pericyte subtypes, type-1 (Nestin-GFP-/NG2-DsRed+) and type-2 (Nestin-GFP+/NG2-DsRed+), surrounding blood vessels in lungs, kidneys, heart, spinal cord, and brain. Using Nestin-GFP/NG2-DsRed transgenic mice, we induced pulmonary, renal, cardiac, spinal cord, and cortical injuries to investigate the contributions of pericyte subtypes to fibrous tissue formation in vivo. Results A fraction of the lung’s collagen-producing cells corresponds to type-1 pericytes and kidney and heart pericytes do not produce collagen in pathological fibrosis. Note that type-1, but not type-2, pericytes increase and accumulate near the fibrotic tissue in all organs analyzed. Surprisingly, after CNS injury, type-1 pericytes differ from scar-forming PDGFRβ + cells. Conclusions Pericyte subpopulations respond differentially to tissue injury, and the production of collagen by type-1 pericytes is organ-dependent. Characterization of the mechanisms underlying scar formation generates cellular targets for future anti-fibrotic therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/scrt512) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:55-68. [PMID: 25447049 DOI: 10.1016/j.ajpath.2014.08.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/10/2023]
Abstract
Alveolar type II epithelial (ATII) cell injury precedes development of pulmonary fibrosis. Mice lacking urokinase-type plasminogen activator (uPA) are highly susceptible, whereas those deficient in plasminogen activator inhibitor (PAI-1) are resistant to lung injury and pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) has been considered, at least in part, as a source of myofibroblast formation during fibrogenesis. However, the contribution of altered expression of major components of the uPA system on ATII cell EMT during lung injury is not well understood. To investigate whether changes in uPA and PAI-1 by ATII cells contribute to EMT, ATII cells from patients with idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, and mice with bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced lung injury were analyzed for uPA, PAI-1, and EMT markers. We found reduced expression of E-cadherin and zona occludens-1, whereas collagen-I and α-smooth muscle actin were increased in ATII cells isolated from injured lungs. These changes were associated with a parallel increase in PAI-1 and reduced uPA expression. Further, inhibition of Src kinase activity using caveolin-1 scaffolding domain peptide suppressed bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced EMT and restored uPA expression while suppressing PAI-1. These studies show that induction of PAI-1 and inhibition of uPA during fibrosing lung injury lead to EMT in ATII cells.
Collapse
|
21
|
Hua L, Liu Y, Zhen S, Wan D, Cao J, Gao X. Expression and biochemical characterization of recombinant human epididymis protein 4. Protein Expr Purif 2014; 102:52-62. [PMID: 25131860 DOI: 10.1016/j.pep.2014.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023]
Abstract
Whey acidic proteins (WAP) belong to a large gene family of antibacterial peptides that perform critical immune system functions. The function of human epididymis protein 4 (HE4), a 124-amino acid long polypeptide that has two whey acidic protein four-disulfide core (WFDC) domains, is not well studied. Here, a fusion gene encoding the HE4 protein fused to an IgG1 Fc domain was constructed. The recombinant HE4 protein was expressed as a secretory protein in Pichia pastoris and mammalian HEK293-F cells and was subsequently purified. Our data suggested that the HE4 protein produced by these two expression systems bound to both gram-negative and gram-positive bacteria, but demonstrated slightly inhibitory activity towards the growth of Staphylococcus aureus. Moreover, HE4 exhibited proteinase inhibitory activity towards trypsin, elastase, matrix metallopeptidase 9, and the secretory proteinases from Bacillus subtilis. The effects of glycosylation on the biochemical characterization of HE4 were also investigated. LC-ESI-MS glycosylation analysis showed that the high-mannose glycosylated form of HE4 expressed by P. pastoris has lower biological activity when compared to its complex-glycosylated form produced from HEK293-F cells. The implications of this are discussed, which may be provide theoretical basis for its important role in the development of cancer and innate immune system.
Collapse
Affiliation(s)
- Ling Hua
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan 430070, Hubei, PR China; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yunhui Liu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Shuai Zhen
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Deyou Wan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jiyue Cao
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan 430070, Hubei, PR China.
| | - Xin Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
22
|
Cheng H, Chen C, Wang S. Effects of uPA on mesangial matrix changes in the kidney of diabetic rats. Ren Fail 2014; 36:1322-7. [PMID: 25010090 DOI: 10.3109/0886022x.2014.934694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effect of urokinase-type plasminogen activator (uPA) on mesangial matrix in the kidney of diabetic rats and its related mechanisms. METHODS Diabetic Sprague-Dawley (SD) rats induced by intraperitoneal injection of streptozotocin (STZ) were randomly and evenly divided into two groups: DM + vehicle, and DM + uPA (2500 U kg(-1) uPA via tail vein once a day for four weeks). The normal SD rats without diabetes were considered as control group. Rats in the three groups were executed and the heart blood was sampled for determination of blood glucose and serum creatinine. Meanwhile, kidney tissues of rats were also harvest for measurement of glomerular area, volume, and mesangial area by periodic acid silver methenamine (PASA) staining. The expression of urokinase-type plasminogen activator receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and collagen IV in renal tissues was tested with immunohistochemistry. RESULTS Compared with control, the DM rats had obvious albuminuria, significantly (p < 0.01) increased glomerular volume and mesangial matrix area, and significantly (p < 0.05) higher expression of uPAR, PAI-1 and collagen IV in mesangial matrix, significantly up-regulated (p < 0.05) glomerular uPAR, PAI-1, and collagen IV expression. After treated with uPA, the diabetic rats had significantly (p < 0.05) reduced albuminuria, significantly (p < 0.01) improved glomerular volume and mesangial matrix, significantly (p < 0.05) down-regulated PAI-1 and collagen IV expression in mesangial matrix. However, the uPAR expression in renal tissues were unchangeable (p > 0.05) and PAI-1 and collagen IV expression were significantly (p < 0.05) reduced when diabetic rats were treated with uPA. CONCLUSION uPA can down-regulate glomerular PAI-1 expression in the DM rats but not significantly influence uPAR expression, suggesting that uPA might regulate the mesangial cell (MC) and its matrix expression and improve diseased diabetic mesangial matrix via its combination with uPAR to uptake PAI-1 and accelerate its degradation.
Collapse
Affiliation(s)
- Hui Cheng
- Division of Nephrology, Wuhan University, Renmin Hospital , Wuhan , People's Republic of China
| | | | | |
Collapse
|
23
|
Lee JH, Oh MH, Park JS, Na GJ, Gil HW, Yang JO, Lee EY, Hong SY. Urokinase, urokinase receptor, and plasminogen activator inhibitor-1 expression on podocytes in immunoglobulin A glomerulonephritis. Korean J Intern Med 2014; 29:176-82. [PMID: 24648800 PMCID: PMC3956987 DOI: 10.3904/kjim.2014.29.2.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/06/2012] [Accepted: 05/23/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND/AIMS The purpose of this study was to investigate the expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), and plasminogen activator inhibitor (PAI)-1 on podocytes in immunoglobulin A (IgA) glomerulonephritis (GN). METHODS Renal biopsy specimens from 52 IgA GN patients were deparaffinized and subjected to immunohistochemical staining for uPA, PAI-1, and uPAR. The biopsies were classified into three groups according to the expression of uPA and uPAR on podocytes: uPA, uPAR, and a negative group. The prevalences of the variables of the Oxford classification for IgA GN were compared among the groups. RESULTS On podocytes, uPA was positive in 11 cases and uPAR was positive in 38 cases; by contrast, PAI-1 was negative in all cases. Expression of both uPA and uPAR on podocytes was less frequently accompanied by tubulointerstitial fibrosis. CONCLUSIONS Our results suggest a possible protective effect of podocyte uPA/uPAR expression against interstitial fibrosis.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Mee-Hye Oh
- Department of Pathology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jae-Seok Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Gyoung-Jae Na
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye-Wook Gil
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jong-Oh Yang
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Eun-Young Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sae-Yong Hong
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
24
|
Ahn SY, Chin HJ. Urokinase-type plasminogen activator receptor in IgA nephropathy. Korean J Intern Med 2014; 29:166-9. [PMID: 24648797 PMCID: PMC3956984 DOI: 10.3904/kjim.2014.29.2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Shin-Young Ahn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
25
|
Chung S, Yoon HE, Kim SJ, Kim SJ, Koh ES, Hong YA, Park CW, Chang YS, Shin SJ. Oleanolic acid attenuates renal fibrosis in mice with unilateral ureteral obstruction via facilitating nuclear translocation of Nrf2. Nutr Metab (Lond) 2014; 11:2. [PMID: 24393202 PMCID: PMC3896758 DOI: 10.1186/1743-7075-11-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/01/2014] [Indexed: 12/12/2022] Open
Abstract
Background Renal interstitial fibrosis is a common final pathological process in the progression of kidney disease. This is primarily due to oxidative stress, which contributes to renal inflammation and fibrosis. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is known to coordinate induction of genes that encode antioxidant enzymes. We investigated the effects of oleanolic acid, a known Nrf2 activator, on oxidative stress-induced renal inflammation and fibrosis. Methods One day before unilateral ureteral obstruction (UUO) performed in C57BL/6 mice, oleanolic acid treatment was initiated and was continued until 3 and 7 days after UUO. Renal inflammation and fibrosis, markers of oxidative stress, and changes in Nrf2 expression were subsequently evaluated. Results In the obstructed kidneys of UUO mice, oleanolic acid significantly attenuated UUO-induced collagen deposition and fibrosis on day 7. Additionally, significantly less inflammatory cell infiltration, a lower ratio of Bax to Bcl-2 expression, and fewer apoptotic cells on TUNEL staining were observed in the obstructed kidneys of oleanolic acid-treated mice. Oleanolic acid increased the expression of nuclear Nrf2, heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and heat shock protein 70, and decreased lipid peroxidation in the obstructed kidney of UUO mice. There were no changes in the expression of total Nrf2 and Kelch-like ECH-associated protein 1, indicating that oleanolic acid enhanced nuclear translocation of Nrf2. Conclusions These results suggest that oleanolic acid may exert beneficial effects on renal fibrosis by increasing nuclear translocation of Nrf2 and subsequently reducing renal oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea.
| |
Collapse
|
26
|
Hiatt MJ, Ivanova L, Trnka P, Solomon M, Matsell DG. Urinary tract obstruction in the mouse: the kinetics of distal nephron injury. J Transl Med 2013; 93:1012-23. [PMID: 23917879 DOI: 10.1038/labinvest.2013.90] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 01/10/2023] Open
Abstract
Congenital urinary tract obstruction is the single most important cause of childhood chronic kidney disease. We have previously demonstrated that human and primate fetal obstruction impairs the development, differentiation, and maturation of the kidney. Research using postnatal rodent models has primarily focused upon the role of proximal tubular injury, with few reports of collecting duct system pathology or the suitability of the postnatal models for examining injury to the distal nephron. We have employed the mouse unilateral ureteric obstruction (UUO) model and examined time points ranging from 1 to 14 days of obstruction. Many of the key features of fetal collecting duct injury are replicated in the postnatal mouse model of obstruction. Obstruction causes a sixfold increase in myofibroblast accumulation, two- to threefold dilatation of tubules of the distal nephron, 65% reduction of principal cell aquaporin 2 expression, 75% reduction of collecting duct intercalated cell abundance, and disruption of E-cadherin- and βcatenin-mediated collecting duct epithelial adhesion. Notably, these features are shared by the distal and connecting tubules. This work confirms that distal nephron pathology is a significant component of postnatal mouse UUO. We have highlighted the utility of this model for investigating collecting duct and distal tubule injury and for identifying the underlying mechanisms of the distal nephron's contribution to the repair and fibrosis.
Collapse
Affiliation(s)
- Michael J Hiatt
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
27
|
Park ES, Park YK, Shin CY, Park SH, Ahn SH, Kim DH, Lim KH, Kwon SY, Kim KP, Yang SI, Seong BL, Kim KH. Hepatitis B virus inhibits liver regeneration via epigenetic regulation of urokinase-type plasminogen activator. Hepatology 2013; 58:762-76. [PMID: 23483589 DOI: 10.1002/hep.26379] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Liver regeneration after liver damage caused by toxins and pathogens is critical for liver homeostasis. Retardation of liver proliferation was reported in hepatitis B virus (HBV) X protein (HBx)-transgenic mice. However, the underlying mechanism of the HBx-mediated disturbance of liver regeneration is unknown. We investigated the molecular mechanism of the inhibition of liver regeneration using liver cell lines and a mouse model. The mouse model of acute HBV infection was established by hydrodynamic injection of viral DNA. Liver regeneration after partial hepatectomy was significantly inhibited in the HBV DNA-treated mice. Mechanism studies have revealed that the expression of urokinase-type plasminogen activator (uPA), which regulates the activation of hepatocyte growth factor (HGF), was significantly decreased in the liver tissues of HBV or HBx-expressing mice. The down-regulation of uPA was further confirmed using liver cell lines transiently or stably transfected with HBx and the HBV genome. HBx suppressed uPA expression through the epigenetic regulation of the uPA promoter in mouse liver tissues and human liver cell lines. Expression of HBx strongly induced hypermethylation of the uPA promoter by recruiting DNA methyltransferase (DNMT) 3A2. CONCLUSION Taken together, these results suggest that infection of HBV impairs liver regeneration through the epigenetic dysregulation of liver regeneration signals by HBx.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Manetti M, Rosa I, Milia AF, Guiducci S, Carmeliet P, Ibba-Manneschi L, Matucci-Cerinic M. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma? Ann Rheum Dis 2013; 73:1700-9. [PMID: 23852693 DOI: 10.1136/annrheumdis-2013-203706] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Urokinase-type plasminogen activator receptor (uPAR) is a key component of the fibrinolytic system involved in extracellular matrix remodelling and angiogenesis. The cleavage/inactivation of uPAR is a crucial step in fibroblast-to-myofibroblast transition and has been implicated in systemic sclerosis (SSc) microvasculopathy. In the present study, we investigated whether uPAR gene inactivation in mice could result in tissue fibrosis and peripheral microvasculopathy resembling human SSc. METHODS The expression of the native full-length form of uPAR in human skin biopsies was determined by immunohistochemistry. Skin and lung sections from uPAR-deficient (uPAR(-/-)) and wild-type (uPAR(+/+)) mice at 12 and 24 weeks of age were stained with haematoxylin-eosin, Masson's trichrome and Picrosirius red. Dermal thickness and hydroxyproline content in skin and lungs were quantified. Dermal myofibroblast and microvessel counts were determined by immunohistochemistry for α-smooth muscle actin and CD31, respectively. Endothelial cell apoptosis was assessed by TUNEL/CD31 immunofluorescence assay. RESULTS Full-length uPAR expression was significantly downregulated in SSc dermis, especially in fibroblasts and endothelial cells. Dermal thickness, collagen content and myofibroblast counts were significantly greater in uPAR(-/-) than in uPAR(+/+) mice. In uPAR(-/-) mice, dermal fibrosis was paralleled by endothelial cell apoptosis and severe loss of microvessels. Lungs from uPAR(-/-) mice displayed non-specific interstitial pneumonia-like pathological features, both with inflammation and collagen deposition. Pulmonary pathology worsened significantly from 12 to 24 weeks, as shown by a significant increase in alveolar septal width and collagen content. CONCLUSIONS uPAR(-/-) mice are a new animal model closely mimicking the histopathological features of SSc. This model warrants future studies.
Collapse
Affiliation(s)
- Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Anna Franca Milia
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Section of Internal Medicine and Division of Rheumatology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Peter Carmeliet
- Laboratory of Angiogenesis and the Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium Laboratory of Angiogenesis and the Neurovascular Link, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Section of Internal Medicine and Division of Rheumatology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
29
|
LeBleu VS, Teng Y, O'Connell JT, Charytan D, Müller GA, Müller CA, Sugimoto H, Kalluri R. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat Med 2013; 19:227-31. [PMID: 23353556 DOI: 10.1038/nm.2989] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 09/28/2012] [Indexed: 02/06/2023]
Abstract
The functional contribution of myofibroblasts in fibrosis is not well understood. Using a new genetic mouse model to track and isolate myofibroblasts, we performed gene expression profiling followed by biological validation to identify HE4 (encoding human epididymis protein 4, also known as WAP 4-disulfide core domain-2 or Wfdc2) as the most upregulated gene in fibrosis-associated myofibroblasts. The HE4 gene encodes for a putative serine protease inhibitor that is upregulated in human and mouse fibrotic kidneys and is elevated in the serum of patients with kidney fibrosis. HE4 suppresses the activity of multiple proteases, including serine proteases and matrix metalloproteinases, and specifically inhibits their capacity to degrade type I collagen. In particular, we identified two serine proteases, Prss35 and Prss23, as HE4 targets with functional relevance in kidney fibrosis. Administration of HE4-neutralizing antibodies accelerated collagen I degradation and inhibited fibrosis in three different mouse models of renal disease. Collectively these studies suggest that HE4 is a potential biomarker of renal fibrosis and a new therapeutic target.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Medicine, Beth Israel Deaconess Medical Center, Division of Matrix Biology, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ma YY, Tao HQ. Role of urokinase plasminogen activator receptor in gastric cancer: a potential therapeutic target. Cancer Biother Radiopharm 2012; 27:285-90. [PMID: 22702495 DOI: 10.1089/cbr.2012.1232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advancements in cancer research have led to major breakthroughs; however, the impact on overall cancer-related death rate remains unacceptable. Thus, further insights into tumor markers and subsequent development of targeted therapies are urgently needed. For decades the urokinase plasminogen activator (uPA) system has been thought to drive tumor progression by mediating directed extracellular proteolysis on the surface of migrating or invading cells. Intervention with this proteolysis by targeting of uPA receptor (uPAR) has been proposed to represent a novel approach for inhibiting tumor progression. Recent data have provided new insights into the role of uPAR in gastric cancer progression. In addition to mediating proteolysis, this receptor also appears to mediate cell signaling, proliferation, and survival, and these observations have revealed novel ways to target uPAR. In this review, we discuss uPAR expression in gastric cancer, the relationship between uPAR and Helicobacter pylori, and recent insights into uPAR-signaling mechanisms. The role of uPAR as a cancer target in gastric cancer is also summarized.
Collapse
Affiliation(s)
- Ying-Yu Ma
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, Zhejiang, China
| | | |
Collapse
|
31
|
Eddy AA, López-Guisa JM, Okamura DM, Yamaguchi I. Investigating mechanisms of chronic kidney disease in mouse models. Pediatr Nephrol 2012; 27:1233-47. [PMID: 21695449 PMCID: PMC3199379 DOI: 10.1007/s00467-011-1938-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
Abstract
Animal models of chronic kidney disease (CKD) are important experimental tools that are used to investigate novel mechanistic pathways and to validate potential new therapeutic interventions prior to pre-clinical testing in humans. Over the past several years, mouse CKD models have been extensively used for these purposes. Despite significant limitations, the model of unilateral ureteral obstruction (UUO) has essentially become the high-throughput in vivo model, as it recapitulates the fundamental pathogenetic mechanisms that typify all forms of CKD in a relatively short time span. In addition, several alternative mouse models are available that can be used to validate new mechanistic paradigms and/or novel therapies. Here, we review several models-both genetic and experimentally induced-that provide investigators with an opportunity to include renal functional study end-points together with quantitative measures of fibrosis severity, something that is not possible with the UUO model.
Collapse
Affiliation(s)
- Allison A Eddy
- Center for Tissue and Cell Sciences, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA 98101-1309, USA.
| | | | | | | |
Collapse
|
32
|
Soluble urokinase plasminogen activator receptor is associated with progressive liver fibrosis in hepatitis C infection. J Clin Gastroenterol 2012; 46:334-8. [PMID: 21934527 DOI: 10.1097/mcg.0b013e31822da19d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Progressive liver fibrosis is the main predictor of disease outcome in chronic hepatitis C viral (HCV) infection. Although the importance of the coagulation cascade has been suggested in liver fibrogenesis, the role of the fibrinolytic pathway is yet unclear. GOAL We evaluated the association of serum levels of the fibrinolysis-associated soluble urokinase plasminogen activator receptor (suPAR) with the severity of liver fibrosis in HCV infection. STUDY suPAR serum levels were assessed in 146 chronically HCV-infected patients of 2 independent cohorts (64 subjects in the screening cohort, 82 in the validation cohort) by enzyme-linked immunosorbent assay and correlated with biopsy-proven histologic stage of liver fibrosis and noninvasive liver fibrosis markers (aspartate transaminase to platelets ratio index score, transient elastography). RESULTS suPAR serum levels were strongly associated with the histologic stage of liver fibrosis in both cohorts (P<0.0001). Although mean suPAR levels in patients with F1 and F2 fibrosis were not different from healthy control subjects, they were significantly increased at higher stages of liver fibrosis (F3 and F4, P<0.0001). suPAR values had a high diagnostic specificity and sensitivity to differentiate mild/moderate fibrosis (F1/F2) from severe fibrosis (F3/F4) with an area under curve of 0.774 (P=0.0001) and for the differentiation of noncirrhosis from cirrhosis (F1/F2/F3 vs. F4, area under curve 0.791, P=0.0001). SuPAR serum levels were also strongly correlated to the noninvasive fibrosis markers aspartate transaminase to platelets ratio index score (r=0.52) and transient elastography (r=0.44, both P<0.0001). CONCLUSIONS Serum suPAR levels were robust markers of liver fibrosis in 2 cohorts with a comparable diagnostic accuracy for prediction of severe liver fibrosis as established noninvasive marker.
Collapse
|
33
|
Yamaguchi I, Tchao BN, Burger ML, Yamada M, Hyodo T, Giampietro C, Eddy AA. Vascular endothelial cadherin modulates renal interstitial fibrosis. Nephron Clin Pract 2011; 120:e20-31. [PMID: 22126970 DOI: 10.1159/000332026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal interstitial fibrosis is a final common pathway of all chronic, progressive kidney diseases. Peritubular capillary rarefaction is strongly correlated with fibrosis. The adherens junction protein vascular endothelial cadherin (VE-cadherin) is thought to play a critical role in vascular integrity. We hypothesized that VE-cadherin modulates the renal microcirculation during fibrogenesis and ultimately affects renal fibrosis. METHODS Unilateral ureteral obstruction (UUO) was used as a renal fibrosis model in VE-cadherin heterozygote (VE+/-) and wild-type (WT) mice, and the kidneys were harvested at days 3, 7, and 14. Peritubular capillary changes and fibrogenesis were investigated. RESULTS VE+/- mice had lower levels of VE-cadherin protein than WT mice at 3 and 7, but not 14 days after UUO. Vascular permeability was significantly greater in VE+/- mice 7 days after UUO, while peritubular capillary density was not significantly different in VE+/- and WT mice. Interstitial myofibroblast numbers and collagen I and III mRNA levels were significantly higher in VE+/- mice, consistent with a stronger early fibrogenic response. Expression of the pericyte marker neuron-glial antigen 2 was upregulated after UUO, but was not greater in VE+/- mice compared to the WT mice. CONCLUSION Our data suggest that VE-cadherin controls vascular permeability and limits fibrogenesis after UUO.
Collapse
Affiliation(s)
- Ikuyo Yamaguchi
- Department of Pediatrics, University of Washington, Seattle, WA 98101-1309, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
López-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, Isacke CM, Emson CL, Turner SM, Shankland SJ, Eddy AA. Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 2011; 23:236-51. [PMID: 22095946 DOI: 10.1681/asn.2011030310] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3(-/-) mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3(-/-) mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway.
Collapse
Affiliation(s)
- Jesús M López-Guisa
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA 98101-1309, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang TW, Zhang H, Gyetko MR, Parent JM. Hepatocyte growth factor acts as a mitogen and chemoattractant for postnatal subventricular zone-olfactory bulb neurogenesis. Mol Cell Neurosci 2011; 48:38-50. [PMID: 21683144 DOI: 10.1016/j.mcn.2011.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022] Open
Abstract
Neural progenitor cells persist throughout life in the forebrain subventricular zone (SVZ). They generate neuroblasts that migrate to the olfactory bulb and differentiate into interneurons, but mechanisms underlying these processes are poorly understood. Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic factor that influences cell motility, proliferation and morphogenesis in neural and non-neural tissues. HGF and its receptor, c-Met, are present in the rodent SVZ-olfactory bulb pathway. Using in vitro neurogenesis assays and in vivo studies of partially HGF-deficient mice, we find that HGF promotes SVZ cell proliferation and progenitor cell maintenance, while slowing differentiation and possibly altering cell fate choices. HGF also acts as a chemoattractant for SVZ neuroblasts in co-culture assays. Decreased HGF signaling induces ectopic SVZ neuroblast migration and alters the timing of migration to the olfactory bulb. These results suggest that HGF influences multiple steps in postnatal forebrain neurogenesis. HGF is a mitogen for SVZ neural progenitors, and regulates their differentiation and olfactory bulb migration.
Collapse
Affiliation(s)
- Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | |
Collapse
|
36
|
López-Guisa JM, Rassa AC, Cai X, Collins SJ, Eddy AA. Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease. Am J Physiol Renal Physiol 2011; 300:F1244-54. [PMID: 21270094 DOI: 10.1152/ajprenal.00701.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitronectin (Vtn) is a glycoprotein found in normal serum and pathological extracellular matrix. Given its known interactions with plasminogen activator inhibitor-1 (PAI-1) and Vtn cellular receptors, especially αvβ3 integrin and the urokinase receptor (uPAR), this study was designed to investigate its role in renal fibrogenesis in the mouse model of unilateral ureteral obstruction (UUO). Kidney Vtn mRNA levels were increased ×1.8-5.1 and Vtn protein levels ×1.9-3 on days 7, 14, and 21 after UUO compared with sham kidney levels. Groups of age-matched C57BL/6 wild-type (Vtn+/+) and Vtn-/- mice (n = 10-11/group) were killed 7, 14, or 21 days after UUO. Absence of Vtn resulted in the following significant differences, but only on day 14: fewer αSMA+ interstitial myofibroblasts (×0.53), lower procollagen III mRNA levels (×0.41), lower PAI-1 protein (×0.23), higher uPA activity (×1.1), and lower αv protein (×0.32). The number of CD68+ macrophages did not differ between the genotypes. Despite these transient differences on day 14, the absence of Vtn had no effect on fibrosis severity based on both picrosirius red-positive interstitial area and total kidney collagen measured by the hydroxyproline assay. These findings suggest that despite significant interstitial Vtn deposition in the UUO model of chronic kidney disease, its fibrogenic role is either nonessential or redundant. These data are remarkable given Vtn's strong affinity for the potent fibrogenic molecule PAI-1.
Collapse
Affiliation(s)
- Jesús M López-Guisa
- Seattle Children’s Research Institute, Department of Pediatrics, University of Washington, USA
| | | | | | | | | |
Collapse
|
37
|
Zhang G, Thomas AL, Marshall AL, Kernan KA, Su Y, Zheng Y, Takano J, Saido TC, Eddy AA. Nicotinic acetylcholine receptor α1 promotes calpain-1 activation and macrophage inflammation in hypercholesterolemic nephropathy. J Transl Med 2011; 91:106-23. [PMID: 20661225 PMCID: PMC3188436 DOI: 10.1038/labinvest.2010.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The nicotinic acetylcholine receptor α1 (nAChRα1) was investigated as a potential proinflammatory molecule in the kidney, given a recent report that it is an alternative urokinase plasminogen activator (uPA) receptor, in addition to the classical receptor uPAR. Two animal models and in vitro monocyte studies were involved: (1) In an ApoE(-/-) mouse model of chronic kidney disease, glomerular-resident cells and monocytes/macrophages were identified as the primary cell types that express nAChRα1 during hypercholesterolemia/uninephrectomy-induced nephropathy. Silencing of the nAChRα1 gene for 4 months (6 months on Western diet) prevented the increases in renal monocyte chemoattractant protein-1 and osteopontin expression levels and F4/80+ macrophage infiltration compared with the nonsilenced mice. These changes were associated with significantly reduced transforming growth factor-β1 mRNA (50% decrease) and α smooth muscle actin-positive (αSMA+) myofibroblasts (90% decrease), better glomerular and tubular basement membranes (GBM/TBM) preservation (threefold less disintegration), and better renal function preservation (serum creatinine 40% lower) in the nAChRα1-silenced mice. The nAChRα1 silencing was also associated with significantly reduced renal tissue calcium deposition (78% decrease) and calpain-1 (but not calpain-2) activation (70% decrease). (2) The nAChRα1 was expressed in vitro by mouse monocyte cell line WEHI-274.1. The silencing of nAChRα1 significantly reduced both calpain-1 and -2 activities, and reduced the degradation of the calpain substrate talin. (3) To further explore the role of calpain-1 activity in hypercholesterolemic nephropathy, disease severities were compared in CAST(-/-)ApoE(-/-) (calpain overactive) mice and ApoE(-/-) mice fed with Western diet for 10 months (n=12). Macrophages were the main cell type of renal calpain-1 production in the model. The number of renal F4/80+ macrophages was 10-fold higher in the CAST(-/-)ApoE(-/-) mice (P<0.05), and was associated with a significantly higher level of αSMA+ cells, increased GBM/TBM destruction, and higher serum creatinine levels. Our studies suggest that the receptor nAChRα1 is an important regulator of calpain-1 activation and inflammation in the chronic hypercholesterolemic nephropathy. This new proinflammatory pathway may also be relevant to other disorders beyond hyperlipidemic nephropathy.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA 98101, USA.
| | - Alison L Thomas
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Amanda L Marshall
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kelly A Kernan
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Yanyuan Su
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Yi Zheng
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jiro Takano
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Allison A Eddy
- Division of Nephrology, Seattle Children's Hospital Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Manetti M, Allanore Y, Revillod L, Fatini C, Guiducci S, Cuomo G, Bonino C, Riccieri V, Bazzichi L, Liakouli V, Cipriani P, Giacomelli R, Abbate R, Bombardieri S, Valesini G, Montecucco C, Valentini G, Ibba-Manneschi L, Matucci-Cerinic M. A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. ACTA ACUST UNITED AC 2010; 63:247-56. [DOI: 10.1002/art.30101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Okamura DM, Pasichnyk K, Lopez-Guisa JM, Collins S, Hsu DK, Liu FT, Eddy AA. Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am J Physiol Renal Physiol 2010; 300:F245-53. [PMID: 20962111 DOI: 10.1152/ajprenal.00326.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal tubular cell apoptosis is a critical detrimental event that leads to chronic kidney injury in association with renal fibrosis. The present study was designed to investigate the role of galectin-3 (Gal-3), an important regulator of multiple apoptotic pathways, in chronic kidney disease induced by unilateral ureteral obstruction (UUO). After UUO, Gal-3 expression significantly increased compared with basal levels reaching a peak increase of 95-fold by day 7. Upregulated Gal-3 is predominantly tubular at early time points after UUO but shifts to interstitial cells as the injury progresses. On day 14, there was a significant increase in TdT-mediated dUTP nick end labeling-positive cells (129%) and cytochrome c release (29%), and a decrease in BrdU-positive cells (62%) in Gal-3-deficient compared with wild-type mice. The degree of renal damage was more extensive in Gal-3-deficient mice at days 14 and 21, 35 and 21% increase in total collagen, respectively. Despite more severe fibrosis, myofibroblasts were significantly decreased by 58% on day 14 in the Gal-3-deficient compared with wild-type mice. There was also a corresponding 80% decrease in extracellular matrix synthesis in Gal-3-deficient compared with wild-type mice. Endo180 is a recently recognized receptor for intracellular collagen degradation that is expressed by interstitial cells during renal fibrogenesis. Endo180 expression was significantly decreased by greater than 50% in Gal-3-deficient compared with wild-type mice. Taken together, these results suggested that Gal-3 not only protects renal tubules from chronic injury by limiting apoptosis but that it may lead to enhanced matrix remodeling and fibrosis attenuation.
Collapse
Affiliation(s)
- Daryl M Okamura
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Division of Nephrology, 4800 Sand Point Way NE, A7931, Seattle, WA 98105, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Reich HN, Tritchler D, Cattran DC, Herzenberg AM, Eichinger F, Boucherot A, Henger A, Berthier CC, Nair V, Cohen CD, Scholey JW, Kretzler M. A molecular signature of proteinuria in glomerulonephritis. PLoS One 2010; 5:e13451. [PMID: 20976140 PMCID: PMC2956647 DOI: 10.1371/journal.pone.0013451] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/17/2010] [Indexed: 01/13/2023] Open
Abstract
Proteinuria is the most important predictor of outcome in glomerulonephritis and experimental data suggest that the tubular cell response to proteinuria is an important determinant of progressive fibrosis in the kidney. However, it is unclear whether proteinuria is a marker of disease severity or has a direct effect on tubular cells in the kidneys of patients with glomerulonephritis. Accordingly we studied an in vitro model of proteinuria, and identified 231 “albumin-regulated genes” differentially expressed by primary human kidney tubular epithelial cells exposed to albumin. We translated these findings to human disease by studying mRNA levels of these genes in the tubulo-interstitial compartment of kidney biopsies from patients with IgA nephropathy using microarrays. Biopsies from patients with IgAN (n = 25) could be distinguished from those of control subjects (n = 6) based solely upon the expression of these 231 “albumin-regulated genes.” The expression of an 11-transcript subset related to the degree of proteinuria, and this 11-mRNA subset was also sufficient to distinguish biopsies of subjects with IgAN from control biopsies. We tested if these findings could be extrapolated to other proteinuric diseases beyond IgAN and found that all forms of primary glomerulonephritis (n = 33) can be distinguished from controls (n = 21) based solely on the expression levels of these 11 genes derived from our in vitro proteinuria model. Pathway analysis suggests common regulatory elements shared by these 11 transcripts. In conclusion, we have identified an albumin-regulated 11-gene signature shared between all forms of primary glomerulonephritis. Our findings support the hypothesis that albuminuria may directly promote injury in the tubulo-interstitial compartment of the kidney in patients with glomerulonephritis.
Collapse
Affiliation(s)
- Heather N Reich
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The pathologic paradigm for renal progression is advancing tubulointerstitial fibrosis. Whereas mechanisms underlying fibrogenesis have grown in scope and understanding in recent decades, effective human treatment to directly halt or even reverse fibrosis remains elusive. Here, we examine key features mediating the molecular and cellular basis of tubulointerstitial fibrosis and highlight new insights that may lead to novel therapies. How to prevent chronic kidney disease from progressing to renal failure awaits even deeper biochemical understanding.
Collapse
Affiliation(s)
- Michael Zeisberg
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
42
|
Zhang G, Marshall AL, Thomas AL, Kernan KA, Su Y, LeBoeuf RC, Dong XR, Tchao BNA. In vivo knockdown of nicotinic acetylcholine receptor α1 diminishes aortic atherosclerosis. Atherosclerosis 2010; 215:34-42. [PMID: 20810113 DOI: 10.1016/j.atherosclerosis.2010.07.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/10/2010] [Accepted: 07/23/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Nicotinic acetylcholine receptor α1 (nAChRα1) was recently identified as a functional cell receptor for urokinase, a potent atherogenic molecule. Here, we test the hypothesis that nAChRα1 plays a role in the pathogenesis of atherosclerosis. METHODS Apolipoprotein E-deficient mice were initially fed a Western diet for 8 wks. Plasmid DNA encoding scramble RNA (pscr) or siRNA (psir2) for nAChRα1 was injected into the mice (n=16) using an aortic hydrodynamic gene transfer protocol. Four mice from each group were sacrificed 7 days after the DNA injection to confirm the nAChRα1 gene silencing. The remaining mice continued on a Western diet for an additional 16 wks. RESULTS The nAChRα1 was up-regulated in aortic atherosclerotic lesions. A 78% knockdown of the nAChRα1 gene resulted in remarkably less severe aortic plaque growth and neovascularization at 16 wks (both P<0.05). In addition, significantly fewer macrophages (60% less) and myofibroblasts (80% less) presented in the atherosclerotic lesion of the psir2-treated mice. The protective mechanisms of the nAChRα1 knockdown may involve up-regulating interferon-γ/Y box protein-1 activity and down-regulating transforming growth factor-β expression. CONCLUSIONS The nAChRα1 gene plays a significant role at the artery wall, and reducing its expression decreases aortic plaque development.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Postiglione L, Montuori N, Riccio A, Di Spigna G, Salzano S, Rossi G, Ragno P. The Plasminogen Activator System in Fibroblasts from Systemic Sclerosis. Int J Immunopathol Pharmacol 2010; 23:891-900. [DOI: 10.1177/039463201002300325] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Systemic sclerosis (SSc) is characterized by excessive fibrosis throughout the body. There are two major subsets of SSc, diffuse cutaneous Systemic sclerosis (dSSc) and limited cutaneous Systemic sclerosis (ISSc). Fibroblasts play a key role in SSc. The expression and function of the urokinase (uPA)-mediated plasminogen activation (PA) system, a well-characterized system of serine-proteases involved in several pathological processes, has been investigated in SSc fibroblasts. The expression of the components of the PA system, including uPA, its type-1 and type-2 inhibitors (PAI-1 and PAI-2) and its receptor (uPAR), was examined by Western blot in fibroblasts from patients affected by limited and diffuse forms of SSc. uPA and PAI-1 secretion increased only in fibroblasts from ISSc lesions compared to normal fibroblasts. PAI-2 levels were decreased in fibroblasts from both SSc forms. Interestingly, fibroblasts from areas not adjacent to the lesions (not-affected) of the diffuse form showed reduced levels of PAI-1 and increased uPAR expression. Adhesion experiments showed reduced adherence to VN of fibroblasts from ISSc lesions and from non-affected areas of the diffuse form, as compared to normal controls. These results suggest a role for uPA and PAI-1 in the ISSc form, likely related to the activation of latent forms of cytokines and to the accumulation of ECM components, whereas a role for uPAR can be hypothesized in the evolvement of the diffuse form, based on its up-regulation in the non-affected areas.
Collapse
Affiliation(s)
| | | | - A. Riccio
- Department of Clinical and Experimental Medicine, Federico II University Medical School of Naples
| | | | - S. Salzano
- IEOS Institute of Experimental Endocrinology and Oncology (CNR), Federico II University Medical School of Naples
| | | | - P. Ragno
- Department of Chemistry, University of Salerno, Italy
| |
Collapse
|
44
|
Abstract
Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation and tissue remodelling and in many human cancers, in which it frequently indicates poor prognosis. uPAR regulates proteolysis by binding the extracellular protease urokinase-type plasminogen activator (uPA; also known as urokinase) and also activates many intracellular signalling pathways. Coordination of extracellular matrix (ECM) proteolysis and cell signalling by uPAR underlies its important function in cell migration, proliferation and survival and makes it an attractive therapeutic target in cancer and inflammatory diseases. uPAR lacks transmembrane and intracellular domains and so requires transmembrane co-receptors for signalling. Integrins are essential uPAR signalling co-receptors and a second uPAR ligand, the ECM protein vitronectin, is also crucial for this process.
Collapse
Affiliation(s)
- Harvey W Smith
- Goodman Cancer Centre, McGill University, West Montreal, Quebec, H3A 1A3, Canada.
| | | |
Collapse
|
45
|
Gonzalez J, Klein J, Chauhan SD, Neau E, Calise D, Nevoit C, Chaaya R, Miravete M, Delage C, Bascands JL, Schanstra JP, Buffin-Meyer B. Delayed treatment with plasminogen activator inhibitor-1 decoys reduces tubulointerstitial fibrosis. Exp Biol Med (Maywood) 2009; 234:1511-8. [PMID: 19934371 DOI: 10.3181/0903-rm-105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We examined the capacity of delayed inhibition of plasminogen activator inhibitor-1 (PAI-1) to reduce tubulointerstitial fibrosis induced by unilateral ureteral obstruction (UUO) in mice. Small peptides mimicking parts of urokinase (uPA) and tissular plasminogen activator (tPA) and serving as decoy molecules for PAI-1 were administered daily during the late stages (3 to 8 days) of UUO. Treatment with PAI-1 decoys reduced interstitial deposition of fibronectin, collagen III and collagen IV without changes in macrophage and myofibroblast infiltration. Interestingly, while PAI-1 activity was reduced and the combined uPA and tPA activity was increased, the antifibrotic effect was obtained without modification of plasmin activity but with increased of hepatocyte growth factor (HGF) expression. We show for the first time that treatment with small PAI-1 decoy peptides reduces established tubulointerstitial fibrosis. This protective effect probably resulted from increased degradation of the extracellular matrix by an HGF dependent mechanism.
Collapse
Affiliation(s)
- Julien Gonzalez
- INSERM, U858-I2MR - Equipe 5, 1 avenue Jean Poulhès, B.P. 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kurata K, Maruyama S, Kato S, Sato W, Yamamoto JI, Ozaki T, Nitta A, Nabeshima T, Morita Y, Mizuno M, Ito Y, Yuzawa Y, Matsuo S. Tissue-type plasminogen activator deficiency attenuates peritoneal fibrosis in mice. Am J Physiol Renal Physiol 2009; 297:F1510-7. [DOI: 10.1152/ajprenal.90330.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis (PF) is an important complication of peritoneal dialysis therapy. The present study was performed to examine the mechanisms of PF in view of the plasminogen activator (PA)/plasmin/matrix metalloproteinase (MMP) cascade. PF was induced in tissue-type PA (tPA) deficient mice and wild-type mice by intraperitoneal injection of chlorhexidine gluconate. Mice were killed on day 21, and tissue samples were taken. Histopathological studies were performed. Plasmin activity, gelatinases activity, and the levels of tPA, transforming growth factor-β1 (TGF-β1), and MMP-2 mRNA were determined. Protein levels of MMP-3, tissue inhibitor of metalloproteinases (TIMP)-1, -2, and -3, phospho-Smad3, membrane-type 1 (MT1)-MMP, and MT3-MMP were also studied. On day 21, tPA +/+ mice showed severe PF, whereas tPA −/− mice showed milder change. Submesothelial basement membranes were dissolved in tPA +/+ mice while they were relatively preserved in tPA −/− mice. The levels of macrophage infiltration, staining for α-smooth muscle actin (α-SMA) and collagen type III, and vascular density were all significantly lower in tPA −/− mice than in tPA +/+ mice. The levels of plasmin activity, pro- and active MMP-2, mRNA expression of tPA and TGF-β1, and phospho-Smad3 protein were also lower in tPA −/− mice. No difference was observed between the two groups concerning the protein levels of MMP-3, TIMP-1, TIMP-2, TIMP-3, MT1-MMP, or MT3-MMP. These results indicate that the presence of tPA enhances inflammation, angiogenesis, and fibrogenesis in the peritoneum of the PF model mice. Activation of the PA/plasmin/MMP cascade may play a pivotal role in the pathogenesis of PF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Atsumi Nitta
- Clinical Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshitaka Nabeshima
- Clinical Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Urokinase-type plasminogen activator increases hepatocyte growth factor activity required for skeletal muscle regeneration. Blood 2009; 114:5052-61. [PMID: 19812386 DOI: 10.1182/blood-2008-12-196212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The plasminogen system plays a crucial role in the repair of a variety of tissues, including skeletal muscle. We hypothesized that urokinase-type plasminogen activator (uPA) promotes muscle regeneration by activating hepatocyte growth factor (HGF), which, in turn, stimulates proliferation of myoblasts required for regeneration. In our studies, levels of active HGF and phosphorylation of the HGF receptor c-met were increased after muscle injury in wild-type mice. Compared with wild-type animals, mice deficient in uPA (uPA(-/-)) had markedly reduced HGF levels and c-met activation after muscle damage. This reduced HGF activity in uPA(-/-) animals was associated with decreased cell proliferation, myoblast accumulation, and new muscle fiber formation. On the other hand, HGF activity was enhanced at early time points in PAI-1(-/-) mice compared with wild-type mice and the PAI-1(-/-) animals exhibited accelerated muscle fiber regeneration. Furthermore, administration of exogenous uPA rescued HGF levels and muscle regeneration in uPA(-/-) mice, and an HGF-blocking antibody reduced HGF activity and muscle regeneration in wild-type mice. We also found that uPA promotes myoblast proliferation in vitro through its proteolytic activity, and this process was inhibited by an HGF-blocking antibody. Together, our findings demonstrate that uPA promotes muscle regeneration through HGF activation and subsequent myoblast proliferation.
Collapse
|
48
|
Zhang G, Kernan KA, Thomas A, Collins S, Song Y, Li L, Zhu W, Leboeuf RC, Eddy AA. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem 2009; 284:29050-64. [PMID: 19690163 DOI: 10.1074/jbc.m109.010249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nicotinic acetylcholine receptor alpha1 (nAChRalpha1) was investigated as a potential fibrogenic molecule in the kidney, given reports that it may be an alternative urokinase (urokinase plasminogen activator; uPA) receptor in addition to the classical receptor uPAR. In a mouse obstructive uropathy model of chronic kidney disease, interstitial fibroblasts were identified as the primary cell type that bears nAChRalpha1 during fibrogenesis. Silencing of the nAChRalpha1 gene led to significantly fewer interstitial alphaSMA(+) myofibroblasts (2.8 times decreased), reduced interstitial cell proliferation (2.6 times decreased), better tubular cell preservation (E-cadherin 14 times increased), and reduced fibrosis severity (24% decrease in total collagen). The myofibroblast-inhibiting effect of nAChRalpha1 silencing in uPA-sufficient mice disappeared in uPA-null mice, suggesting that a uPA-dependent fibroblastic nAChRalpha1 pathway promotes renal fibrosis. To further establish this possible ligand-receptor relationship and to identify downstream signaling pathways, in vitro studies were performed using primary cultures of renal fibroblasts. (35)S-Labeled uPA bound to nAChRalpha1 with a K(d) of 1.6 x 10(-8) m, which was displaced by the specific nAChRalpha1 inhibitor d-tubocurarine in a dose-dependent manner. Pre-exposure of uPA to the fibroblasts inhibited [(3)H]nicotine binding. The uPA binding induced a cellular calcium influx and an inward membrane current that was entirely prevented by d-tubocurarine preincubation or nAChRalpha1 silencing. By mass spectrometry phosphoproteome analyses, uPA stimulation phosphorylated nAChRalpha1 and a complex of signaling proteins, including calcium-binding proteins, cytoskeletal proteins, and a nucleoprotein. This signaling pathway appears to regulate the expression of a group of genes that transform renal fibroblasts into more active myofibroblasts characterized by enhanced proliferation and contractility. This new fibrosis-promoting pathway may also be relevant to disorders that extend beyond chronic kidney disease.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington 98101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 2009; 75:1145-1152. [DOI: 10.1038/ki.2009.86] [Citation(s) in RCA: 662] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Kassiri Z, Oudit GY, Kandalam V, Awad A, Wang X, Ziou X, Maeda N, Herzenberg AM, Scholey JW. Loss of TIMP3 enhances interstitial nephritis and fibrosis. J Am Soc Nephrol 2009; 20:1223-35. [PMID: 19406980 DOI: 10.1681/asn.2008050492] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The balance of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) determines the integrity of the extracellular matrix. TIMP3 is the most highly expressed tissue inhibitor of metalloproteinase (TIMP) in the kidney, but its function in renal disease is incompletely understood. In this study, TIMP3-/- mice demonstrated an age-dependent chronic tubulointerstitial fibrosis. After unilateral ureteral obstruction (UUO), young TIMP3-/- mice exhibited increased renal injury (tubular atrophy, cortical and medullary thinning, and vascular damage) compared with wild-type mice. In addition, TIMP3-/- mice had greater interstitial fibrosis; increased synthesis and deposition of type I collagen; increased activation of fibroblasts; enhanced apoptosis; and greater activation of MMP2, but not MMP9, after UUO. TIMP3 deficiency also led to accelerated processing of TNFalpha, demonstrated by significantly higher TACE activity and greater soluble TNFalpha levels by 3 d after UUO. The additional deletion of TNFalpha markedly reduced inflammation, apoptosis, and induction of a number of MMPs. Moreover, inhibition of MMPs in TIMP3-/-/TNFalpha-/- mice further abrogated postobstructive injury and prevented tubulointerestitial fibrosis. In humans, TIMP3 expression increased in the renal arteries and proximal tubules of subjects with diabetic nephropathy or chronic allograft nephropathy. Taken together, these results provide evidence that TIMP3 is an important mediator of kidney injury, and regulating its activity may have therapeutic benefit for patients with kidney disease.
Collapse
Affiliation(s)
- Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Group, Room 474, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, T6G 2S2 Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|