1
|
Yamashiro A, Satoh Y, Endo S, Oshima N. Extracellular signal-regulated kinase is activated in podocytes from patients with diabetic nephropathy. Hum Cell 2024; 37:1553-1558. [PMID: 39052150 DOI: 10.1007/s13577-024-01108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the past few decades, the global prevalence of diabetes has provided us with a warning about future chronic complications. Diabetic nephropathy (DN) is the main cause of end-stage kidney disease. Podocytes in the glomerulus play a critical role in regulating glomerular permeability, and podocyte injury is one of the main causes of DN. Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family that plays critical roles in intracellular signal transduction. In human patients with DN, phosphorylated ERK (pERK), the active form of ERK, is increased in the glomeruli. However, information on the expression of pERK, specifically in podocytes in DN, is limited. Meanwhile, high glucose induces ERK activation in immortalized podocyte cell lines, suggesting the involvement of podocytic ERK in DN. We performed an immunohistochemical study using Wilms' tumor-1 (WT-1) as a podocyte-specific marker to investigate whether podocytic pERK levels are increased in patients with DN. In the glomeruli of the DN group, we observed remarkable co-staining for WT-1 and pERK. In contrast, the glomeruli of the control group contained only a few pERK-positive podocytes. Statistical analyses revealed that, relative to healthy controls, patients with DN showed significantly increased pERK expression levels in cells that were positive for WT-1 (DN: 51.3 ± 13.1% vs. control: 7.3 ± 1.6%, p = 0.0158, t-test, n = 4 for each group). This suggests that ERK activation in podocytes is involved in the pathogenesis of DN.
Collapse
Affiliation(s)
- Aoi Yamashiro
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
2
|
Hu Y, Qi C, Shi J, Tan W, Adiljan Abdurusul, Zhao Z, Xu Y, Wu H, Zhang Z. Podocyte-specific deletion of ubiquitin carboxyl-terminal hydrolase L1 causes podocyte injury by inducing endoplasmic reticulum stress. Cell Mol Life Sci 2023; 80:106. [PMID: 36952018 PMCID: PMC11073152 DOI: 10.1007/s00018-023-04747-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a unique component of the ubiquitin-proteasome system (UPS), which has multiple activities in maintaining intracellular ubiquitin levels. We previously reported the aberrant low expression of UCHL1 in podocytes of non-immune complex-mediated glomerulonephritis, and recent studies indicate that anti-UCHL1 antibody was responsible for the refractory minimal change disease (MCD), but the specific effect of UCHL1 to the podocytopathy has not been determined. Therefore, we generated podocyte-specific UCHL1 gene knockout (UCHL1cre/cre) rats model. Podocyte-specific UCHL1 knockout rats exhibited severe kidney damage, including segmental/global glomerulosclerosis, kidney function damage and severe proteinuria, compared with littermate control. Subsequently, by carrying out mass spectrometry analysis of isolated glomeruli of rats, abnormal protein accumulation of ECM-receptor Interaction was found in UCHL1cre/cre rats. Mechanistic studies in vivo and in vitro revealed that aberrant protein accumulation after UCHL1 deficiency induced endoplasmic reticulum (ER) stress, unfolded protein reaction (UPR) to reduce the protein level of podocyte skeleton proteins, and CHOP mediated apoptosis as well, which related to the dysfunction of the ubiquitin-proteasome system with decreased free monomeric ubiquitin level, thereby affecting protein ubiquitination and degradation. In addition, inhibition of ER stress by 4-PBA could attenuate the degree of ER stress and podocyte dysfunction. Our study indicates that UCHL1 is a potential target for preventing podocytes injury in some non-immune complex-mediated glomerulopathy.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenyang Qi
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Weiqiang Tan
- Department of Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Adiljan Abdurusul
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China.
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
QiHuangYiShen Granules Modulate the Expression of LncRNA MALAT1 and Attenuate Epithelial-Mesenchymal Transition in Kidney of Diabetic Nephropathy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3357281. [PMID: 36760471 PMCID: PMC9904933 DOI: 10.1155/2023/3357281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Background QiHuangYiShen granules (QHYS), a traditional Chinese herbal medicine formula, have been used in clinical practice for treating diabetic kidney disease for several years by our team. The efficacy of reducing proteinuria and delaying the decline of renal function of QHYS has been proved by our previous studies. However, the exact mechanism by which QHYS exerts its renoprotection remains largely unknown. Emerging evidence suggests that lncRNA MALAT1 is abnormally expressed in diabetic nephropathy (DN) and can attenuate renal fibrosis by modulating podocyte epithelial-mesenchymal transition (EMT). Objective In the present study, we aimed to explore whether QHYS could modulate lncRNA MALAT1 expression and attenuate the podocyte EMT as well as the potential mechanism related to the Wnt/β-catenin signal pathway. Methods SD rats were fed with the high-fat-high-sucrose diet for 8 weeks and thereafter administered with 30 mg/kg streptozotocin intraperitoneally to replicate the DN model. Quality control of QHYS was performed using high-performance liquid chromatography. QHYS were orally administered at 1.25, 2.5, and 5 g/kg doses, respectively, to the DN model rats for 12 weeks. Body weight, glycated haemoglobin, blood urea nitrogen, serum creatinine, 24-h proteinuria, and kidney index were measured. The morphologic pathology of the kidney was evaluated by Hematoxylin-eosin and Masson's trichrome staining. The expression level of lncRNA MALAT1 was determined by quantitative real-time polymerase chain reaction. In addition, the expression levels of podocyte EMT protein markers and Wnt/β-catenin pathway proteins in renal tissues were evaluated by Western blotting and immunohistochemistry. Results The results showed that QHYS significantly reduced 24-h proteinuria, blood urea nitrogen, kidney index, and ameliorated glomerular hypertrophy and collagen fiber deposition in the kidney of DN rats. Importantly, QHYS significantly downregulated the expression level of lncRNA MALAT1, upregulated the expression of nephrin, the podocyte marker protein, downregulated the expression of desmin and FSP-1, and mesenchymal cell markers. Furthermore, QHYS significantly downregulated the expression levels of Wnt1, β-catenin, and active β-catenin. Conclusion Conclusively, our study revealed that QHYS significantly reduced proteinuria, alleviated renal fibrosis, and attenuated the podocyte EMT in DN rats, which may be associated with the downregulation of lncRNA MALAT1 expression and inhibition of the Wnt/β-catenin pathway.
Collapse
|
4
|
Shi J, Hu Y, Shao G, Zhu Y, Zhao Z, Xu Y, Zhang Z, Wu H. Quantifying Podocyte Number in a Small Sample Size of Glomeruli with CUBIC to Evaluate Podocyte Depletion of db/db Mice. J Diabetes Res 2023; 2023:1901105. [PMID: 36776229 PMCID: PMC9908347 DOI: 10.1155/2023/1901105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
The loss of podocyte is crucial for diagnosis and prognosis of diabetic kidney disease, whereas commonly two-dimensional methods for quantifying podocyte number existed with issues of low fidelity and accuracy. In this study, clear, unobstructed brain imaging cocktails and computational analysis (CUBIC), one of three-dimensional optical clearing approaches, was used which combines tissue clearing, immunolabeling, and a light-sheet microscope to image and evaluate podocytes in C57BL/6 (C57) and db/db mice. We discovered that 77 podocytes per glomerulus were in C57 mice. On the subject of db/db mice, there were 74 podocytes by the age of 8 w, 72 podocytes by the age of 12 w, and 66 podocytes by the age of 16 w, compared with 76 podocytes in the control group, suggesting that there was a significant decrease in podocyte number in db/db mice with the age of 16 w, showing a trend which positively correlated to the deterioration of kidney function. Sample size estimation using the PASS software revealed that taking 5%, 7.5%, and 10% of the mean podocyte number per glomerulus as the statistical allowable error and 95% as total confidence interval, 33, 15, and 9 glomeruli were independently needed to be sampled in C57 mice to represent the overall glomeruli to calculate podocyte number. Furthermore, in the control group of db/db mice, 36, 18, and 11 glomeruli were needed, compared with 46, 24, and 14 glomeruli in db/db mice by the age of 8 w, 43, 21, and 12 glomeruli by the age of 12 w, and 52, 27, and 16 by the age of 16 w. These findings indicated that precise quantification of podocyte number could judge the progression of diabetic kidney disease. In addition, a small number of glomeruli could be actually representative of the whole sample size, which indicated apparent practicability of CUBIC for clinical use.
Collapse
Affiliation(s)
- Jiaoyu Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangze Shao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanyong Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Li F, Fang Y, Zhuang Q, Cheng M, Moronge D, Jue H, Meyuhas O, Ding X, Zhang Z, Chen JK, Wu H. Blocking ribosomal protein S6 phosphorylation inhibits podocyte hypertrophy and focal segmental glomerulosclerosis. Kidney Int 2022; 102:121-135. [PMID: 35483522 PMCID: PMC10711420 DOI: 10.1016/j.kint.2022.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
Ribosomal protein S6 (rpS6) phosphorylation mediates the hypertrophic growth of kidney proximal tubule cells. However, the role of rpS6 phosphorylation in podocyte hypertrophy and podocyte loss during the pathogenesis of focal segmental glomerulosclerosis (FSGS) remains undefined. Here, we examined rpS6 phosphorylation levels in kidney biopsy specimens from patients with FSGS and in podocytes from mouse kidneys with Adriamycin-induced FSGS. Using genetic and pharmacologic approaches in the mouse model of FSGS, we investigated the role of rpS6 phosphorylation in podocyte hypertrophy and loss during development and progression of FSGS. Phosphorylated rpS6 was found to be markedly increased in the podocytes of patients with FSGS and Adriamycin-induced FSGS mice. Genetic deletion of the Tuberous sclerosis 1 gene in kidney glomerular podocytes activated mammalian target of rapamycin complex 1 signaling to rpS6 phosphorylation, resulting in podocyte hypertrophy and pathologic features similar to those of patients with FSGS including podocyte loss, leading to segmental glomerulosclerosis. Since protein phosphatase 1 is known to negatively regulate rpS6 phosphorylation, treatment with an inhibitor increased phospho-rpS6 levels, promoted podocyte hypertrophy and exacerbated formation of FSGS lesions. Importantly, blocking rpS6 phosphorylation (either by generating congenic rpS6 knock-in mice expressing non-phosphorylatable rpS6 or by inhibiting ribosomal protein S6 kinase 1-mediated rpS6 phosphorylation with an inhibitor) significantly blunted podocyte hypertrophy, inhibited podocyte loss, and attenuated formation of FSGS lesions. Thus, our study provides genetic and pharmacologic evidence indicating that specifically targeting rpS6 phosphorylation can attenuate the development of FSGS lesions by inhibiting podocyte hypertrophy and associated podocyte depletion.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yili Fang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiyuan Zhuang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meichu Cheng
- Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Desmond Moronge
- Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hao Jue
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Govind D, Becker JU, Miecznikowski J, Rosenberg AZ, Dang J, Tharaux PL, Yacoub R, Thaiss F, Hoyer PF, Manthey D, Lutnick B, Worral AM, Mohammad I, Walavalkar V, Tomaszewski JE, Jen KY, Sarder P. PodoSighter: A Cloud-Based Tool for Label-Free Podocyte Detection in Kidney Whole-Slide Images. J Am Soc Nephrol 2021; 32:2795-2813. [PMID: 34479966 PMCID: PMC8806084 DOI: 10.1681/asn.2021050630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocyte depletion precedes progressive glomerular damage in several kidney diseases. However, the current standard of visual detection and quantification of podocyte nuclei from brightfield microscopy images is laborious and imprecise. METHODS We have developed PodoSighter, an online cloud-based tool, to automatically identify and quantify podocyte nuclei from giga-pixel brightfield whole-slide images (WSIs) using deep learning. Ground-truth to train the tool used immunohistochemically or immunofluorescence-labeled images from a multi-institutional cohort of 122 histologic sections from mouse, rat, and human kidneys. To demonstrate the generalizability of our tool in investigating podocyte loss in clinically relevant samples, we tested it in rodent models of glomerular diseases, including diabetic kidney disease, crescentic GN, and dose-dependent direct podocyte toxicity and depletion, and in human biopsies from steroid-resistant nephrotic syndrome and from human autopsy tissues. RESULTS The optimal model yielded high sensitivity/specificity of 0.80/0.80, 0.81/0.86, and 0.80/0.91, in mouse, rat, and human images, respectively, from periodic acid-Schiff-stained WSIs. Furthermore, the podocyte nuclear morphometrics extracted using PodoSighter were informative in identifying diseased glomeruli. We have made PodoSighter freely available to the general public as turnkey plugins in a cloud-based web application for end users. CONCLUSIONS Our study demonstrates an automated computational approach to detect and quantify podocyte nuclei in standard histologically stained WSIs, facilitating podocyte research, and enabling possible future clinical applications.
Collapse
Affiliation(s)
- Darshana Govind
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Jan U. Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Rabi Yacoub
- Department of Internal Medicine, University at Buffalo, Buffalo, New York
| | - Friedrich Thaiss
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Peter F. Hoyer
- Pediatric Nephrology, University Hospital Essen, Essen, Germany
| | | | - Brendon Lutnick
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Amber M. Worral
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Imtiaz Mohammad
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Vighnesh Walavalkar
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - John E. Tomaszewski
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Sacramento, California
| | - Pinaki Sarder
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
7
|
Lemley KV. An Introduction to Stereology with Applications to the Glomerulus. GLOMERULAR DISEASES 2021; 1:294-301. [PMID: 36751381 PMCID: PMC9677735 DOI: 10.1159/000519719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
Background Stereology is the science of inferring quantitative features of 3-dimensional structures from lower dimensional samples of those structures (probes). It is a statistical discipline and therefore may seem intimidating to many potential users. Without a proper understanding of its principles, though, errors may be made in the quantitative reporting of structural research results. Summary This review article attempts to explain and justify the basic principles of stereology as applied to the glomerulus in a simple and accessible way. A few common errors in application are described. The strengths and weaknesses of "biased" (model-based) stereology are described as well as the basics of design-based ("unbiased") stereology. Key Messages Stereology is a useful body of theory and practices when quantitation of structural histological features of the glomerulus is desired.
Collapse
|
8
|
Eid SA, Hinder LM, Zhang H, Eksi R, Nair V, Eddy S, Eichinger F, Park M, Saha J, Berthier CC, Jagadish HV, Guan Y, Pennathur S, Hur J, Kretzler M, Feldman EL, Brosius FC. Gene expression profiles of diabetic kidney disease and neuropathy in eNOS knockout mice: Predictors of pathology and RAS blockade effects. FASEB J 2021; 35:e21467. [PMID: 33788970 DOI: 10.1096/fj.202002387r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are two common diabetic complications. However, their pathogenesis remains elusive and current therapies are only modestly effective. We evaluated genome-wide expression to identify pathways involved in DKD and DPN progression in db/db eNOS-/- mice receiving renin-angiotensin-aldosterone system (RAS)-blocking drugs to mimic the current standard of care for DKD patients. Diabetes and eNOS deletion worsened DKD, which improved with RAS treatment. Diabetes also induced DPN, which was not affected by eNOS deletion or RAS blockade. Given the multiple factors affecting DKD and the graded differences in disease severity across mouse groups, an automatic data analysis method, SOM, or self-organizing map was used to elucidate glomerular transcriptional changes associated with DKD, whereas pairwise bioinformatic analysis was used for DPN. These analyses revealed that enhanced gene expression in several pro-inflammatory networks and reduced expression of development genes correlated with worsening DKD. Although RAS treatment ameliorated the nephropathy phenotype, it did not alter the more abnormal gene expression changes in kidney. Moreover, RAS exacerbated expression of genes related to inflammation and oxidant generation in peripheral nerves. The graded increase in inflammatory gene expression and decrease in development gene expression with DKD progression underline the potentially important role of these pathways in DKD pathogenesis. Since RAS blockers worsened this gene expression pattern in both DKD and DPN, it may partly explain the inadequate therapeutic efficacy of such blockers.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hongyu Zhang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ridvan Eksi
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Viji Nair
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean Eddy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Felix Eichinger
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jharna Saha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Celine C Berthier
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hosagrahar V Jagadish
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank C Brosius
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Zhuang Q, Li F, Liu J, Wang H, Tian Y, Zhang Z, Wang F, Zhao Z, Chen J, Wu H. Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in Adriamycin-induced focal segmental glomerulosclerosis. J Transl Med 2021; 101:258-270. [PMID: 33203894 PMCID: PMC7815513 DOI: 10.1038/s41374-020-00503-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/19/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a chronic glomerular disease with poor clinical outcomes. Podocyte loss via apoptosis is one important mechanism underlying the pathogenesis of FSGS. Recently, Yes-associated-protein (YAP), a key downstream protein in the Hippo pathway, was identified as an activator for multiple gene transcriptional factors in the nucleus to control cell proliferation and apoptosis. To investigate the potential role of YAP in the progression of FSGS, we examined kidney samples from patients with minimal change disease or FSGS and found that increases in podocyte apoptosis is positively correlated with the cytoplasmic distribution of YAP in human FSGS. Utilizing an established mT/mG transgenic mouse model and primary cultured podocytes, we found that YAP was distributed uniformly in nucleus and cytoplasm in the podocytes of control animals. Adriamycin treatment induced gradual nuclear exclusion of YAP with enhanced phospho-YAP/YAP ratio, accompanied by the induction of podocyte apoptosis both in vivo and in vitro. Moreover, we used verteporfin to treat an Adriamycin-induced FSGS mouse model, and found YAP inhibition by verteporfin induced nuclear exclusion of YAP, thus increasing podocyte apoptosis and accelerating disease progression. Therefore, our findings suggest that YAP nuclear distribution and activation in podocytes is an important endogenous anti-apoptotic mechanism during the progression of FSGS.
Collapse
Affiliation(s)
- Qiyuan Zhuang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuchen Tian
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianchun Chen
- Division of Nephrology in Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Tian M, Carroll LS, Tang L, Uehara H, Westenfelder C, Ambati BK, Huang Y. Systemic AAV10.COMP-Ang1 rescues renal glomeruli and pancreatic islets in type 2 diabetic mice. BMJ Open Diabetes Res Care 2020; 8:8/1/e000882. [PMID: 32792355 PMCID: PMC7430492 DOI: 10.1136/bmjdrc-2019-000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/05/2020] [Accepted: 06/14/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Diabetic hyperglycemia causes progressive and generalized damage to the microvasculature. In renal glomeruli, this results in the loss of podocytes with consequent loss of constitutive angiopoietin-1 (Ang1) signaling, which is required for stability of the glomerular endothelium. Repeated tail vein injection of adenovirus expressing COMP-Ang1 (a stable bioengineered form of Ang1) was previously reported to improve diabetic glomerular damage despite the liver and lungs being primary targets of adenoviral infection. We thus hypothesized that localizing delivery of sustained COMP-Ang1 to the kidney could increase its therapeutic efficacy and safety for the treatment of diabetes. RESEARCH DESIGN AND METHODS Using AAVrh10 adeno-associated viral capsid with enhanced kidney tropism, we treated 10-week-old uninephrectomized db/db mice (a model of type 2 diabetes) with a single dose of AAVrh10.COMP-Ang1 delivered via the intracarotid artery, compared with untreated diabetic db/db control and non-diabetic db/m mice. RESULTS Surprisingly, both glomerular and pancreatic capillaries expressed COMP-Ang1, compensating for diabetes-induced loss of tissue Ang1. Importantly, treatment with AAVrh10.COMP-Ang1 yielded a significant reduction of glycemia (blood glucose, 241±193 mg/dL vs 576±31 mg/dL; glycosylated hemoglobin, 7.2±1.5% vs 11.3±1.3%) and slowed the progression of albuminuria and glomerulosclerosis in db/db mice by 70% and 61%, respectively, compared with untreated diabetic db/db mice. Furthermore, COMP-Ang1 ameliorated diabetes-induced increases of NF-kBp65, nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase-2 (Nox2), p47phox and productions of myeloperoxidase, the inflammatory markers in both renal and pancreatic tissues, and improved beta-cell density in pancreatic islets. CONCLUSIONS These results highlight the potential of localized Ang1 therapy for treatment of diabetic visceropathies and provide a mechanistic explanation for reported improvements in glucose control via Ang1/Tie2 signaling in the pancreas.
Collapse
Affiliation(s)
- Mi Tian
- Internal Medicine/Nephrology, University of Utah, Salt Lake City, Utah, USA
- Internal Medicine/Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lara S Carroll
- Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Li Tang
- Internal Medicine/Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - Hironori Uehara
- Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | | | - Balamurali K Ambati
- Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA
| | - Yufeng Huang
- Internal Medicine/Nephrology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Elsherbini DMA, Ebrahim HA. Effect of meloxicam (cyclooygenase-2 inhibitor) versus vitamin D3 (cholecalciferol) as ameliorating agents of progressive doxorubicin-induced nephrotoxicity in rats. Anat Cell Biol 2020; 53:169-182. [PMID: 32647085 PMCID: PMC7343563 DOI: 10.5115/acb.19.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (DOX)-induced nephropathy hampered its antineoplastic efficiency. The objective of the current work is to assess the prospective ameliorating effects of meloxicam versus vitamin D3 (Vit D3, cholecalciferol) against progressive DOX-induced nephropathy in rats trying to ascertain the possible mechanism underlying such amelioration. Ninety Male Wistar rats were randomly distributed to five experimental groups for 3 weeks, with saline, meloxicam (daily), DOX (single dose), Vit D3+DOX, or both meloxicam and DOX. We measured levels of urinary protein, serum creatinine, malondialdehyde (MDA) and renal reduced glutathione (GSH). In addition, tumor necrosis factor-alpha (TNF-α) expression and renal histopathology were assessed. Meloxicam alone treated group revealed no significant difference in urinary protein and serum creatinine. It also presented non-significant reduction in the MDA content while an increase in the reduced GSH content in contrast to the control group, which is more evident after the first week. Renal sections of rats received meloxicam only showed no significant histological changes and negative immunoreactivity compared to the control group. DOX induced a significant increase in urinary protein, serum creatinine, decrease reduced GSH, increased renal MDA and disrupted renal morphometric parameters and histology with increased TNF-α expression. Combination groups of Vit D3+DOX and meloxicam+DOX showed improvement of all DOX disturbed parameters. Meloxicam showed better results most likely due to anti-inflammatory and antioxidant activities superimposing the immune-modulatory effect of Vit D3. So, it is recommended to use meloxicam in patients receiving DOX as a renoprotective agent in addition to its analgesic effects required by cancer patients.
Collapse
Affiliation(s)
- Dalia Mahmoud Abdelmonem Elsherbini
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hasnaa Ali Ebrahim
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Giralt-López A, Molina-Van den Bosch M, Vergara A, García-Carro C, Seron D, Jacobs-Cachá C, Soler MJ. Revisiting Experimental Models of Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21103587. [PMID: 32438732 PMCID: PMC7278948 DOI: 10.3390/ijms21103587] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes prevalence is constantly increasing and, nowadays, it affects more than 350 million people worldwide. Therefore, the prevalence of diabetic nephropathy (DN) has also increased, becoming the main cause of end-stage renal disease (ESRD) in the developed world. DN is characterized by albuminuria, a decline in glomerular filtration rate (GFR), hypertension, mesangial matrix expansion, glomerular basement membrane thickening, and tubulointerstitial fibrosis. The therapeutic advances in the last years have been able to modify and delay the natural course of diabetic kidney disease (DKD). Nevertheless, there is still an urgent need to characterize the pathways that are involved in DN, identify risk biomarkers and prevent kidney failure in diabetic patients. Rodent models provide valuable information regarding how DN is set and its progression through time. Despite the utility of these models, kidney disease progression depends on the diabetes induction method and susceptibility to diabetes of each experimental strain. The classical DN murine models (Streptozotocin-induced, Akita, or obese type 2 models) do not develop all of the typical DN features. For this reason, many models have been crossed to a susceptible genetic background. Knockout and transgenic strains have also been created to generate more robust models. In this review, we will focus on the description of the new DN rodent models and, additionally, we will provide an overview of the available methods for renal phenotyping.
Collapse
Affiliation(s)
- Anna Giralt-López
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
| | - Mireia Molina-Van den Bosch
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
| | - Ander Vergara
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Clara García-Carro
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Daniel Seron
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Correspondence: (C.J.-C.); (M.J.S.)
| | - Maria José Soler
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
- Correspondence: (C.J.-C.); (M.J.S.)
| |
Collapse
|
13
|
Hudkins KL, Wietecha TA, Steegh F, Alpers CE. Beneficial effect on podocyte number in experimental diabetic nephropathy resulting from combined atrasentan and RAAS inhibition therapy. Am J Physiol Renal Physiol 2020; 318:F1295-F1305. [PMID: 32249614 DOI: 10.1152/ajprenal.00498.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Podocyte loss and proteinuria are both key features of human diabetic nephropathy (DN). The leptin-deficient BTBR mouse strain with the ob/ob mutation develops progressive weight gain, type 2 diabetes, and diabetic nephropathy that has many features of advanced human DN, including increased mesangial matrix, mesangiolysis, podocyte loss, and proteinuria. Selective antagonism of the endothelin-1 type A receptor (ETAR) by atrasentan treatment in combination with renin-angiotensin-aldosterone system inhibition with losartan has been shown to have the therapeutic benefit of lowering proteinuria in patients with DN, but the underlying mechanism for this benefit is not well understood. Using a similar therapeutic approach in diabetic BTBR ob/ob mice, this treatment regimen significantly increased glomerular podocyte number compared with diabetic BTBR ob/ob controls and suggested that parietal epithelial cells were a source for podocyte restoration. Atrasentan treatment alone also increased podocyte number but to a lesser degree. Mice treated with atrasentan demonstrated a reduction in proteinuria, matching the functional improvement reported in humans. This is a first demonstration that treatment with the highly selective ETAR antagonist atrasentan can lead to restoration of the diminished podocyte number characteristic of DN in humans and thereby underlies the reduction in proteinuria in patients with diabetes undergoing similar treatment. The benefit of ETAR antagonism in DN extended to a decrease in mesangial matrix as measured by a reduction in accumulations of collagen type IV in both the atrasentan and atrasentan + losartan-treated groups compared with untreated controls.
Collapse
Affiliation(s)
- Kelly L Hudkins
- Department of Pathology, University of Washington, Seattle, Washington
| | - Tomasz A Wietecha
- Department of Pathology, University of Washington, Seattle, Washington
| | - Floor Steegh
- Department of Pathology, University of Washington, Seattle, Washington
| | - Charles E Alpers
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Matsubara H, Shimizu Y, Arai M, Yamagata A, Ito S, Imakiire T, Tsunoda M, Kumagai H, Oshima N. PEPITEM/Cadherin 15 Axis Inhibits T Lymphocyte Infiltration and Glomerulonephritis in a Mouse Model of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2020; 204:2043-2052. [PMID: 32169847 DOI: 10.4049/jimmunol.1900213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 01/26/2020] [Indexed: 11/19/2022]
Abstract
Control of lymphocyte infiltration in kidney is a potential therapeutic strategy for lupus nephritis, considering that control of lymphocyte migration by sphingosine 1 phosphate has been implicated in inflammation-related pathology. The peptide inhibitor of the transendothelial migration (PEPITEM)/cadherin (CDH) 15 axis was recently reported to promote sphingosine 1 phosphate secretion. In this study, we investigated whether CDH15 is expressed in the kidney of MRL/lpr mice and whether lymphocyte infiltration is suppressed by exogenously administered PEPITEM. Mice (18 wk old) were randomized into 4-wk treatment groups that received PEPITEM or PBS encapsulated in dipalmitoylphosphatidylcholine liposomes. Enlargement of the kidney, spleen, and axillary lymph nodes was suppressed by PEPITEM treatment, which also blocked infiltration of double-negative T lymphocytes into the kidney and glomerular IgG/C3 deposition, reduced proteinuria, and increased podocyte density. Immunohistochemical analysis revealed that the PEPITEM receptor CDH15 was expressed on vascular endothelial cells of glomeruli and kidney arterioles, skin, and peritoneum in lupus mice at 22 wk of age but not in 4-wk-old mice. These results suggest that PEPITEM inhibits lymphocyte migration and infiltration into the kidney, thereby preserving the kidney structure and reducing proteinuria. Thus, PEPITEM administration may be considered as a potential therapeutic tool for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Hidehito Matsubara
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan;
| | - Yoshitaka Shimizu
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1207, Japan
| | - Masaaki Arai
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan; and
| | - Akira Yamagata
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Masashi Tsunoda
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
15
|
Faulhaber-Walter R, Jiang L, Mizel D, Zerfas PM, Kopp JB, Schnermann JB, Chen L, Schiffer M. Podocyte Density and Albuminuria in Aging Diabetic Ins2± Mice with or Without Adenosine A1 Receptor Signaling. Int J Nephrol Renovasc Dis 2020; 13:19-26. [PMID: 32110087 PMCID: PMC7041434 DOI: 10.2147/ijnrd.s203810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022] Open
Abstract
Aim of Study To investigate podocyte density in aging diabetic Ins2± and Ins2±, A1AR-/- mouse models in C57Bl/6 background. Methods Ins2± mice and especially Ins2±, adenosine A1 receptor knockout mice (Ins2±, A1AR-/-) are mouse models with a phenotype of diabetic nephropathy. Aged mice (at ~40 weeks) were assessed for glomerular filtration barrier function by measuring albuminuria, glomerular filtration, glomerular damage by electron microscopy, and podocyte numbers by Wilms Tumor protein (WT-1) staining. Results Compared to healthy wild-type mice, both diabetic mouse models developed diabetic nephropathy, including hyperfiltration (p<0.01) and albuminuria (p<0.05). Typical diabetic structural glomerular and podocyte damage was visualized by electron microscopy. Podocyte count per glomerular area (podocyte density) was significantly decreased in both diabetic mouse models (p<0.01). In contrast, no significant correlation was detected between albuminuria and absolute podocyte count per glomerulus. Conclusion The amount of albuminuria as marker of diabetic nephropathy does not correlate with the podocytes density; however, a relative podocyte deficiency became evident with an increase in glomerular area in the diabetic animals, suggesting a relative podocytopenia.
Collapse
Affiliation(s)
- Robert Faulhaber-Walter
- Facharztzentrum Aarberg, Waldshut-Tiengen, Germany.,NIDDK, National Institutes of Health, Bethesda, MD, USA.,Department of Nephrology, Medical School Hannover, Hannover, Germany
| | - Lanping Jiang
- Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Diane Mizel
- NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Limeng Chen
- NIDDK, National Institutes of Health, Bethesda, MD, USA.,Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Mario Schiffer
- Department of Nephrology, Medical School Hannover, Hannover, Germany.,Department of Nephrology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Zhong Y, Lee K, Deng Y, Ma Y, Chen Y, Li X, Wei C, Yang S, Wang T, Wong NJ, Muwonge AN, Azeloglu EU, Zhang W, Das B, He JC, Liu R. Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun 2019; 10:4523. [PMID: 31586053 PMCID: PMC6778111 DOI: 10.1038/s41467-019-12433-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arctigenin (ATG) is a major component of Fructus Arctii, a traditional herbal remedy that reduced proteinuria in diabetic patients. However, whether ATG specifically provides renoprotection in DKD is not known. Here we report that ATG administration is sufficient to attenuate proteinuria and podocyte injury in mouse models of diabetes. Transcriptomic analysis of diabetic mouse glomeruli showed that cell adhesion and inflammation are two key pathways affected by ATG treatment, and mass spectrometry analysis identified protein phosphatase 2 A (PP2A) as one of the top ATG-interacting proteins in renal cells. Enhanced PP2A activity by ATG reduces p65 NF-κB-mediated inflammatory response and high glucose-induced migration in cultured podocytes via interaction with Drebrin-1. Importantly, podocyte-specific Pp2a deletion in mice exacerbates DKD injury and abrogates the ATG-mediated renoprotection. Collectively, our results demonstrate a renoprotective mechanism of ATG via PP2A activation and establish PP2A as a potential target for DKD progression.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiping Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shumin Yang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA.
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Ding S, Huang J, Qiu H, Chen R, Zhang J, Huang B, Cheng O, Jiang Q. Effects of PPARs/20-HETE on the renal impairment under diabetic conditions. Exp Cell Res 2019; 382:111455. [DOI: 10.1016/j.yexcr.2019.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
|
18
|
Pereira LHDM, da Silva CA, Monteiro MLGDR, Araújo LS, Rocha LP, Reis MBDR, Ramalho FS, Corrêa RRM, Silva MV, Reis MA, Machado JR. Podocin and uPAR are good biomarkers in cases of Focal and segmental glomerulosclerosis in pediatric renal biopsies. PLoS One 2019; 14:e0217569. [PMID: 31188898 PMCID: PMC6561567 DOI: 10.1371/journal.pone.0217569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023] Open
Abstract
There are controversies whether Minimal Change Disease (MCD) and Focal and Segmental Glomerulosclerosis (FSGS) are distinct glomerular lesions or different manifestations within the same spectrum of diseases. The uPAR (urokinase-type plasminogen activator receptor) and some slit diaphragm proteins may be altered in FSGS glomeruli and may function as biomarkers of the disease in renal biopsies. Thus, this study aims to evaluate the diagnostic potential of uPAR and glomerular proteins for differentiation between MCD and FSGS in renal pediatric biopsy. Renal biopsies from 50 children between 2 and 18 years old were selected, with diagnosis of MCD (n = 29) and FSGS (n = 21). Control group consisted of pediatric autopsies (n = 15) from patients younger than 18 years old, with no evidences of renal dysfunction. In situ expressions of WT1, nephrin, podocin and uPAR were evaluated by immunoperoxidase technique. Renal biopsy of patients with MCD and FSGS expressed fewer WT1 (p≤0.0001, F = 19.35) and nephrin (p<0.0001; H = 21.54) than patients in the control group. FSGS patients expressed fewer podocin than control (p<0.0359, H = 6.655). FSGS cases expressed more uPAR than each of control and MCD (p = 0.0019; H = 12.57) and there was a positive and significant correlation between nephrin and podocin (p = 0.0026, rS = 0.6502) in these cases. Podocin had sensitivity of 73.3% and specificity of 86.7% (p = 0.0068) and uPAR had sensitivity of 78.9% and specificity of 73.3% (p = 0.0040) for diagnosis of FSGS patients. The main limitation of the study is the limited number of cases due to the difficulty in performing biopsy in pediatric patients. Podocin and uPAR are good markers for FSGS and differentiate these cases from MCD, reinforcing the theory of distinct glomerular diseases. These findings suggest that podocin and uPAR can be used as biomarkers in the routine analysis of renal biopsies in cases of podocytopathies when the lesion (sclerosis) is not sampled.
Collapse
MESH Headings
- Adolescent
- Autopsy
- Biomarkers/metabolism
- Biopsy
- Case-Control Studies
- Child
- Child, Preschool
- Diagnosis, Differential
- Female
- Gene Expression
- Glomerulosclerosis, Focal Segmental/diagnosis
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Kidney Glomerulus/metabolism
- Kidney Glomerulus/pathology
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Nephrosis, Lipoid/diagnosis
- Nephrosis, Lipoid/genetics
- Nephrosis, Lipoid/metabolism
- Nephrosis, Lipoid/pathology
- Predictive Value of Tests
- Receptors, Urokinase Plasminogen Activator/genetics
- Receptors, Urokinase Plasminogen Activator/metabolism
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- Lívia Helena de Morais Pereira
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Crislaine Aparecida da Silva
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Liliane Silvano Araújo
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Laura Penna Rocha
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcelo Bernardes da Rocha Reis
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Fernando Silva Ramalho
- Department of Pathology and Forensic Medicine, Ribeirão Preto Faculty of Medicine of São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Rosana Rosa Miranda Corrêa
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinicius Silva
- Institute of Biological and Natural Sciences, Discipline of Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marlene Antonia Reis
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Institute of Biological and Natural Sciences, Discipline of General Pathology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
19
|
Ding S, Qiu H, Huang J, Chen R, Zhang J, Huang B, Zou X, Cheng O, Jiang Q. Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy. Chem Biol Interact 2019; 307:116-124. [PMID: 31063766 DOI: 10.1016/j.cbi.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Naringenin is a flavanone compound found in citrus fruits. Recent researches showed that naringenin has many potentially pharmacological effects. However, the therapeutic effect and the potential mechanism of naringenin on diabetic nephropathy (DN) remain to be elucidated. DN model was established by a high-fat diet combined with streptozotocin (STZ), which was confirmed by the levels of fasting blood glucose (FBG, more than 11.1 mmol/L) and urinary albumin (10 times higher than the normal mice). After 5 weeks of STZ injection, the DN was developed in model mice. Then naringenin (25 or 75 mg/kg·d) were supplemented for 4 weeks. At the end of the experiment, the injury of the renal function and structure was deteriorated. Concomitantly, peroxisome proliferators-activated receptors (PPARs) protein expression was down-regulated, and CYP4A expression and 20-hydroxyeicosatetraenoic acid (20-HETE) level were reduced in DN mice. Naringenin administration improved the renal damage of DN mice, and up-regulated PPARs expression, increased CYP4A-20-HETE level. Consistent with the results of in vivo, glucose at 30 mmol/L (high glucose, HG) significantly induced cell proliferation and hypertrophy in NRK-52E cells, following the reductive PPARs protein expression and the downward CYP4A-20-HETE level. Naringenin (0.01, 0.1, 1 μmol/L) reversed these changes induced by HG in a dose-dependent manner. HET0016, a selective inhibitor of 20-HETE synthase, partially blocked the effects of naringenin. In conclusion, naringenin has a therapeutic effect on DN, which may be, at least partly, related to the activation of CYP4A-20-HETE and the up-regulation of PPARs.
Collapse
Affiliation(s)
- Shumei Ding
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongmei Qiu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiajun Huang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rongchun Chen
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jie Zhang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Xunliang Zou
- Department of Nephrology, The Fifth Affiliated Hospital, Zunyi Medical University, Zhuhai, Guangdong, 519100, PR China
| | - Oumei Cheng
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
20
|
Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC, Pennathur S, Feldman EL. Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep 2019; 9:881. [PMID: 30696927 PMCID: PMC6351661 DOI: 10.1038/s41598-018-37376-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/28/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN), diabetic kidney disease (DKD), and diabetic retinopathy (DR) contribute to significant morbidity and mortality in diabetes patients. The incidence of these complications is increasing with the diabetes epidemic, and current therapies minimally impact their pathogenesis in type 2 diabetes (T2D). Improved mechanistic understanding of each of the diabetic complications is needed in order to develop disease-modifying treatments for patients. We recently identified fundamental differences in mitochondrial responses of peripheral nerve, kidney, and retinal tissues to T2D in BKS-db/db mice. However, whether these mitochondrial adaptations are the cause or consequence of tissue dysfunction remains unclear. In the current study BKS-db/db mice were treated with the mitochondrial uncoupler, niclosamide ethanolamine (NEN), to determine the effects of mitochondrial uncoupling therapy on T2D, and the pathogenesis of DPN, DKD and DR. Here we report that NEN treatment from 6-24 wk of age had little effect on the development of T2D and diabetic complications. Our data suggest that globally targeting mitochondria with an uncoupling agent is unlikely to provide therapeutic benefit for DPN, DKD, or DR in T2D. These data also highlight the need for further insights into the role of tissue-specific metabolic reprogramming in the pathogenesis of diabetic complications.
Collapse
Affiliation(s)
- Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelli M Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carey Backus
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pradeep Kayampilly
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Horne SJ, Vasquez JM, Guo Y, Ly V, Piret SE, Leonardo AR, Ling J, Revelo MP, Bogenhagen D, Yang VW, He JC, Mallipattu SK. Podocyte-Specific Loss of Krüppel-Like Factor 6 Increases Mitochondrial Injury in Diabetic Kidney Disease. Diabetes 2018; 67:2420-2433. [PMID: 30115650 PMCID: PMC6198342 DOI: 10.2337/db17-0958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/03/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial injury is uniformly observed in several murine models as well as in individuals with diabetic kidney disease (DKD). Although emerging evidence has highlighted the role of key transcriptional regulators in mitochondrial biogenesis, little is known about the regulation of mitochondrial cytochrome c oxidase assembly in the podocyte under diabetic conditions. We recently reported a critical role of the zinc finger Krüppel-like factor 6 (KLF6) in maintaining mitochondrial function and preventing apoptosis in a proteinuric murine model. In this study, we report that podocyte-specific knockdown of Klf6 increased the susceptibility to streptozotocin-induced DKD in the resistant C57BL/6 mouse strain. We observed that the loss of KLF6 in podocytes reduced the expression of synthesis of cytochrome c oxidase 2 with resultant increased mitochondrial injury, leading to activation of the intrinsic apoptotic pathway under diabetic conditions. Conversely, mitochondrial injury and apoptosis were significantly attenuated with overexpression of KLF6 in cultured human podocytes under hyperglycemic conditions. Finally, we observed a significant reduction in glomerular and podocyte-specific expression of KLF6 in human kidney biopsies with progression of DKD. Collectively, these data suggest that podocyte-specific KLF6 is critical to preventing mitochondrial injury and apoptosis under diabetic conditions.
Collapse
Affiliation(s)
- Sylvia J Horne
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Jessica M Vasquez
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Victoria Ly
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Sian E Piret
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Alexandra R Leonardo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Jason Ling
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Daniel Bogenhagen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, NY
| | - John C He
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Renal Section, James J. Peters VA Medical Center, New York, NY
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, NY
- Renal Section, Northport VA Medical Center, Northport, NY
| |
Collapse
|
22
|
Tian M, Tang L, Wu Y, Beddhu S, Huang Y. Adiponectin attenuates kidney injury and fibrosis in deoxycorticosterone acetate-salt and angiotensin II-induced CKD mice. Am J Physiol Renal Physiol 2018; 315:F558-F571. [PMID: 29873514 DOI: 10.1152/ajprenal.00137.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Adiponectin (ApN) is a multifunctional adipokine. However, high, rather than low, concentrations of ApN are unexpectedly found in patients with chronic kidney disease (CKD) via an as yet unknown mechanism, and the role of ApN in CKD is unclear. Herein, we investigated the effect of ApN overexpression on progressive renal injury resulting from deoxycorticosterone acetate-salt (DOCA) and angiotensin II (ANG II) infusion using a transgenic, inducible ApN-overexpressing mouse model. Three groups of mice [wild type receiving no infusion (WT) and WT and cytochrome P450 1a1 (cyp1a1)-ApN transgenic mice (ApN-Tg) receiving DOCA+ANG II infusion (WT/DOCA+ANG II and ApN-Tg/DOCA+ANG II)] were assigned to receive normal food containing 0.15% of the transgene inducer indole-3-carbinol (I3C) for 3 wk. In the I3C-induced ApN-Tg/DOCA+ANG II mice, not the WT or WT/DOCA+ANG II mice, overexpression of ApN in liver resulted in 3.15-fold increases in circulating ApN compared with nontransgenic controls. Of note, the transgenic mice receiving DOCA+ANG II infusion were still hypertensive but had much less albuminuria and glomerular and tubulointerstitial fibrosis, which were associated with ameliorated podocyte injury determined by ameliorated podocyte loss and foot process effacement, and alleviated tubular injury determined by ameliorated mRNA overexpression of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin and mRNA decreases of cubilin and megalin in tubular cells, compared with WT/DOCA+ANG II mice. In addition, renal production of NF-κB-p65, NAPDH oxidase 2, and p47 phox and MAPK-related cellular proliferation, which were induced in WT/DOCA+ANG II mice, were markedly reduced in ApN-Tg/DOCA+ANG II mice. These results indicate that elevated ApN in the CKD mouse model is renal protective. Enhancing ApN production or signaling may have therapeutic potential for CKD.
Collapse
Affiliation(s)
- Mi Tian
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah.,Division of Nephrology, Department of Internal Medicine, Shengjing Hospital, China Medical University , Shenyang , China
| | - Li Tang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah.,Center of Kidney Transplantation, Ningbo Urology and Nephrology Hospital , Ningbo , China
| | - Yuanyuan Wu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| | - Srinivasan Beddhu
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| | - Yufeng Huang
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health , Salt Lake City, Utah
| |
Collapse
|
23
|
Rac1 in podocytes promotes glomerular repair and limits the formation of sclerosis. Sci Rep 2018; 8:5061. [PMID: 29567961 PMCID: PMC5864960 DOI: 10.1038/s41598-018-23278-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Rac1, a Rho family member, is ubiquitously expressed and participates in various biological processes. Rac1 expression is induced early in podocyte injury, but its role in repair is unclear. To investigate the role of Rac1 expression in podocytes under pathological conditions, we used podocyte-specific Rac1 conditional knock-out (cKO) mice administered adriamycin (ADR), which causes nephrosis and glomerulosclerosis. Larger areas of detached podocytes, more adhesion of the GBM to Bowman’s capsule, and a higher ratio of sclerotic glomeruli were observed in Rac1 cKO mice than in control mice, whereas no differences were observed in glomerular podocyte numbers in both groups after ADR treatment. The mammalian target of rapamycin (mTOR) pathway, which regulates the cell size, was more strongly suppressed in the podocytes of Rac1 cKO mice than in those of control mice under pathological conditions. In accordance with this result, the volumes of podocytes in Rac1 cKO mice were significantly reduced compared with those of control mice. Experiments using in vitro ADR-administered Rac1 knockdown podocytes also supported that a reduction in Rac1 suppressed mTOR activity in injured podocytes. Taken together, these data indicate that Rac1-associated mTOR activation in podocytes plays an important role in preventing the kidneys from developing glomerulosclerosis.
Collapse
|
24
|
Hinder LM, Park M, Rumora AE, Hur J, Eichinger F, Pennathur S, Kretzler M, Brosius FC, Feldman EL. Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease. J Cell Mol Med 2017; 21:2140-2152. [PMID: 28272773 PMCID: PMC5571536 DOI: 10.1111/jcmm.13136] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/17/2017] [Indexed: 01/14/2023] Open
Abstract
Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another.
Collapse
Affiliation(s)
- Lucy M. Hinder
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Meeyoung Park
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Amy E. Rumora
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Junguk Hur
- Department of Biomedical SciencesSchool of Medicine and Health SciencesUniversity of North DakotaGrand ForksNDUSA
| | - Felix Eichinger
- Department of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | | | - Matthias Kretzler
- Department of Internal MedicineUniversity of MichiganAnn ArborMIUSA
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMIUSA
| | - Frank C. Brosius
- Department of Internal MedicineUniversity of MichiganAnn ArborMIUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
25
|
Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, Sharma R, Chan S, Tyminski E, Shamashkin M, Belghasem M, Henderson JM, Coyle AJ, Salant DJ, Berasi SP, Lu W. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 2016; 1:e86934. [PMID: 27882344 DOI: 10.1172/jci.insight.86934] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.
Collapse
Affiliation(s)
- Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hongying Yang
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Sudhir Kumar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Kathleen E Tumelty
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Anna Pisarek-Horowitz
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Richa Sharma
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Edyta Tyminski
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Michael Shamashkin
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Anthony J Coyle
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - David J Salant
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stephen P Berasi
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Eid S, Boutary S, Braych K, Sabra R, Massaad C, Hamdy A, Rashid A, Moodad S, Block K, Gorin Y, Abboud HE, Eid AA. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxid Redox Signal 2016; 25:703-719. [PMID: 27393154 PMCID: PMC5079418 DOI: 10.1089/ars.2015.6562] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. RESULTS High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. INNOVATION Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. CONCLUSION mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703-719.
Collapse
Affiliation(s)
- Stéphanie Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon .,2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Suzan Boutary
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Kawthar Braych
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Ramzi Sabra
- 3 Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Charbel Massaad
- 2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Ahmed Hamdy
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Awad Rashid
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Sarah Moodad
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Karen Block
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Yves Gorin
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Hanna E Abboud
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Assaad A Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
27
|
Ishizaka M, Gohda T, Takagi M, Omote K, Sonoda Y, Oliva Trejo JA, Asao R, Hidaka T, Asanuma K, Horikoshi S, Tomino Y. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice. Biochem Biophys Res Commun 2015; 467:549-55. [DOI: 10.1016/j.bbrc.2015.09.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
|
28
|
Hur J, Dauch JR, Hinder LM, Hayes JM, Backus C, Pennathur S, Kretzler M, Brosius FC, Feldman EL. The Metabolic Syndrome and Microvascular Complications in a Murine Model of Type 2 Diabetes. Diabetes 2015; 64:3294-304. [PMID: 25979075 PMCID: PMC4542440 DOI: 10.2337/db15-0133] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
To define the components of the metabolic syndrome that contribute to diabetic polyneuropathy (DPN) in type 2 diabetes mellitus (T2DM), we treated the BKS db/db mouse, an established murine model of T2DM and the metabolic syndrome, with the thiazolidinedione class drug pioglitazone. Pioglitazone treatment of BKS db/db mice produced a significant weight gain, restored glycemic control, and normalized measures of serum oxidative stress and triglycerides but had no effect on LDLs or total cholesterol. Moreover, although pioglitazone treatment normalized renal function, it had no effect on measures of large myelinated nerve fibers, specifically sural or sciatic nerve conduction velocities, but significantly improved measures of small unmyelinated nerve fiber architecture and function. Analyses of gene expression arrays of large myelinated sciatic nerves from pioglitazone-treated animals revealed an unanticipated increase in genes related to adipogenesis, adipokine signaling, and lipoprotein signaling, which likely contributed to the blunted therapeutic response. Similar analyses of dorsal root ganglion neurons revealed a salutary effect of pioglitazone on pathways related to defense and cytokine production. These data suggest differential susceptibility of small and large nerve fibers to specific metabolic impairments associated with T2DM and provide the basis for discussion of new treatment paradigms for individuals with T2DM and DPN.
Collapse
Affiliation(s)
- Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI Department of Basic Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND
| | | | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Carey Backus
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Zhou YS, Ihmoda IA, Phelps RG, Bellamy CO, Turner AN. Following specific podocyte injury captopril protects against progressive long term renal damage. F1000Res 2015; 4:172. [PMID: 26629332 PMCID: PMC4642846 DOI: 10.12688/f1000research.4030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiotensin converting enzyme inhibitors (ACEi) reduce proteinuria and preserve kidney function in proteinuric renal diseases. Their nephroprotective effect exceeds that attributable to lowering of blood pressure alone. This study examines the potential of ACEi to protect from progression of injury after a highly specific injury to podocytes in a mouse model. METHODS We created transgenic (Podo-DTR) mice in which graded specific podocyte injury could be induced by a single injection of diphtheria toxin. Transgenic and wild-type mice were given the ACEi captopril in drinking water, or water alone, commencing 24h after toxin injection. Kidneys were examined histologically at 8 weeks and injury assessed by observers blinded to experimental group. RESULTS After toxin injection, Podo-DTR mice developed acute proteinuria, and at higher doses transient renal impairment, which subsided within 3 weeks to be followed by a slow glomerular scarring process. Captopril treatment in Podo-DTR line 57 after toxin injection at 5ng/g body weight reduced proteinuria and ameliorated glomerular scarring, matrix accumulation and glomerulosclerosis almost to baseline (toxin: 17%; toxin + ACEi 10%, p<0.04; control 7% glomerular scarring). Podocyte counts were reduced after toxin treatment and showed no recovery irrespective of captopril treatment (7.1 and 7.3 podocytes per glomerular cross section in water and captopril-treated animals compared with 8.2 of wild-type controls, p<0.05). CONCLUSIONS Observations in Podo-DTR mice support the hypothesis that continuing podocyte dysfunction is a key abnormality in proteinuric disease. Our model is ideal for studying strategies to protect the kidney from progressive injury following podocyte depletion. Demonstrable protective effects from captopril occur, despite indiscernible preservation or restoration of podocyte counts, at least after this degree of relatively mild injury.
Collapse
Affiliation(s)
- Yu S Zhou
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Ihmoda A Ihmoda
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Richard G Phelps
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Christopher Os Bellamy
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - A Neil Turner
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| |
Collapse
|
30
|
Shah A, Xia L, Masson EAY, Gui C, Momen A, Shikatani EA, Husain M, Quaggin S, John R, Fantus IG. Thioredoxin-Interacting Protein Deficiency Protects against Diabetic Nephropathy. J Am Soc Nephrol 2015; 26:2963-77. [PMID: 25855771 DOI: 10.1681/asn.2014050528] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/22/2015] [Indexed: 12/24/2022] Open
Abstract
Expression of thioredoxin-interacting protein (TxNIP), an endogenous inhibitor of the thiol oxidoreductase thioredoxin, is augmented by high glucose (HG) and promotes oxidative stress. We previously reported that TxNIP-deficient mesangial cells showed protection from HG-induced reactive oxygen species, mitogen-activated protein kinase phosphorylation, and collagen expression. Here, we investigated the potential role of TxNIP in the pathogenesis of diabetic nephropathy (DN) in vivo. Wild-type (WT) control, TxNIP(-/-), and TxNIP(+/-) mice were rendered equally diabetic with low-dose streptozotocin. In contrast to effects in WT mice, diabetes did not increase albuminuria, proteinuria, serum cystatin C, or serum creatinine levels in TxNIP(-/-) mice. Whereas morphometric studies of kidneys revealed a thickened glomerular basement membrane and effaced podocytes in the diabetic WT mice, these changes were absent in the diabetic TxNIP(-/-) mice. Immunohistochemical analysis revealed significant increases in the levels of glomerular TGF-β1, collagen IV, and fibrosis only in WT diabetic mice. Additionally, only WT diabetic mice showed significant increases in oxidative stress (nitrotyrosine, urinary 8-hydroxy-2-deoxy-guanosine) and inflammation (IL-1β mRNA, F4/80 immunohistochemistry). Expression levels of Nox4-encoded mRNA and protein increased only in the diabetic WT animals. A significant loss of podocytes, assessed by Wilms' tumor 1 and nephrin staining and urinary nephrin concentration, was found in diabetic WT but not TxNIP(-/-) mice. Furthermore, in cultured human podocytes exposed to HG, TxNIP knockdown with siRNA abolished the increased mitochondrial O2 (-) generation and apoptosis. These data indicate that TxNIP has a critical role in the progression of DN and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Anu Shah
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto General Research Institute, University Health Network, Department of Physiology, Banting and Best Diabetes Centre, and
| | - Ling Xia
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto General Research Institute, University Health Network, Banting and Best Diabetes Centre, and
| | - Elodie A Y Masson
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Banting and Best Diabetes Centre, and
| | - Chloe Gui
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Banting and Best Diabetes Centre, and
| | - Abdul Momen
- Toronto General Research Institute, University Health Network
| | - Eric A Shikatani
- Toronto General Research Institute, University Health Network, Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada, and
| | - Mansoor Husain
- Toronto General Research Institute, University Health Network
| | - Susan Quaggin
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Banting and Best Diabetes Centre, and Feinberg Cardiovascular Research Institute, Division of Medicine-Nephrology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Rohan John
- Toronto General Research Institute, University Health Network, Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada, and
| | - I G Fantus
- Department of Medicine and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto General Research Institute, University Health Network, Department of Physiology, Banting and Best Diabetes Centre, and
| |
Collapse
|
31
|
Zhang X, Song Z, Guo Y, Zhou M. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol Cell Biochem 2014; 399:155-65. [DOI: 10.1007/s11010-014-2242-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/01/2014] [Indexed: 01/19/2023]
|
32
|
Paeng J, Chang JH, Lee SH, Nam BY, Kang HY, Kim S, Oh HJ, Park JT, Han SH, Yoo TH, Kang SW. Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions. Apoptosis 2014; 19:1678-90. [DOI: 10.1007/s10495-014-1037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Post DM, Hawkins BL, Eldridge JA. The effects of nutrition-induced abnormal food metabolism in the Southern Plains woodrat (Neotoma micropus): comparisons of variations of the Western diet. J Anim Physiol Anim Nutr (Berl) 2014; 99:29-36. [PMID: 25070181 DOI: 10.1111/jpn.12224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 06/12/2014] [Indexed: 11/28/2022]
Abstract
We investigated the effects of several modifications of the Western diet on a medium-sized rodent, Neotoma micropus, that lives in the area of the wildland-urban interface. We conducted a laboratory study of the response of N. micropus to high fat-high fructose (HFHF), high fat-high sucrose (HFHS), high fat-low sugar (HFLSu) and control (low fat-low sugar) diets. We found a significant increase in hepatic lipid deposition and a significant decrease in podocytes in those animals that consumed the HFHF and HFLSu diets compared to those on the HFHS and control diets. We found no significant differences in Bowman's space or hepatic collagen formation. We predict that N. micropus in the wild, with access to anthropogenic resources, will show similar effects as a result of the consumption of anthropogenic resources.
Collapse
Affiliation(s)
- D M Post
- Department of Biology, University of Texas-Permian Basin, Odessa, TX, USA
| | | | - J A Eldridge
- Department of Kinesiology, University of Texas-Permian Basin, Odessa, TX, USA
| |
Collapse
|
34
|
Valsartan slows the progression of diabetic nephropathy in db/db mice via a reduction in podocyte injury, and renal oxidative stress and inflammation. Clin Sci (Lond) 2014; 126:707-20. [PMID: 24195695 DOI: 10.1042/cs20130223] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Higher doses of AngII (angiotensin II) blockers are intended to optimize albuminuria reduction rather than for blood pressure control in chronic kidney disease. However, the long-term renoprotection of high-dose AngII blockers has yet to be defined. The present study sought to determine whether doses of ARB (AngII receptor blocker) that maximally reduce proteinuria could slow the progression of glomerulosclerosis in the uninephrectomized db/db mouse, a model of Type 2 diabetes. Untreated uninephrectomized db/db mice had normal blood pressure, but developed progressive albuminuria and mesangial matrix expansion between 18 and 22 weeks of age, which was associated with increased renal expression of TGFβ1 (transforming growth factor β1), PAI-1 (plasminogen-activator inhibitor-1), type IV collagen and FN (fibronectin). Treatment with valsartan in the drinking water of db/db mice from 18 to 22 weeks of age, at a dose that was determined previously to maximally reduce proteinuria, prevented the increases in albuminuria and the markers of renal fibrosis seen in untreated db/db mice. In addition, WT-1 (Wilms tumour protein-1)-immunopositive podocyte numbers were found to be lower in the untreated glomeruli of mice with diabetes. The expression of podocin and nephrin were continually decreased in mice with diabetes between 18 and 22 weeks of age. These changes are indicative of podocyte injury and the administration of valsartan ameliorated them substantially. Renal expression of TNFα (tumour necrosis factor α), MCP-1 (monocyte chemoattractant protein-1), Nox2 (NADPH oxidase 2), p22phox and p47phox and urine TBARS (thiobarbituric acid-reacting substance) levels, the markers of renal inflammation and oxidative stress, were increased during disease progression in mice with diabetes. Valsartan treatment was shown to reduce these markers. Thus high doses of valsartan not only reduce albuminuria maximally, but also halt the progression of the glomerulosclerosis resulting from Type 2 diabetes via a reduction in podocyte injury and renal oxidative stress and inflammation.
Collapse
|
35
|
Mallipattu SK, Gallagher EJ, LeRoith D, Liu R, Mehrotra A, Horne SJ, Chuang PY, Yang VW, He JC. Diabetic nephropathy in a nonobese mouse model of type 2 diabetes mellitus. Am J Physiol Renal Physiol 2014; 306:F1008-17. [PMID: 24598803 DOI: 10.1152/ajprenal.00597.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A large body of research has contributed to our understanding of the pathophysiology of diabetic nephropathy. Yet, many questions remain regarding the progression of a disease that accounts for nearly half the patients entering dialysis yearly. Several murine models of diabetic nephropathy secondary to Type 2 diabetes mellitus (T2DM) do exist, and some are more representative than others, but all have limitations. In this study, we aimed to identify a new mouse model of diabetic nephropathy secondary to T2DM in a previously described T2DM model, the MKR (MCK-KR-hIGF-IR) mouse. In this mouse model, T2DM develops as a result of functional inactivation of insulin-like growth factor-1 receptor (IGF-1R) in the skeletal muscle. These mice are lean, with marked insulin resistance, hyperinsulinemia, hyperglycemia, and dyslipidemia and thus are representative of nonobese human T2DM. We show that the MKR mice, when under stress (high-fat diet or unilateral nephrectomy), develop progressive diabetic nephropathy with marked albuminuria and meet the histopathological criteria as defined by the Animal Models of Diabetic Complications Consortium. Finally, these MKR mice are fertile and are on a common background strain, making it a novel model to study the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Dept. of Medicine/Nephrology, Mount Sinai School of Medicine, One Gustave L Levy Place, Box 1243, New York, NY.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Crk1/2 and CrkL form a hetero-oligomer and functionally complement each other during podocyte morphogenesis. Kidney Int 2014; 85:1382-1394. [PMID: 24499776 PMCID: PMC4040156 DOI: 10.1038/ki.2013.556] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 01/19/2023]
Abstract
Activation of the slit diaphragm protein nephrin induces actin cytoskeletal remodeling, resulting in lamellipodia formation in podocytes in vitro in a phosphatidylinositol-3 kinase-, focal adhesion kinase-, Cas-, and Crk1/2-dependent fashion. In mice, podocyte-specific deletion of Crk1/2 prevents or attenuates foot process effacement in two models of podocyte injury. This suggests that cellular mechanisms governing lamellipodial protrusion in vitro are similar to those in vivo during foot process effacement. As Crk1/2-null mice developed and aged normally, we tested whether the Crk1/2 paralog, CrkL, functionally complements Crk1/2 in a podocyte-specific context. Podocyte-specific CrkL-null mice, like podocyte-specific Crk1/2-null mice, developed and aged normally but were protected from protamine sulfate-induced foot process effacement. Simultaneous podocyte-specific deletion of Crk1/2 and CrkL resulted in albuminuria detected by 6 weeks postpartum and associated with altered podocyte process architecture. Nephrin-induced lamellipodia formation in podocytes in vitro was CrkL-dependent. CrkL formed a hetero-oligomer with Crk2 and, like Crk2, was recruited to tyrosine phosphorylated nephrin. Thus, Crk1/2 and CrkL are physically linked, functionally complement each other during podocyte foot process spreading, and together are required for developing typical foot process architecture.
Collapse
|
37
|
Guzman J, Jauregui AN, Merscher-Gomez S, Maiguel D, Muresan C, Mitrofanova A, Diez-Sampedro A, Szust J, Yoo TH, Villarreal R, Pedigo C, Molano RD, Johnson K, Kahn B, Hartleben B, Huber TB, Saha J, Burke GW, Abel ED, Brosius FC, Fornoni A. Podocyte-specific GLUT4-deficient mice have fewer and larger podocytes and are protected from diabetic nephropathy. Diabetes 2014; 63:701-14. [PMID: 24101677 PMCID: PMC3900538 DOI: 10.2337/db13-0752] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Podocytes are a major component of the glomerular filtration barrier, and their ability to sense insulin is essential to prevent proteinuria. Here we identify the insulin downstream effector GLUT4 as a key modulator of podocyte function in diabetic nephropathy (DN). Mice with a podocyte-specific deletion of GLUT4 (G4 KO) did not develop albuminuria despite having larger and fewer podocytes than wild-type (WT) mice. Glomeruli from G4 KO mice were protected from diabetes-induced hypertrophy, mesangial expansion, and albuminuria and failed to activate the mammalian target of rapamycin (mTOR) pathway. In order to investigate whether the protection observed in G4 KO mice was due to the failure to activate mTOR, we used three independent in vivo experiments. G4 KO mice did not develop lipopolysaccharide-induced albuminuria, which requires mTOR activation. On the contrary, G4 KO mice as well as WT mice treated with the mTOR inhibitor rapamycin developed worse adriamycin-induced nephropathy than WT mice, consistent with the fact that adriamycin toxicity is augmented by mTOR inhibition. In summary, GLUT4 deficiency in podocytes affects podocyte nutrient sensing, results in fewer and larger cells, and protects mice from the development of DN. This is the first evidence that podocyte hypertrophy concomitant with podocytopenia may be associated with protection from proteinuria.
Collapse
Affiliation(s)
- Johanna Guzman
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Alexandra N. Jauregui
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Sandra Merscher-Gomez
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Dony Maiguel
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Cristina Muresan
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Alla Mitrofanova
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Ana Diez-Sampedro
- Department of Physiology, Miller School of Medicine, University of Miami, Miami, FL
| | - Joel Szust
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Tae-Hyun Yoo
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Rodrigo Villarreal
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - Christopher Pedigo
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
| | - R. Damaris Molano
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Kevin Johnson
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Barbara Kahn
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Tobias B. Huber
- Division of Nephrology, Freiburg University, Freiburg, Germany
| | - Jharna Saha
- Division of Nephrology, University of Michigan, Ann Arbor, MI
| | - George W. Burke
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - E. Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | | | - Alessia Fornoni
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL
- Department of Medicine, Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL
- Corresponding author: Alessia Fornoni,
| |
Collapse
|
38
|
Venkatareddy M, Wang S, Yang Y, Patel S, Wickman L, Nishizono R, Chowdhury M, Hodgin J, Wiggins PA, Wiggins RC. Estimating podocyte number and density using a single histologic section. J Am Soc Nephrol 2013; 25:1118-29. [PMID: 24357669 DOI: 10.1681/asn.2013080859] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reduction in podocyte density to levels below a threshold value drives glomerulosclerosis and progression to ESRD. However, technical demands prohibit high-throughput application of conventional morphometry for estimating podocyte density. We evaluated a method for estimating podocyte density using single paraffin-embedded formalin-fixed sections. Podocyte nuclei were imaged using indirect immunofluorescence detection of antibodies against Wilms' tumor-1 or transducin-like enhancer of split 4. To account for the large size of podocyte nuclei in relation to section thickness, we derived a correction factor given by the equation CF=1/(D/T+1), where T is the tissue section thickness and D is the mean caliper diameter of podocyte nuclei. Normal values for D were directly measured in thick tissue sections and in 3- to 5-μm sections using calibrated imaging software. D values were larger for human podocyte nuclei than for rat or mouse nuclei (P<0.01). In addition, D did not vary significantly between human kidney biopsies at the time of transplantation, 3-6 months after transplantation, or with podocyte depletion associated with transplant glomerulopathy. In rat models, D values also did not vary with podocyte depletion, but increased approximately 10% with old age and in postnephrectomy kidney hypertrophy. A spreadsheet with embedded formulas was created to facilitate individualized podocyte density estimation upon input of measured values. The correction factor method was validated by comparison with other methods, and provided data comparable with prior data for normal human kidney transplant donors. This method for estimating podocyte density is applicable to high-throughput laboratory and clinical use.
Collapse
Affiliation(s)
| | - Su Wang
- Departments of Internal Medicine
| | - Yan Yang
- Departments of Internal Medicine
| | | | | | | | | | - Jeffrey Hodgin
- Pathology, University of Michigan, Ann Arbor, Michigan; and
| | - Paul A Wiggins
- Department of Physics and Department of Bioengineering, University of Washington, Seattle, Washington
| | | |
Collapse
|
39
|
Protective role of low-dose TGF-β1 in early diabetic nephropathy induced by streptozotocin. Int Immunopharmacol 2013; 17:752-8. [PMID: 24055008 DOI: 10.1016/j.intimp.2013.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/24/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine whether low-dose TGF-β1 and/or IL-6-receptorα monoclonal antibody (anti-IL-6Rα) can be used to delay renal damage and preserve renal function by rebalancing regulatory T (Treg)/Th17 cells during the course of early diabetic nephropathy (DN) induced by streptozotocin (STZ). METHODS Diabetes was induced in C57BL/6 mice by multiple STZ injection. Low-dose TGF-β1 (0.1 μg/mouse/week) and/or anti-IL-6Rα (10 μg/mouse/week) were administered 6 dozes after STZ injection. After 40 days of diabetes onset, metabolic indices, renal structure, activated Akt and Stat3, Treg/Th17 balance, markers and inflammatory cytokines, and oxidative stress in glomeruli were assessed. RESULTS Low-dose TGF-β1, instead of causing renal damage, decreased blood glucose, ameliorated kidney hypertrophy, attenuated oxidative stress, maintained activated Stat3, and induced Treg/Th17 balance in early DN. Interestingly, low-dose TGF-β1+anti-IL-6Rα or anti-IL-6Rα alone did not attenuate DN. CONCLUSIONS This study provides convincing experimental evidence of the protective effects of low-dose TGF-β1 in improving metabolic disorder and slowing renal damage in early DN.
Collapse
|
40
|
Eid AA, Ford BM, Bhandary B, de Cassia Cavaglieri R, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 2013; 62:2935-47. [PMID: 23557706 PMCID: PMC3717863 DOI: 10.2337/db12-1504] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Pharmacological doses of the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduce albuminuria in diabetes. We explored the hypothesis that mTOR mediates podocyte injury in diabetes. High glucose (HG) induces apoptosis of podocytes, inhibits AMP-activated protein kinase (AMPK) activation, inactivates tuberin, and activates mTOR. HG also increases the levels of Nox4 and Nox1 and NADPH oxidase activity. Inhibition of mTOR by low-dose rapamycin decreases HG-induced Nox4 and Nox1, NADPH oxidase activity, and podocyte apoptosis. Inhibition of mTOR had no effect on AMPK or tuberin phosphorylation, indicating that mTOR is downstream of these signaling molecules. In isolated glomeruli of OVE26 mice, there is a similar decrease in the activation of AMPK and tuberin and activation of mTOR with increase in Nox4 and NADPH oxidase activity. Inhibition of mTOR by a small dose of rapamycin reduces podocyte apoptosis and attenuates glomerular injury and albuminuria. Our data provide evidence for a novel function of mTOR in Nox4-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Thus, mTOR and/or NADPH oxidase inhibition may represent a therapeutic modality of diabetic kidney disease.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tan SM, Sharma A, Yuen DYC, Stefanovic N, Krippner G, Mugesh G, Chai Z, de Haan JB. The modified selenenyl amide, M-hydroxy ebselen, attenuates diabetic nephropathy and diabetes-associated atherosclerosis in ApoE/GPx1 double knockout mice. PLoS One 2013; 8:e69193. [PMID: 23874911 PMCID: PMC3712958 DOI: 10.1371/journal.pone.0069193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/05/2013] [Indexed: 11/18/2022] Open
Abstract
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-β (TGF-β) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-β-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.
Collapse
Affiliation(s)
- Sih Min Tan
- Oxidative Stress Group, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lemley KV, Bertram JF, Nicholas SB, White K. Estimation of glomerular podocyte number: a selection of valid methods. J Am Soc Nephrol 2013; 24:1193-202. [PMID: 23833256 DOI: 10.1681/asn.2012111078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The podocyte depletion hypothesis has emerged as an important unifying concept in glomerular pathology. The estimation of podocyte number is therefore often a critical component of studies of progressive renal diseases. Despite this, there is little uniformity in the biomedical literature with regard to the methods used to estimate this important parameter. Here we review a selection of valid methods for estimating podocyte number: exhaustive enumeration method, Weibel and Gomez method, disector/Cavalieri combination, disector/fractionator combination, and thick-and-thin section method. We propose the use of the disector/fractionator method for studies in which controlled sectioning of tissue is feasible, reserving the Weibel and Gomez method for studies based on archival or routine pathology material.
Collapse
Affiliation(s)
- Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | |
Collapse
|
43
|
Puelles VG, Douglas-Denton RN, Cullen-McEwen L, McNamara BJ, Salih F, Li J, Hughson MD, Hoy WE, Nyengaard JR, Bertram JF. Design-based stereological methods for estimating numbers of glomerular podocytes. Ann Anat 2013; 196:48-56. [PMID: 23845787 DOI: 10.1016/j.aanat.2013.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 01/26/2023]
Abstract
The podocyte depletion hypothesis has emerged as a unifying concept in glomerular pathology. According to this hypothesis podocyte depletion may be absolute (decrease in number of healthy mature podocytes), relative (fewer podocytes per unit of glomerular volume) or involve alterations to the specialized podocyte architecture (such as foot process effacement). To study and understand podocyte depletion it is important to be able to accurately and precisely count these cells. Here we present new design-based stereological methods for estimating podocyte number in individual glomeruli of known volume, and in average glomeruli. Both methods involve serial histological sectioning, triple label immunohistochemistry, laser confocal microscopy and cell counting with the optical disector/fractionator.
Collapse
Affiliation(s)
- Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.
| | | | - Luise Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Bridgette J McNamara
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Firuz Salih
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Australia
| | - Jens R Nyengaard
- Stereology and EM Laboratory, CSGB, Aarhus University Hospital, Aarhus, Denmark
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
44
|
Pichaiwong W, Hudkins KL, Wietecha T, Nguyen TQ, Tachaudomdach C, Li W, Askari B, Kobayashi T, O'Brien KD, Pippin JW, Shankland SJ, Alpers CE. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol 2013; 24:1088-102. [PMID: 23641056 DOI: 10.1681/asn.2012050445] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The reversibility of diabetic nephropathy remains controversial. Here, we tested whether replacing leptin could reverse the advanced diabetic nephropathy modeled by the leptin-deficient BTBR ob/ob mouse. Leptin replacement, but not inhibition of the renin-angiotensin-aldosterone system (RAAS), resulted in near-complete reversal of both structural (mesangial matrix expansion, mesangiolysis, basement membrane thickening, podocyte loss) and functional (proteinuria, accumulation of reactive oxygen species) measures of advanced diabetic nephropathy. Immunohistochemical labeling with the podocyte markers Wilms tumor 1 and p57 identified parietal epithelial cells as a possible source of regenerating podocytes. Thus, the leptin-deficient BTBR ob/ob mouse provides a model of advanced but reversible diabetic nephropathy for further study. These results also suggest that restoration of lost podocytes is possible but is not induced by RAAS inhibition, possibly explaining the limited efficacy of RAAS inhibitors in promoting repair of diabetic nephropathy.
Collapse
|
45
|
Abstract
With the widespread use of combination antiretroviral agents, the incidence of HIV-associated nephropathy has decreased. Currently, HIV-infected patients live much longer and often suffer from comorbidities such as diabetes mellitus. Recent epidemiological studies suggest that concurrent HIV infection and diabetes mellitus may have a synergistic effect on the incidence of chronic kidney disease. To address this, we determined whether HIV-1 transgene expression accelerates diabetic kidney injury using a diabetic HIV-1 transgenic (Tg26) murine model. Diabetes was initially induced with low-dose streptozotocin in both Tg26 and wild-type mice on a C57BL/6 background, which is resistant to classic HIV-associated nephropathy. Although diabetic nephropathy is minimally observed on the C57BL/6 background, diabetic Tg26 mice exhibited a significant increase in glomerular injury compared with nondiabetic Tg26 mice and diabetic wild-type mice. Validation of microarray gene expression analysis from isolated glomeruli showed a significant upregulation of proinflammatory pathways in diabetic Tg26 mice. Thus, our study found that expression of HIV-1 genes aggravates diabetic kidney disease.
Collapse
|
46
|
Ozaltin F, Li B, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang C, Chen P, Lu D, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol 2012; 24:377-84. [PMID: 23274426 DOI: 10.1681/asn.2012090903] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal microangiopathies and membranoproliferative GN (MPGN) can manifest similar clinical presentations and histology, suggesting the possibility of a common underlying mechanism in some cases. Here, we performed homozygosity mapping and whole exome sequencing in a Turkish consanguineous family and identified DGKE gene variants as the cause of a membranoproliferative-like glomerular microangiopathy. Furthermore, we identified two additional DGKE variants in a cohort of 142 unrelated patients diagnosed with membranoproliferative GN. This gene encodes the diacylglycerol kinase DGKε, which is an intracellular lipid kinase that phosphorylates diacylglycerol to phosphatidic acid. Immunofluorescence confocal microscopy demonstrated that mouse and rat Dgkε colocalizes with the podocyte marker WT1 but not with the endothelial marker CD31. Patch-clamp experiments in human embryonic kidney (HEK293) cells showed that DGKε variants affect the intracellular concentration of diacylglycerol. Taken together, these results not only identify a genetic cause of a glomerular microangiopathy but also suggest that the phosphatidylinositol cycle, which requires DGKE, is critical to the normal function of podocytes.
Collapse
Affiliation(s)
- Fatih Ozaltin
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gu C, Zhou G, Noble NA, Border WA, Cheung AK, Huang Y. Targeting reduction of proteinuria in glomerulonephritis: Maximizing the antifibrotic effect of valsartan by protecting podocytes. J Renin Angiotensin Aldosterone Syst 2012; 15:177-89. [DOI: 10.1177/1470320312466127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chunyan Gu
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Guangyu Zhou
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Nancy A Noble
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Wayne A Border
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Alfred K Cheung
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| | - Yufeng Huang
- Fibrosis Research Laboratory, Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, USA
| |
Collapse
|
48
|
Kodama F, Asanuma K, Takagi M, Hidaka T, Asanuma E, Fukuda H, Seki T, Takeda Y, Hosoe-Nagai Y, Asao R, Horikoshi S, Tomino Y. Translocation of dendrin to the podocyte nucleus in acute glomerular injury in patients with IgA nephropathy. Nephrol Dial Transplant 2012; 28:1762-72. [PMID: 23143340 DOI: 10.1093/ndt/gfs500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It has been reported that podocytopenia has been occurring with increasing disease severity in patients with IgA nephropathy (IgAN). Dendrin is localized at the slit diaphragm (SD) in podocytes. We showed that dendrin translocates to the nucleus of injured podocytes in experimental nephritis and the nuclear dendrin promotes podocyte apoptosis. It is still unknown whether dendrin translocates from the SD to podocyte nucleus in IgAN. We investigated the presence of nuclear dendrin in patients with IgAN and the association between the translocated dendrin to the podocyte nucleus and disease activity. METHODS Fourteen adult patients with IgAN were enrolled. The pathological parameters were analyzed. Immunostaining of renal biopsy specimens and urinary sediments from IgAN or minimal change nephrotic syndrome (MCNS) as the control was performed. RESULTS A positive correlation was observed between an acute extracapillary change and the number of dendrin-positive nuclei. The location of dendrin in the nuclei was found in urinary podocytes of IgAN. The number of dendrin-positive nuclei in urinary podocytes of IgAN was significantly higher than that of MCNS. Urinary podocytes, which expressed the apoptosis marker annexin V, were also detected in IgAN. The translocation of dendrin to the podocyte nucleus as well as strong cathepsin L staining were detected in the glomeruli of IgAN. CONCLUSION An increasing number of dendrin-positive nuclei in the glomeruli suggest acute glomerular injury in IgAN. Apoptotic podocytes were detectable in the urine of IgAN. It appears that the translocation of dendrin to the podocyte nuclei enhances podocyte apoptosis in acute glomerular injury and leads to podocytopenia in patients with IgAN.
Collapse
Affiliation(s)
- Fumiko Kodama
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fukuda A, Wickman LT, Venkatareddy MP, Wang SQ, Chowdhury MA, Wiggins JE, Shedden KA, Wiggins RC. Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker. Nephrol Dial Transplant 2012; 27:4079-87. [PMID: 22863839 DOI: 10.1093/ndt/gfs313] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Proteinuria and/or albuminuria are widely used for noninvasive assessment of kidney diseases. However, proteinuria is a nonspecific marker of diverse forms of kidney injury, physiologic processes and filtration of small proteins of monoclonal and other pathologic processes. The opportunity to develop new glomerular disease biomarkers follows the realization that the degree of podocyte depletion determines the degree of glomerulosclerosis, and if persistent, determines the progression to end-stage kidney disease (ESKD). Podocyte cell lineage-specific mRNAs can be recovered in urine pellets of model systems and in humans. In model systems, progressive glomerular disease is associated with decreased nephrin mRNA steady-state levels compared with podocin mRNA. Thus, the urine podocin:nephrin mRNA ratio (PNR) could serve as a useful progression biomarker. The use of podocyte-specific transcript ratios also circumvents many problems inherent to urine assays. METHODS To test this hypothesis, the human diphtheria toxin receptor (hDTR) rat model of progression was used to evaluate potentially useful urine mRNA biomarkers. We compared histologic progression parameters (glomerulosclerosis score, interstitial fibrosis score and percent of podocyte depletion) with clinical biomarkers [serum creatinine, systolic blood pressure (BP), 24-h urine volume, 24-h urine protein excretion and the urine protein:creatinine ratio(PCR)] and with the novel urine mRNA biomarkers. RESULTS The PNR correlated with histologic outcome as well or better than routine clinical biomarkers and other urine mRNA biomarkers in the model system with high specificity and sensitivity, and a low coefficient of assay variation. CONCLUSIONS We concluded that the PNR, used in combination with proteinuria, will be worth testing for its clinical diagnostic and decision-making utility.
Collapse
Affiliation(s)
- Akihiro Fukuda
- Nephrology Division, Departments of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fukuda A, Chowdhury MA, Venkatareddy MP, Wang SQ, Nishizono R, Suzuki T, Wickman LT, Wiggins JE, Muchayi T, Fingar D, Shedden KA, Inoki K, Wiggins RC. Growth-dependent podocyte failure causes glomerulosclerosis. J Am Soc Nephrol 2012; 23:1351-63. [PMID: 22773827 PMCID: PMC3402293 DOI: 10.1681/asn.2012030271] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Podocyte depletion leads to glomerulosclerosis, but whether an impaired capacity of podocytes to respond to hypertrophic stress also causes glomerulosclerosis is unknown. We generated transgenic Fischer 344 rats that express a dominant negative AA-4E-BP1 transgene driven by the podocin promoter; a member of the mammalian target of rapamycin complex 1 (mTORC1) pathway, 4E-BP1 modulates cap-dependent translation, which is a key determinant of a cell's hypertrophic response to nutrients and growth factors. AA-4E-BP1 rat podocytes expressed the transgene and had normal kidney histology and protein excretion at 100 g of body weight but developed ESRD by 12 months. Proteinuria and glomerulosclerosis were linearly related to both increasing body weight and transgene dose. Uni-nephrectomy reduced the body weight at which proteinuria first developed by 40%-50%. The initial histologic manifestation of disease was the appearance of bare areas of glomerular basement membrane from the pulling apart of podocyte foot processes, followed by adhesions to the Bowman capsule. Morphometric analysis confirmed the mismatch between glomerular tuft volume and total podocyte volume (number × size) per tuft in relation to weight gain and nephrectomy. Proteinuria and glomerulosclerosis did not develop if dietary calorie restriction prevented weight gain and glomerular enlargement. In summary, failure of podocytes to match glomerular tuft growth in response to growth signaling through the mTORC1 pathway can trigger proteinuria, glomerulosclerosis, and progression to ESRD. Reducing body weight and glomerular growth may be useful adjunctive therapies to slow or prevent progression to ESRD.
Collapse
Affiliation(s)
| | | | | | - Su Q. Wang
- Nephrology Division, Department of Internal Medicine
| | | | | | | | | | | | - Diane Fingar
- Nephrology Division, Department of Internal Medicine;,Department of Cell and Developmental Biology
| | | | - Ken Inoki
- Nephrology Division, Department of Internal Medicine;,Life Sciences Institute;,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|