1
|
Abdala C, Benjamin T, Stiepan S, Luo P, Shera CA. Detection of mild sensory hearing loss using a joint reflection-distortion otoacoustic emission profile. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2220-2236. [PMID: 39377529 PMCID: PMC11464069 DOI: 10.1121/10.0030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Measuring and analyzing both nonlinear-distortion and linear-reflection otoacoustic emissions (OAEs) combined creates what we have termed a "joint-OAE profile." Here, we test whether these two classes of emissions have different sensitivities to hearing loss and whether our joint-OAE profile can detect mild-moderate hearing loss better than conventional OAE protocols have. 2f1-f2 distortion-product OAEs and stimulus-frequency OAEs were evoked with rapidly sweeping tones in 300 normal and impaired ears. Metrics included OAE amplitude for fixed-level stimuli as well as slope and compression features derived from OAE input/output functions. Results show that mild-moderate hearing loss impacts distortion and reflection emissions differently. Clinical decision theory was applied using OAE metrics to classify all ears as either normal-hearing or hearing-impaired. Our best OAE classifiers achieved 90% or better hit rates (with false positive rates of 5%-10%) for mild hearing loss, across a nearly five-octave range. In summary, results suggest that distortion and reflection emissions have distinct sensitivities to hearing loss, which supports the use of a joint-OAE approach for diagnosis. Results also indicate that analyzing both reflection and distortion OAEs together to detect mild hearing loss produces outstanding accuracy across the frequency range, exceeding that achieved by conventional OAE protocols.
Collapse
Affiliation(s)
- Carolina Abdala
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Tricia Benjamin
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Samantha Stiepan
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Ping Luo
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, 1640 Marengo Avenue, Suite 326, Los Angeles, California 90033, USA
| |
Collapse
|
2
|
Mishra SK, Rodrigo H, Balan JR. Exploring the Influence of Extended High-Frequency Hearing on Cochlear Functioning at Lower Frequencies. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2473-2482. [PMID: 38820241 DOI: 10.1044/2024_jslhr-23-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
PURPOSE Diminished basal cochlear function, as indicated by elevated hearing thresholds in the extended high frequencies (EHFs), has been associated with lower levels of click-evoked and distortion-product otoacoustic emissions measured at lower frequencies. However, stimulus-frequency otoacoustic emissions (SFOAEs) at low-probe levels are reflection-source emissions that do not share the same generation mechanism as distortion-source emissions. The primary objective of the present study was to examine the influence of hearing thresholds in the EHFs on SFOAEs measured at lower frequencies. METHOD SFOAEs were recorded from both ears in 45 individuals with normal hearing thresholds in the conventional audiometric frequencies (0.25-8 kHz). Hearing thresholds were also measured at EHFs (10, 12.5, and 16 kHz). SFOAE magnitudes and signal-to-noise ratios (SNRs) were averaged across 1, 2, and 4 kHz probe frequencies and also averaged for high-probe frequencies (2 and 4 kHz). RESULTS SFOAE magnitudes and SNRs were significantly higher for ears with better EHF hearing relative to poorer EHF hearing, categorized based on the median split. In addition, hearing in the EHFs significantly contributed to the variance in all SFOAE measures, except for the high-frequency SFOAE magnitudes model. However, hearing thresholds at the probe frequencies did not significantly contribute to the variance in SFOAEs. CONCLUSIONS The study findings suggest that alterations in the basal cochlea, as revealed by EHF hearing thresholds, could be associated with diminished cochlear functioning in relatively apical regions, shown by SFOAEs at lower frequencies, in individuals with normal audiograms. These findings underscore the significance of considering EHF thresholds in audiological evaluations, as alterations in these frequencies may reflect broader cochlear health status.
Collapse
Affiliation(s)
- Srikanta K Mishra
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg
| | - Jithin R Balan
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| |
Collapse
|
3
|
Liu Y, Gong Q. Deep Learning Models for Predicting Hearing Thresholds Based on Swept-Tone Stimulus-Frequency Otoacoustic Emissions. Ear Hear 2024; 45:465-475. [PMID: 37990395 DOI: 10.1097/aud.0000000000001443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
OBJECTIVES This study aims to develop deep learning (DL) models for the quantitative prediction of hearing thresholds based on stimulus-frequency otoacoustic emissions (SFOAEs) evoked by swept tones. DESIGN A total of 174 ears with normal hearing and 388 ears with sensorineural hearing loss were studied. SFOAEs in the 0.3 to 4.3 kHz frequency range were recorded using linearly swept tones at a rate of 2 Hz/msec, with stimulus level changing from 40 to 60 dB SPL in 10 dB steps. Four DL models were used to predict hearing thresholds at octave frequencies from 0.5 to 4 kHz. The models-a conventional convolutional neural network (CNN), a hybrid CNN-k-nearest neighbor (KNN), a hybrid CNN-support vector machine (SVM), and a hybrid CNN-random forest (RF)-were individually built for each frequency. The input to the DL models was the measured raw SFOAE amplitude spectra and their corresponding signal to noise ratio spectra. All DL models shared a CNN-based feature self-extractor. They differed in that the conventional CNN utilized a fully connected layer to make the final regression decision, whereas the hybrid CNN-KNN, CNN-SVM, and CNN-RF models were designed by replacing the last fully connected layer of CNN model with a traditional machine learning (ML) regressor, that is, KNN, SVM, and RF, respectively. The model performance was evaluated using mean absolute error and SE averaged over 20 repetitions of 5 × 5 fold nested cross-validation. The performance of the proposed DL models was compared with two types of traditional ML models. RESULTS The proposed SFOAE-based DL models resulted in an optimal mean absolute error of 5.98, 5.22, 5.51, and 6.06 dB at 0.5, 1, 2, and 4 kHz, respectively, superior to that obtained by the traditional ML models. The produced SEs were 8.55, 7.27, 7.58, and 7.95 dB at 0.5, 1, 2, and 4 kHz, respectively. All the DL models outperformed any of the traditional ML models. CONCLUSIONS The proposed swept-tone SFOAE-based DL models were capable of quantitatively predicting hearing thresholds with satisfactory performance. With DL techniques, the underlying relationship between SFOAEs and hearing thresholds at disparate frequencies was explored and captured, potentially improving the diagnostic value of SFOAEs.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Stiepan S, Shera CA, Abdala C. Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops. Ear Hear 2023; 44:1437-1450. [PMID: 37450653 PMCID: PMC10593104 DOI: 10.1097/aud.0000000000001387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Endolymphatic hydrops (EH), a hallmark of Meniere disease, is an inner-ear disorder where the membranes bounding the scala media are distended outward due to an abnormally increased volume of endolymph. In this study, we characterize the joint-otoacoustic emission (OAE) profile, a results profile including both distortion- and reflection-class emissions from the same ear, in individuals with EH and speculate on its potential utility in clinical assessment and monitoring. DESIGN Subjects were 16 adults with diagnosed EH and 18 adults with normal hearing (N) matched for age. Both the cubic distortion product (DP) OAE, a distortion-type emission, and the stimulus-frequency (SF) OAE, a reflection-type emission, were measured and analyzed as a joint OAE profile. OAE level, level growth (input/output functions), and phase-gradient delays were measured at frequencies corresponding to the apical half of the human cochlea and compared between groups. RESULTS Normal hearers and individuals with EH shared some common OAE patterns, such as the reflection emissions being generally higher in level than distortion emissions and showing more linear growth than the more strongly compressed distortion emissions. However, significant differences were noted between the EH and N groups as well. OAE source strength (a metric based on OAE amplitude re: stimulus level) was significantly reduced, as was OAE level, at low frequencies in the EH group. These reductions were more marked for distortion than reflection emissions. Furthermore, two significant changes in the configuration of OAE input/output functions were observed in ears with EH: a steepened growth slope for reflection emissions and an elevated compression knee for distortion emissions. SFOAE phase-gradient delays at 40 dB forward-pressure level were slightly shorter in the group with EH compared with the normal group. CONCLUSIONS The underlying pathology associated with EH impacts the generation of both emission types, reflection and distortion, as shown by significant group differences in OAE level, growth, and delay. However, hydrops impacts reflection and distortion emissions differently. Most notably, DPOAEs were more reduced by EH than were SFOAEs, suggesting that pathologies associated with the hydropic state do not act identically on the generation of nonlinear distortion at the hair bundle and intracochlear reflection emissions near the peak of the traveling wave. This differential effect underscores the value of applying a joint OAE approach to access both intracochlear generation processes concurrently.
Collapse
Affiliation(s)
- Samantha Stiepan
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Abdala C, Luo P, Shera CA. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. J Assoc Res Otolaryngol 2022; 23:647-664. [PMID: 35804277 PMCID: PMC9613820 DOI: 10.1007/s10162-022-00857-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Otoacoustic emissions (OAEs) arise from one (or a combination) of two basic generation mechanisms in the cochlea: nonlinear distortion and linear reflection. As a result of having distinct generation processes, these two classes of emissions may provide non-redundant information about hair-cell integrity and show distinct sensitivities to cochlear pathology. Here, we characterize the relationship between reflection and distortion emissions in normal hearers across a broad frequency and stimulus-level space using novel analysis techniques. Furthermore, we illustrate the promise of this approach in a small group of individuals with mild-moderate hearing loss. A "joint-OAE profile" was created by measuring interleaved swept-tone stimulus-frequency OAEs (SFOAEs) and 2f1-f2 distortion-product OAEs (DPOAEs) in the same ears using well-considered parameters. OAE spectra and input/output functions were calculated across five octaves. Using our specific recording protocol and analysis scheme, SFOAEs in normal hearers had higher levels than did DPOAEs, with the most pronounced differences occurring at the highest stimulus levels. Also, SFOAE compression occurred at higher stimulus levels (than did DPOAE compression) and its growth in the compressed region was steeper. The diagnostic implications of these findings and the influence of the measurement protocol on both OAEs (and on their relationship) are discussed.
Collapse
Affiliation(s)
- Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Luo
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
6
|
Pacheco D, Rajagopal N, Prieve BA, Nangia S. Joint Profile Characteristics of Long-Latency Transient Evoked and Distortion Otoacoustic Emissions. Am J Audiol 2022; 31:684-697. [PMID: 35862753 DOI: 10.1044/2022_aja-21-00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In clinical practice, otoacoustic emissions (OAEs) are interpreted as either "present" or "absent." However, OAEs have the potential to inform about etiology and severity of hearing loss if analyzed in other dimensions. A proposed method uses the nonlinear component of the distortion product OAEs together with stimulus frequency OAEs to construct a joint reflection-distortion profile. The objective of the current study is to determine if joint reflection-distortion profiles can be created using long-latency (LL) components of transient evoked OAEs (TEOAEs) as the reflection-type emission. METHOD LL TEOAEs and the nonlinear distortion OAEs were measured from adult ears. Individual input-output (I/O) functions were created, and OAE level was normalized by dividing by the stimulus level yielding individual gain functions. Peak strength, compression threshold, and OAE level at compression threshold were derived from individual gain functions to create joint reflection-distortion profiles. RESULTS TEOAEs with a poststimulus window starting at 6 ms had I/O functions with compression characteristics similar to LL TEOAE components. The model fit the LL gain functions, which had R 2 > .93, significantly better than the nonlinear distortion OAE gain functions, which had R 2 = .596-.99. Interquartile ranges for joint reflection-distortion profiles were larger for compression threshold and OAE level at compression threshold but smaller for peak strength than those previously published. CONCLUSIONS The gain function fits LL TEOAEs well. Joint reflection-distortion profiles are a promising method that could enhance diagnosis of hearing loss, and use of the LL TEOAE in the profile for peak strength may be important because of narrow interquartile ranges. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.20323593.
Collapse
Affiliation(s)
- Devon Pacheco
- Department of Communication Sciences and Disorders, Syracuse University, NY
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, NY
| | - Beth A Prieve
- Department of Communication Sciences and Disorders, Syracuse University, NY
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, NY
| |
Collapse
|
7
|
Gong Q, Liu Y, Xu R, Liang D, Peng Z, Yang H. Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions. Trends Hear 2021; 25:23312165211059628. [PMID: 34817273 PMCID: PMC8738859 DOI: 10.1177/23312165211059628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) can be useful tools for assessing cochlear function noninvasively. However, there is a lack of reports describing their utility in predicting hearing capabilities. Data for model training were collected from 245 and 839 ears with normal hearing and sensorineural hearing loss, respectively. Based on SFOAEs, this study developed an objective assessment system consisting of three mutually independent modules, with the routine test module and the fast test module used for threshold prediction and the hearing screening module for identifying hearing loss. Results evaluated via cross-validation show that the routine test module and the fast test module predict hearing thresholds with similar performance from 0.5 to 8 kHz, with mean absolute errors of 7.06–11.61 dB for the routine module and of 7.40–12.60 dB for the fast module. However, the fast module involves less test time than is needed in the routine module. The hearing screening module identifies hearing status with a large area under the receiver operating characteristic curve (0.912–0.985), high accuracy (88.4–95.9%), and low false negative rate (2.9–7.0%) at 0.5–8 kHz. The three modules are further validated on unknown data, and the results are similar to those obtained through cross-validation, indicating these modules can be well generalized to new data. Both the routine module and fast module are potential tools for predicting hearing thresholds. However, their prediction performance in ears with hearing loss requires further improvement to facilitate their clinical utility. The hearing screening module shows promise as a clinical tool for identifying hearing loss.
Collapse
Affiliation(s)
- Qin Gong
- Department of Biomedical Engineering, 12442Tsinghua University, Beijing, China.,School of Medicine, Shanghai University, Shanghai, China
| | - Yin Liu
- Department of Biomedical Engineering, 12442Tsinghua University, Beijing, China
| | - Runyi Xu
- Department of Biomedical Engineering, 12442Tsinghua University, Beijing, China
| | - Dong Liang
- Department of Biomedical Engineering, 12442Tsinghua University, Beijing, China
| | - Zewen Peng
- Department of Biomedical Engineering, 12442Tsinghua University, Beijing, China
| | - Honghao Yang
- Department of Biomedical Engineering, 12442Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Charaziak KK, Shera CA. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels. J Assoc Res Otolaryngol 2021; 22:641-658. [PMID: 34606020 DOI: 10.1007/s10162-021-00813-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
According to coherent reflection theory, otoacoustic emissions (OAE) evoked with clicks (clicked-evoked, CE) or tones (stimulus frequency, SF) originate via the same mechanism. We test this hypothesis in gerbils by investigating the similarity of CE- and SFOAEs across a wide range of stimulus levels. The results show that OAE transfer functions measured in response to clicks and sweeps have nearly equivalent time-frequency characteristics, particularly at low stimulus levels. At high stimulus levels, the two OAE types are more dissimilar, reflecting the different dynamic properties of the evoking stimulus. At mid to high stimulus levels, time-frequency analysis reveals contributions from at least two OAE source components of varying latencies. Interference between these components explains the emergence of strong spectral microstructure. Time-frequency filtering based on mean basilar-membrane (BM) group delays (τBM) shows that late-latency OAE components (latency ~ 1.6τBM) dominate at low stimulus intensities and exhibit highly compressive growth with increasing stimulus intensity. In contrast, early-latency OAE components (~ 0.7τBM) are small at low stimulus levels but can come to dominate the overall response at higher intensities. Although the properties of long-latency OAEs are consistent with an origin via coherent reflection near the peak of the traveling wave, the generation place and/or mechanisms responsible for the early-latency OAE components warrant further investigation. Because their delay remains in constant proportion to τBM across sound intensity, long-latency OAEs, whether evoked with tones or clicks, can be used to predict characteristics of cochlear processing, such as the sharpness of frequency tuning, even at high stimulus levels.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Gong Q, Liu Y, Peng Z. Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions. Trends Hear 2020; 24:2331216520960053. [PMID: 32965182 PMCID: PMC7517986 DOI: 10.1177/2331216520960053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is of clinical interest to estimate pure-tone thresholds from potentially available objective measures, such as stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs can determine hearing status (normal hearing vs. hearing loss), but few studies have explored their further potential in predicting audiometric thresholds. The current study investigates the ability of SFOAEs to predict hearing thresholds at octave frequencies from 0.5 to 8 kHz. SFOAE input/output functions and pure-tone thresholds were measured from 230 ears with normal hearing and 737 ears with sensorineural hearing loss. Two methods were used to predict hearing thresholds. Method 1 is a linear regression model; Method 2 proposed in this study is a back propagation (BP) network predictor built on the bases of a BP neural network and principal component analysis. In addition, a BP network classifier was built to identify hearing status. Both Methods 1 and 2 were able to predict hearing thresholds from 0.5 to 8 kHz, but Method 2 achieved better performance than Method 1. The BP network classifiers achieved excellent performance in determining the presence or absence of hearing loss at all test frequencies. The results show that SFOAEs are not only able to identify hearing status with great accuracy at all test frequencies but, more importantly, can predict hearing thresholds at octave frequencies from 0.5 to 8 kHz, with best performance at 0.5 to 4 kHz. The BP network predictor is a potential tool for quantitatively predicting hearing thresholds, at least at 0.5 to 4 kHz.
Collapse
Affiliation(s)
- Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,School of Medicine, Shanghai University, Shanghai, China
| | - Yin Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zewen Peng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Liu Y, Xu R, Gong Q. Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models. Int J Audiol 2020; 60:263-273. [PMID: 32959697 DOI: 10.1080/14992027.2020.1821252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to maximise the ability of stimulus-frequency otoacoustic emissions (SFOAEs) to predict hearing status and thresholds based on machine-learning models. DESIGN SFOAE data and audiometric thresholds were collected at octave frequencies from 0.5 to 8 kHz. Support vector machine, k-nearest neighbour, back propagation neural network, decision tree, and random forest algorithms were used to build classification models for status identification and to develop regression models for threshold prediction. STUDY SAMPLE About 230 ears with normal hearing and 737 ears with sensorineural hearing loss. RESULTS All classification models yielded areas under the receiver operating characteristic curve of 0.926-0.994 at 0.5-8 kHz, superior to the previous SFOAE study. The regression models produced lower standard errors (8.1-12.2 dB, mean absolute errors: 5.53-8.97 dB) as compared to those for distortion-product and transient-evoked otoacoustic emissions previously reported (8.6-19.2 dB). CONCLUSIONS SFOAEs using machine-learning approaches offer promising tools for the prediction of hearing capabilities, at least at 0.5-4 kHz. Future research may focus on further improvements in accuracy and reductions in test time to improve clinical utility.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Runyi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Wilson US, Browning-Kamins J, Boothalingam S, Moleti A, Sisto R, Dhar S. Relationship Between Behavioral and Stimulus Frequency Otoacoustic Emissions Delay-Based Tuning Estimates. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:1958-1968. [PMID: 32464079 PMCID: PMC7839027 DOI: 10.1044/2020_jslhr-19-00386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Purpose The phase delay of stimulus frequency otoacoustic emissions (SFOAEs) has been proposed as a noninvasive, objective, and fast source for estimating cochlear mechanical tuning. However, the implementation of SFOAEs clinically has been thwarted by the gaps in understanding of the stability of SFOAE delay-based tuning estimates and their relationship to behavioral measures of tuning. Therefore, the goals of this study were (a) to investigate the relationship between delay-based tuning estimates from SFOAEs and simultaneously masked psychophysical tuning curves (PTCs) and (b) to assess the across- and within-session repeatability of tuning estimates from behavioral and OAE measures. Method Three sets of behavioral and OAE measurements were collected in 24 normal-hearing, young adults for two probe frequencies, 1 and 4 kHz. For each participant, delay-based tuning estimates were derived from the phase gradient of SFOAEs. SFOAE-based and behavioral estimates of tuning obtained using the fast-swept PTC paradigm were compared within and across sessions. Results In general, tuning estimates were sharper at 4 kHz compared to 1 kHz for both PTCs and SFOAEs. Statistical analyses revealed a significant correlation between SFOAE delay-based tuning and PTCs at 4 kHz, but not 1 kHz. Lastly, SFOAE delay-based tuning estimates showed better intra- and intersession repeatability compared to PTCs. Conclusions SFOAE phase-gradient delays reflect aspects of cochlear mechanical tuning, in that a frequency dependence similar to that of basilar membrane tuning was observed. Furthermore, the significant correlation with PTCs at 4 kHz and the high repeatability of SFOAE-based tuning measures offer promise of an objective, nonbehavioral assay of tuning in human ears.
Collapse
Affiliation(s)
- Uzma Shaheen Wilson
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL
| | - Jenna Browning-Kamins
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL
| | - Sriram Boothalingam
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Arturo Moleti
- Physics Department, University of Roma Tor Vergata, Rome, Italy
| | - Renata Sisto
- Istituto Nazionale Assicurazione Infortuni sul Lavoro Research, Rome, Italy
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL
- Knowles Hearing Center, Northwestern University, Evanston, IL
| |
Collapse
|
12
|
Abstract
OBJECTIVES Cochlear reflectance (CR) is the cochlear contribution to ear-canal reflectance. CR is a type of otoacoustic emission (OAE) that is calculated as a transfer function between forward pressure and reflected pressure. The purpose of this study was to compare wideband CR to distortion-product (DP) OAEs in two ways: (1) in a clinical-screening paradigm where the task is to determine whether an ear is normal or has hearing loss and (2) in the prediction of audiometric thresholds. The goal of the study was to assess the clinical utility of CR. DESIGN Data were collected from 32 normal-hearing and 124 hearing-impaired participants. A wideband noise stimulus presented at 3 stimulus levels (30, 40, 50 dB sound pressure level) was used to elicit the CR. DPOAEs were elicited using primary tones spanning a wide frequency range (1 to 16 kHz). Predictions of auditory status (i.e., hearing-threshold category) and predictions of audiometric threshold were based on regression analysis. Test performance (identification of normal versus impaired hearing) was evaluated using clinical decision theory. RESULTS When regressions were based only on physiological measurements near the audiometric frequency, the accuracy of CR predictions of auditory status and audiometric threshold was less than reported in previous studies using DPOAE measurements. CR predictions were improved when regressions were based on measurements obtained at many frequencies. CR predictions were further improved when regressions were performed on males and females separately. CONCLUSIONS Compared with CR measurements, DPOAE measurements have the advantages in a screening paradigm of better test performance and shorter test time. The full potential of CR measurements to predict audiometric thresholds may require further improvements in signal-processing methods to increase its signal to noise ratio. CR measurements have theoretical significance in revealing the number of cycles of delay at each frequency that is most sensitive to hearing loss.
Collapse
|
13
|
Observations of Distortion Product Otoacoustic Emission Components in Adults With Hearing Loss. Ear Hear 2019; 41:652-662. [PMID: 31569117 DOI: 10.1097/aud.0000000000000792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Distortion product otoacoustic emissions (DPOAEs) measured in the ear canal are composed of OAEs generated by at least two mechanisms coming from different places in the cochlea. Otoacoustic emission (OAE) models hypothesize that reduction of cochlear gain will differentially impact the components. The purpose of the current experiment was to provide preliminary data about DPOAE components in adults with hearing loss in relation to OAE models and explore whether evaluation of the relative amplitudes of generator and reflection components can enhance identification of hearing loss. DESIGN DPOAEs were measured from 45 adult ears; 21 had normal hearing (≤15 dB HL) and 24 with mild-to-severe sensorineural hearing loss (>15 dB HL). The higher frequency primary (f2) was swept logarithmically between 1500 and 6000 Hz, and f2/f1 was 1.22. The two equal-level primaries varied from 55 to 75 dB SPL in 5 dB steps. The swept primary procedure permitted the measurement of the amplitude and phase of the DPOAE fine structure and the extraction of the two major components (generator and reflection) by varying the predicted delays of the analysis windows. RESULTS DPOAE fine structure was reduced or absent in ears with hearing loss. DPOAE generator and reflection components were lower in ears with hearing loss than those with normal hearing, especially for the reflection component. Significant correlations were found between the generator component and hearing threshold but not between reflection levels and hearing threshold. Most ears with normal hearing had both components, but only a small number of ears with hearing loss had both components. CONCLUSIONS The reflection component is not recordable or low in level in ears with hearing loss, explaining the reduced or absent DPOAE fine structure. DPOAE generator components are also lower in level in ears with hearing loss than in ears without hearing loss. In ears that had both measurable generator and reflection components, the relationship between the two did not depend on the presence or absence of hearing loss. Because reflection components are not measurable in many ears with hearing thresholds >15 dB HL, stimuli that evoke other types of reflection emissions, such as stimulus-frequency or long-latency transient-evoked emissions, should be explored in conjunction with DPOAE generator components.
Collapse
|
14
|
Wang Y, Qi Z, Yu M, Wang J, Chen R. Characteristic of Stimulus Frequency Otoacoustic Emissions: Detection Rate, Musical Training Influence, and Gain Function. Brain Sci 2019; 9:E255. [PMID: 31561573 PMCID: PMC6827094 DOI: 10.3390/brainsci9100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
Stimulus frequency otoacoustic emission (SFOAE) is an active acoustic signal emitted by the inner ear providing salient information about cochlear function and dysfunction. To provide a basis for laboratory investigation and clinical use, we investigated the characteristics of SFOAEs, including detection rate, musical training influence, and gain function. Sixty-five normal hearing subjects (15 musicians and 50 non-musicians, aged 16-45 years) were tested and analyzed at the probe level of 30 and 50 dB sound pressure levels (SPL) in the center frequency of 1 and 4 kHz in the study. The results indicate that (1) the detection rates of SFOAE are sensitive to the gender, (2) musicians reveal enhanced hearing capacity and SFOAE amplitudes compared with non-musicians, and (3) probe frequency has a significant effect on the compression threshold of SFOAE. Our findings highlight the importance of SFOAE in the clinical hearing screening and diagnosis and emphasize the use of musical training for the rehabilitation enhancement of the auditory periphery and hearing threshold.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Zhihang Qi
- Department of Biomedical Engineering, School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Mengmeng Yu
- Department of Biomedical Engineering, School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jinhai Wang
- Department of Biomedical Engineering, School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Ruijuan Chen
- Department of Biomedical Engineering, School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
15
|
Abstract
OBJECTIVES This study aims to determine the impact of controlling cochlear-source mechanism on the accuracy with which auditory status is identified using otoacoustic emissions (OAEs) in two groups of subjects with normal hearing (NH) and subjects with mild to moderate hearing loss. DESIGN Data were collected from 212 subjects with NH and with mild to moderate hearing loss who fell into two categories based on a distortion product OAE (DPOAE) screening protocol: the uncertain-identification group (where errors were likely) and the certain-identification group (where errors were unlikely). DPOAE fine-structure patterns were recorded at intervals surrounding f2 = 1, 2 and 4 kHz (f2/f1 ratio = 1.22), with L2 = 35, 45, and 55 dB SPL (L1/L2 ratio = 10 dB). The discrete cosine transform was used to smooth fine structure, limiting the source contribution to the distortion source only. Reflection-source OAEs were also recorded using amplitude-modulated stimulus frequency OAEs (AM-SFOAE). Area under the relative operating characteristic (AROC) curve was used to quantify test accuracy when the source contribution was controlled versus the condition where both sources contribute. Additionally, failure rate, fixed at 5% for NH ears, as a function of behavioral-threshold category was evaluated. RESULTS When data for the entire subject group were examined, reducing the reflection-source contribution to the DPOAE did not result in better test performance than the best control condition at any frequency tested. When the subjects with NH were restricted to those with confirmed fine structure, AROC analyses indicated that reducing the reflection-source contribution resulted in several small increases in the accuracy (2%-5%) with which auditory status was identified relative to the best control condition. This improvement was observed for the lowest stimulus levels (i.e., L2 = 35 or 45 dB SPL). In this subset of subjects, distortion-source DPOAEs resulted in more accurate identification of mild hearing loss for a fixed false-positive rate of 5% in NH ears at lower L2's, conditions with poor accuracy in the larger group of subjects. The impact of controlling the source contribution on the identification of moderate losses was less clear in the reduced subject group, with some conditions where the distortion-source DPOAE was more accurate than the control condition and other conditions where there was no change. There was no evidence that reflection-source AM-SFOAEs more accurately identified ears with hearing loss when compared to any of the DPOAE conditions in either the large or reduced group of subjects. CONCLUSION While improvements in test accuracy were observed for some subjects and some conditions (e.g., mild hearing losses and low stimulus levels in the reduced subset of subjects), these results suggest that restricting cochlear source contribution by "smoothing" DPOAE fine structure is not expected to improve DPOAE test accuracy in a general population of subjects. Likewise, recording reflection-source OAEs using the AM-SFOAE technique would not be expected to more accurately identify hearing status compared to mixed- or single-source DPOAEs.
Collapse
|
16
|
Abdala C, Luo P, Guardia Y. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns. Trends Hear 2019; 23:2331216519889226. [PMID: 31789131 PMCID: PMC6887807 DOI: 10.1177/2331216519889226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022] Open
Abstract
Several types of otoacoustic emissions have been characterized in newborns to study the maturational status of the cochlea at birth and to develop effective tests of hearing. The stimulus-frequency otoacoustic emission (SFOAE), a reflection-type emission elicited with a single low-level pure tone, is the least studied of these emissions and has not been comprehensively characterized in human newborns. The SFOAE has been linked to cochlear tuning and is sensitive to disruptions in cochlear gain (i.e., hearing loss) in adult subjects. In this study, we characterize SFOAEs evoked with rapidly sweeping tones in human neonates and consider the implications of our findings for human cochlear maturation. SFOAEs were measured in 29 term newborns within 72 hr of birth using swept tones presented at 2 oct/s across a four-octave frequency range (0.5–8 kHz); 20 normal-hearing young adults served as a control group. The prevalence of SFOAEs in newborns was as high as 90% (depending on how response “presence” was defined). Evidence of probe-tip leakage and abnormal ear-canal energy reflectance was observed in those ears with absent or unmeasurable SFOAEs. Results in the group of newborns with present stimulus-frequency emissions indicate that neonatal swept-tone SFOAEs are adult-like in morphology but have slightly higher amplitude compared with adults and longer SFOAE group delays. The origin of these nonadult-like features is probably mixed, including contributions from both conductive (ear canal and middle ear) and cochlear immaturities.
Collapse
Affiliation(s)
- Carolina Abdala
- Caruso Department of Otolaryngology, Auditory Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ping Luo
- Caruso Department of Otolaryngology, Auditory Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeini Guardia
- Caruso Department of Otolaryngology, Auditory Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Assessing Sensorineural Hearing Loss Using Various Transient-Evoked Otoacoustic Emission Stimulus Conditions. Ear Hear 2018; 38:507-520. [PMID: 28437273 DOI: 10.1097/aud.0000000000000425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES An important clinical application of transient-evoked otoacoustic emissions (TEOAEs) is to evaluate cochlear outer hair cell function for the purpose of detecting sensorineural hearing loss (SNHL). Double-evoked TEOAEs were measured using a chirp stimulus, in which the stimuli had an extended frequency range compared to clinical tests. The present study compared TEOAEs recorded using an unweighted stimulus presented at either ambient pressure or tympanometric peak pressure (TPP) in the ear canal and TEOAEs recorded using a power-weighted stimulus at ambient pressure. The unweighted stimulus had approximately constant incident pressure magnitude across frequency, and the power-weighted stimulus had approximately constant absorbed sound power across frequency. The objective of this study was to compare TEOAEs from 0.79 to 8 kHz using these three stimulus conditions in adults to assess test performance in classifying ears as having either normal hearing or SNHL. DESIGN Measurements were completed on 87 adult participants. Eligible participants had either normal hearing (N = 40; M F = 16 24; mean age = 30 years) or SNHL (N = 47; M F = 20 27; mean age = 58 years), and normal middle ear function as defined by standard clinical criteria for 226-Hz tympanometry. Clinical audiometry, immittance, and an experimental wideband test battery, which included reflectance and TEOAE tests presented for 1-min durations, were completed for each ear on all participants. All tests were then repeated 1 to 2 months later. TEOAEs were measured by presenting the stimulus in the three stimulus conditions. TEOAE data were analyzed in each hearing group in terms of the half-octave-averaged signal to noise ratio (SNR) and the coherence synchrony measure (CSM) at frequencies between 1 and 8 kHz. The test-retest reliability of these measures was calculated. The area under the receiver operating characteristic curve (AUC) was measured at audiometric frequencies between 1 and 8 kHz to determine TEOAE test performance in distinguishing SNHL from normal hearing. RESULTS Mean TEOAE SNR was ≥8.7 dB for normal-hearing ears and ≤6 dB for SNHL ears for all three stimulus conditions across all frequencies. Mean test-retest reliability of TEOAE SNR was ≤4.3 dB for both hearing groups across all frequencies, although it was generally less (≤3.5 dB) for lower frequencies (1 to 4 kHz). AUCs were between 0.85 and 0.94 for all three TEOAE conditions at all frequencies, except for the ambient TEOAE condition at 2 kHz (0.82) and for all TEOAE conditions at 5.7 kHz with AUCs between 0.78 and 0.81. Power-weighted TEOAE AUCs were significantly higher (p < 0.05) than ambient TEOAE AUCs at 2 and 2.8 kHz, as was the TPP TEOAE AUC at 2.8 kHz when using CSM as the classifier variable. CONCLUSIONS TEOAEs evaluated in an ambient condition, at TPP and in a power-weighted stimulus condition, had good test performance in identifying ears with SNHL based on SNR and CSM in the frequency range from 1 to 8 kHz and showed good test-retest reliability. Power-weighted TEOAEs showed the best test performance at 2 and 2.8 kHz. These findings are encouraging as a potential objective clinical tool to identify patients with cochlear hearing loss.
Collapse
|
18
|
Sweep-tone evoked stimulus frequency otoacoustic emissions in humans: Development of a noise-rejection algorithm and normative features. Hear Res 2018; 358:42-49. [DOI: 10.1016/j.heares.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022]
|
19
|
Abdala C, Guardia YC, Shera CA. Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:181. [PMID: 29390734 PMCID: PMC5770274 DOI: 10.1121/1.5020275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) are reflection-source emissions, and are the least familiar and perhaps most underutilized otoacoustic emission. Here, normative SFOAE data are presented from a large group of 48 young adults at probe levels from 20 to 60 dB sound pressure level (SPL) across a four-octave frequency range to characterize the typical SFOAE and describe recent methodological advances that have made its measurement more efficient. In young-adult ears, SFOAE levels peaked in the low-to-mid frequencies at mean levels of ∼6-7 dB SPL while signal-to-noise ranged from 23 to 34 dB SPL and test-retest reliability was ±4 dB for 90% of the SFOAE data. On average, females had ∼2.5 dB higher SFOAE levels than males. SFOAE input/output functions showed near linear growth at low levels and a compression threshold averaging 35 dB SPL across frequency. SFOAE phase accumulated ∼32-36 cycles across four octaves on average, and showed level effects when converted to group delay: low-level probes produced longer SFOAE delays. A "break" in the normalized SFOAE delay was observed at 1.1 kHz on average, elucidating the location of the putative apical-basal transition. Technical innovations such as the concurrent sweeping of multiple frequency segments, post hoc suppressor decontamination, and a post hoc artifact-rejection technique were tested.
Collapse
Affiliation(s)
- Carolina Abdala
- Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA
| | - Yeini C Guardia
- Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA
| | - Christopher A Shera
- Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA
| |
Collapse
|
20
|
Sogebi OA, Adedeji TO, Ogunbanwo O, Oyewole EA. Sub-clinical middle ear malfunctions in elderly patients; prevalence, pattern and predictors. Afr Health Sci 2017; 17:1229-1236. [PMID: 29937897 PMCID: PMC5870273 DOI: 10.4314/ahs.v17i4.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Little is known about functioning of the middle ear with advancing age. Objectives To estimate the prevalence and describe tympanometric patterns of sub-clinical middle ear malfunctions,( S-MEM) in elderly patients. It also assessed clinical factors that could predict S-MEM. Methods Cross-sectional, analytical study of patients aged ≥ 60 years in a tertiary hospital in Nigeria between 2011–2014. Pure tone audiometry (PTA), tympanometry and acoustic reflexes were recorded. S-MEM was based on audiometric and tympanometric evident abnormalities. Descriptive, univariate and multivariate analyses performed to detect independent clinical predictors of S-MEM at p-value of <0.05. Results 121 patients , M: F of 1.1:1. Mean age was 70.1 ± 6.2 years, 77.7% were married. Prevalence of S-MEM was 21.5%. Abnormal tympanometric tracings were type AS>C>B>AD. The parameters that were statistically-significant on univariate analyses were subjected to logistic regression analysis which confirmed previous head injury, diabetes, osteoarthritis of knee joint, and absent acoustic reflex as clinical predictors for S-MEM. Conclusion 21.5% of elderly Africans had subclinical abnormalities in their middle ear functioning, mostly with type AS tympanogram. Independent clinical predictors of S-MEM included previous head injury, diabetes, history of osteoarthritis of knee joints, and absent acoustic reflex.
Collapse
|
21
|
Abdala C, Kalluri R. Towards a joint reflection-distortion otoacoustic emission profile: Results in normal and impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:812. [PMID: 28863614 PMCID: PMC5552396 DOI: 10.1121/1.4996859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/12/2023]
Abstract
Otoacoustic emissions (OAEs) provide salient information about cochlear function and dysfunction. Two broad classes of emissions, linear reflection and nonlinear distortion, arise via distinct cochlear processes and hence, appear to provide independent information about cochlear health and hearing. Considered in combination, these two OAE types may characterize sensory hearing loss most effectively. In this study, the level-dependent growth of stimulus-frequency OAEs (a reflection-type emission) and distortion-product OAEs (a distortion-type emission) were measured in ten normal-hearing ears and eight ears with slight-to-moderate sensorineural hearing loss. Metrics of OAE strength and compression were derived from OAE input/output functions and then considered in a combined fashion. Results indicate that SFOAEs and DPOAEs differ significantly in their strength and compression features. When SFOAE and DPOAE metrics are displayed together on a two-dimensional plot, relatively well-defined data clusters describe their normative relationship. In hearing-impaired ears, this relationship is disrupted but not in a uniform way across ears; ears with similar audiograms showed differently altered joint-OAE profiles. Hearing loss sometimes affected only one OAE or one more than the other. Results suggest a joint-OAE profile is promising and warrants study in a large group of subjects with sensory hearing loss of varied etiologies.
Collapse
Affiliation(s)
- Carolina Abdala
- Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA
| | - Radha Kalluri
- Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA
| |
Collapse
|
22
|
Dewey JB, Dhar S. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans. J Assoc Res Otolaryngol 2016; 18:89-110. [PMID: 27681700 DOI: 10.1007/s10162-016-0588-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
The characteristics of human otoacoustic emissions (OAEs) have not been thoroughly examined above the standard audiometric frequency range (>8 kHz). This is despite the fact that deterioration of cochlear function often starts at the basal, high-frequency end of the cochlea before progressing apically. Here, stimulus-frequency OAEs (SFOAEs) were obtained from 0.5 to 20 kHz in 23 young, audiometrically normal female adults and three individuals with abnormal audiograms, using a low-to-moderate probe level of 36 dB forward pressure level (FPL). In audiometrically normal ears, SFOAEs were measurable at frequencies approaching the start of the steeply sloping high-frequency portion of the audiogram (∼12-15 kHz), though their amplitudes often declined substantially above ∼7 kHz, rarely exceeding 0 dB SPL above 8 kHz. This amplitude decline was typically abrupt and occurred at a frequency that was variable across subjects and not strongly related to the audiogram. In contrast, certain ears with elevated mid-frequency thresholds but regions of normal high-frequency sensitivity could possess surprisingly large SFOAEs (>10 dB SPL) above 7 kHz. When also measured, distortion-product OAEs (DPOAEs) usually remained stronger at higher stimulus frequencies and mirrored the audiogram more closely than SFOAEs. However, the high-frequency extent of SFOAE and DPOAE responses was similar when compared as a function of the response frequency, suggesting that middle ear transmission may be a common limiting factor at high frequencies. Nevertheless, cochlear factors are more likely responsible for complexities observed in high-frequency SFOAE spectra, such as abrupt amplitude changes and narrowly defined response peaks above 10 kHz, as well as the large responses in abnormal ears. These factors may include altered cochlear reflectivity due to subtle damage or the reduced spatial extent of the SFOAE generation region at the cochlear base. The use of higher probe levels is necessary to further evaluate the characteristics and potential utility of high-frequency SFOAE measurements.
Collapse
Affiliation(s)
- James B Dewey
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, USA.
- Department of Otolaryngology-Head & Neck Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, USA
- Knowles Hearing Center, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208, USA
| |
Collapse
|
23
|
Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1949. [PMID: 27914441 PMCID: PMC5392097 DOI: 10.1121/1.4962532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - M Patrick Feeney
- National Center for Rehabilitative Auditory Research, Department of Veterans Affairs, Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, USA
| | - Lisa L Hunter
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Denis F Fitzpatrick
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
24
|
Wang Y, Gong Q, Zhang T. The influence of probe level on the tuning of stimulus frequency otoacoustic emissions and behavioral test in human. Biomed Eng Online 2016; 15:51. [PMID: 27160830 PMCID: PMC4862048 DOI: 10.1186/s12938-016-0167-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/28/2016] [Indexed: 12/03/2022] Open
Abstract
Background Frequency selectivity (FS) of the auditory system is established at the level of the cochlea and it is important for the perception of complex sounds. Although direct measurements of cochlear FS require surgical preparation, it can also be estimated with the measurements of otoacoustic emissions or behavioral tests, including stimulus frequency otoacoustic emission suppression tuning curves (SFOAE STCs) or psychophysical tuning curves (PTCs). These two methods result in similar estimates of FS at low probe levels. As the compressive nonlinearity of cochlea is strongly dependent on the stimulus intensity, the sharpness of tuning curves which is relevant to the cochlear nonlinearity will change as a function of probe level. The present study aims to investigate the influence of different probe levels on the relationship between SFOAE STCs and PTCs. Methods The study included 15 young subjects with normal hearing. SFOAE STCs and PTCs were recorded at low and moderate probe levels for frequencies centred at 1, 2, and 4 kHz. The ratio or the difference of the characteristic parameters between the two methods was calculated at each probe level. The effect of probe level on the ratio or the difference between the parameters of SFOAE STCs and PTCs was then statistically analysed. Results The tuning of SFOAE STCs was significantly positively correlated with the tuning of the PTCs at both low and moderate probe levels; yet, at the moderate probe level, the SFOAE STCs were consistently broader than the PTCs. The mean ratio of sharpness of tuning at low probe levels was constantly around 1 while around 1.5 at moderate probe levels. Conclusions Probe level had a significant effect on the sharpness of tuning between the two methods of estimating FS. SFOAE STC seems a good alternative measurement of PTC for FS assessment at low probe levels. At moderate probe levels, SFOAE STC and PTC were not equivalent measures of the FS in terms of their bandwidths. Because SFOAE STCs are not biased by higher levels auditory processing, they may represent cochlear FS better than PTCs.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Research Center of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Tao Zhang
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Charaziak KK, Siegel JH. Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation. J Assoc Res Otolaryngol 2015; 16:317-29. [PMID: 25813430 PMCID: PMC4417092 DOI: 10.1007/s10162-015-0513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
Stimulus-frequency otoacoustic emissions (SFOAEs) appear to be well suited for assessing frequency selectivity because, at least on theoretical grounds, they originate over a restricted region of the cochlea near the characteristic place of the evoking tone. In support of this view, we previously found good agreement between SFOAE suppression tuning curves (SF-STCs) and a control measure of frequency selectivity (compound action potential suppression tuning curves (CAP-STC)) for frequencies above 3 kHz in chinchillas. For lower frequencies, however, SF-STCs and were over five times broader than the CAP-STCs and demonstrated more high-pass rather than narrow band-pass filter characteristics. Here, we test the hypothesis that the broad tuning of low-frequency SF-STCs is because emissions originate over a broad region of the cochlea extending basal to the characteristic place of the evoking tone. We removed contributions of the hypothesized basally located SFOAE sources by either pre-suppressing them with a high-frequency interference tone (IT; 4.2, 6.2, or 9.2 kHz at 75 dB sound pressure level (SPL)) or by inducing acoustic trauma at high frequencies (exposures to 8, 5, and lastly 3-kHz tones at 110-115 dB SPL). The 1-kHz SF-STCs and CAP-STCs were measured for baseline, IT present and following the acoustic trauma conditions in anesthetized chinchillas. The IT and acoustic trauma affected SF-STCs in an almost indistinguishable way. The SF-STCs changed progressively from a broad high-pass to narrow band-pass shape as the frequency of the IT was lowered and for subsequent exposures to lower-frequency tones. Both results were in agreement with the "basal sources" hypothesis. In contrast, CAP-STCs were not changed by either manipulation, indicating that neither the IT nor acoustic trauma affected the 1-kHz characteristic place. Thus, unlike CAPs, SFOAEs cannot be considered as a place-specific measure of cochlear function at low frequencies, at least in chinchillas.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA,
| | | |
Collapse
|
26
|
Charaziak KK, Souza PE, Siegel JH. Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners. Int J Audiol 2014; 54:96-105. [PMID: 25290042 DOI: 10.3109/14992027.2014.941074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Otoacoustic emissions (OAEs) can provide useful measures of tuning of auditory filters. We previously established that stimulus-frequency (SF) OAE suppression tuning curves (STCs) reflect major features of behavioral tuning (psychophysical tuning curves, PTCs) in normally-hearing listeners. Here, we aim to evaluate whether SFOAE STCs reflect changes in PTC tuning in cases of abnormal hearing. DESIGN PTCs and SFOAE STCs were obtained at 1 kHz and/or 4 kHz probe frequencies. For exploratory purposes, we collected SFOAEs measured across a wide frequency range and contrasted them to commonly measured distortion product (DP) OAEs. STUDY SAMPLE Thirteen listeners with varying degrees of sensorineural hearing loss. RESULTS Except for a few listeners with the most hearing loss, the listeners had normal/nearly normal PTCs. However, attempts to record SFOAE STCs in hearing-impaired listeners were challenging and sometimes unsuccessful due to the high level of noise at the SFOAE frequency, which is not a factor for DPOAEs. In cases of successful measurements of SFOAE STCs there was a large variability in agreement between SFOAE STC and PTC tuning. CONCLUSIONS These results indicate that SFOAE STCs cannot substitute for PTCs in cases of abnormal hearing, at least with the paradigm adopted in this study.
Collapse
Affiliation(s)
- Karolina K Charaziak
- The Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University , Evanston , USA
| | | | | |
Collapse
|
27
|
Charaziak KK, Siegel JH. Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas. J Assoc Res Otolaryngol 2014; 15:883-96. [PMID: 25230801 DOI: 10.1007/s10162-014-0487-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/03/2014] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that the tuning of the cochlear filters can be derived from measures of otoacoustic emissions (OAEs). Two approaches have been proposed to estimate cochlear frequency selectivity using OAEs evoked with a single tone (stimulus-frequency (SF)) OAEs: based on SFOAE group delays (SF-GDs) and on SFOAE suppression tuning curves (SF-STCs). The aim of this study was to evaluate whether either SF-GDs or SF-STCs obtained with low probe levels (30 dB SPL) correlate with more direct measures of cochlear tuning (compound action potential suppression tuning curves (CAP-STCs)) in chinchillas. The SFOAE-based estimates of tuning covaried with CAP-STCs tuning for >3 kHz probe frequencies, indicating that these measures are related to cochlear frequency selectivity. However, the relationship may be too weak to predict tuning with either SFOAE method in an individual. The SF-GD prediction of tuning was sharper than CAP-STC tuning. On the other hand, SF-STCs were consistently broader than CAP-STCs implying that SFOAEs may have less restricted region of generation in the cochlea than CAPs. Inclusion of <3 kHz data in a statistical model resulted in no significant or borderline significant covariation among the three methods: neither SFOAE test appears to reliably estimate an individual's CAP-STC tuning at low-frequencies. At the group level, SF-GDs and CAP-STCs showed similar tuning at low frequencies, while SF-STCs were over five times broader than the CAP-STCs indicating that low-frequency SFOAE may originate over a very broad region of the cochlea extending ≥5 mm basal to the tonotopic place of the probe.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, 2240 Campus Drive, Evanston, IL, 60208-2952, USA,
| | | |
Collapse
|
28
|
Abstract
OBJECTIVE Cochlear reflectance (CR) is the cochlear contribution to ear-canal reflectance. CR is equivalent to an otoacoustic emission (OAE) deconvolved by forward pressure in the ear canal. Similar to other OAE measures, CR level is related to cochlear status. When measured using wideband noise stimuli, potential advantages of CR over other types of OAEs include (1) the capability to cover a wider frequency range more efficiently by requiring fewer measurements, (2) minimal influence on the recorded emission from the measurement system and middle ear, (3) lack of entrainment of spontaneous OAEs, and (4) easier interpretation because of the existence of an equivalent linear model, which validates the application of linear systems theory. The purposes of this study were to evaluate the reliability, assess the accuracy in a clinical screening paradigm, and determine the relation of CR to audiometric thresholds. Thus, this study represents an initial assessment of the clinical utility of CR. DESIGN Data were collected from 32 normal-hearing and 58 hearing-impaired participants. A wideband noise stimulus presented at seven stimulus levels (10 to 70 dB SPL, 10 dB steps) was used to elicit the CR. Reliability of CR was assessed using Cronbach's α, standard error of measurement, and absolute differences between CR data from three separate test sessions. Test performance was evaluated using clinical decision theory. The ability of CR to predict audiometric thresholds was evaluated using regression analysis. RESULTS CR repeatability across test sessions was similar to that of other clinical measurements. However, both the accuracy with which CR distinguished normal-hearing from hearing-impaired ears and the accuracy with which CR predicted audiometric thresholds were less than those reported in previous studies using distortion-product OAE measurements. CONCLUSIONS CR measurements are repeatable between test sessions, can be used to predict auditory status, and are related to audiometric thresholds. However, under current conditions, CR does not perform as well as other OAE measurements. Further developments in CR measurement and analysis methods may improve performance. CR has theoretical advantages for cochlear modeling, which may lead to improved interpretation of cochlear status.
Collapse
|
29
|
Charaziak KK, Souza P, Siegel JH. Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning. J Assoc Res Otolaryngol 2013; 14:843-62. [PMID: 24013802 DOI: 10.1007/s10162-013-0412-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/11/2013] [Indexed: 11/30/2022] Open
Abstract
As shown by the work of Kemp and Chum in 1980, stimulus-frequency otoacoustic emission suppression tuning curves (SFOAE STCs) have potential to objectively estimate behaviorally measured tuning curves. To date, this potential has not been tested. This study aims to do so by comparing SFOAE STCs and behavioral measures of tuning (simultaneous masking psychophysical tuning curves, PTCs) in 10 normal-hearing listeners for frequency ranges centered around 1,000 and 4,000 Hz at low probe levels. Additionally, SFOAE STCs were collected for varying conditions (probe level and suppression criterion) to identify the optimal parameters for comparison with behavioral data and to evaluate how these conditions affect the features of SFOAE STCs. SFOAE STCs qualitatively resembled PTCs: they demonstrated band-pass characteristics and asymmetric shapes with steeper high-frequency sides than low, but unlike PTCs they were consistently tuned to frequencies just above the probe frequency. When averaged across subjects the shapes of SFOAE STCs and PTCs showed agreement for most recording conditions, suggesting that PTCs are predominantly shaped by the frequency-selective filtering and suppressive effects of the cochlea. Individual SFOAE STCs often demonstrated irregular shapes (e.g., "double-tips"), particularly for the 1,000-Hz probe, which were not observed for the same subject's PTC. These results show the limited utility of SFOAE STCs to assess tuning in an individual. The irregularly shaped SFOAE STCs may be attributed to contributions from SFOAE sources distributed over a region of the basilar membrane extending beyond the probe characteristic place, as suggested by a repeatable pattern of SFOAE residual phase shifts observed in individual data.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Department of Communication Sciences and Disorders, Northwestern University, School of Communication, 2240 Campus Drive, Evanston, IL, 602080-2952, USA,
| | | | | |
Collapse
|
30
|
Mertes IB, Goodman SS. Short-latency transient-evoked otoacoustic emissions as predictors of hearing status and thresholds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2127-2135. [PMID: 23967943 DOI: 10.1121/1.4817831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Estimating audiometric thresholds using objective measures can be clinically useful when reliable behavioral information cannot be obtained. Transient-evoked otoacoustic emissions (TEOAEs) are effective for determining hearing status (normal hearing vs hearing loss), but previous studies have found them less useful for predicting audiometric thresholds. Recent work has demonstrated the presence of short-latency TEOAE components in normal-hearing ears, which have typically been eliminated from the analyses used in previous studies. The current study investigated the ability of short-latency components to predict hearing status and thresholds from 1-4 kHz. TEOAEs were measured in 77 adult ears with thresholds ranging from normal hearing to moderate sensorineural hearing loss. Emissions were bandpass filtered at center frequencies from 1 to 4 kHz. TEOAE waveforms were analyzed within two time windows that contained either short- or long-latency components. Waveforms were quantified by root-mean-square amplitude. Long-latency components were better overall predictors of hearing status and thresholds, relative to short-latency components. There were no significant improvements in predictions when short-latency components were included with long-latency components in multivariate analyses. The results showed that short-latency TEOAE components, as analyzed in the current study, were less predictive of both hearing status and thresholds from 1-4 kHz than long-latency components.
Collapse
Affiliation(s)
- Ian B Mertes
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
31
|
Johnson TA, Beshaler L. Influence of stimulus parameters on amplitude-modulated stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1121-33. [PMID: 23927112 PMCID: PMC3745488 DOI: 10.1121/1.4812766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
The present study evaluated the influence of suppressor frequency (fs) and level (Ls) on stimulus-frequency otoacoustic emissions (SFOAEs) recorded using the amplitude-modulated (AM) suppressor technique described by Neely et al. [J. Acoust. Soc. Am. 118, 2124-2127 (2005a)]. Data were collected in normal-hearing subjects, with data collection occurring in two phases. In phase 1, SFOAEs were recorded with probe frequency (fp) = 1, 2, and 4 kHz and probe levels (Lp) ranging from 0 to 60 dB sound pressure level (SPL). At each fp, Ls ranged from Ls = Lp to Ls = Lp + 30 dB. Additionally, nine relationships between fs and fp were evaluated, ranging from fs/fp = 0.80 to fs/fp = 1.16. Results indicated that for low suppressor levels, suppressors higher in frequency than fp (fs > fp) resulted in higher AM-SFOAE levels than suppressors lower in frequency than fp (fs < fp). At higher suppressor levels, suppressors both higher and lower in frequency than fp produced similar AM-SFOAE levels, and, in many cases, low-frequency suppressors produced the largest response. Recommendations for stimulus parameters that maximize AM-SFOAE level were derived from these data. In phase 2, AM-SFOAEs were recorded using these parameters for fp = 0.7-8 kHz and Lp = 20-60 dB SPL. Robust AM-SFOAE responses were recorded in this group of subjects using the parameters developed in phase 1.
Collapse
Affiliation(s)
- Tiffany A Johnson
- University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | |
Collapse
|
32
|
Keefe DH. Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:3319-50. [PMID: 23145615 PMCID: PMC3505207 DOI: 10.1121/1.4757734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 05/24/2023]
Abstract
A click-evoked otoacoustic emission (CEOAE) has group delay and spread as first- and second-order temporal moments varying over frequency, and instantaneous frequency and bandwidth as first- and second-order spectral moments varying over time. Energy-smoothed moments were calculated from a CEOAE database over 0.5-15 kHz bandwidth and 0.25-20 ms duration. Group delay and instantaneous frequency were calculated without phase unwrapping using a coherence synchrony measure that accurately classified ears with hearing loss. CEOAE moment measurements were repeatable in individual ears. Group delays were similar for CEOAEs and stimulus-frequency OAEs. Group spread is a frequency-specific measure of temporal spread in an emission, related to spatial spread across tonotopic generation sites along the cochlea. In normal ears, group delay and spread increased with frequency and decreased with level. A direct measure of cochlear tuning above 4 kHz was analyzed using instantaneous frequency and bandwidth. Synchronized spontaneous OAEs were present in most ears below 4 kHz, and confounded interpretation of moments. In ears with sensorineural hearing loss, group delay and spread varied with audiometric classification and amount of hearing loss; group delay differed between older males and females. CEOAE moments reveal clinically relevant information on cochlear tuning in ears with normal and impaired hearing.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| |
Collapse
|
33
|
Abstract
OBJECTIVE This study compares measurements of ear-canal reflectance (ECR) to other objective measurements of middle ear function including audiometry, umbo velocity (VU), and tympanometry in a population of strictly defined normal-hearing ears. DESIGN Data were prospectively gathered from 58 ears of 29 normal-hearing subjects, 16 females and 13 males, aged 22 to 64 yr. Subjects met all of the following criteria to be considered as having normal hearing: (1) no history of significant middle ear disease; (2) no history of otologic surgery; (3) normal tympanic membrane on otoscopy; (4) pure-tone audiometric thresholds of 20 dB HL or better for 0.25 to 8 kHz; (5) air-bone gaps no greater than 15 dB at 0.25 kHz and 10 dB for 0.5 to 4 kHz; (6) normal, type-A peaked tympanograms; and (7) all subjects had two "normal" ears (as defined by these criteria). Measurements included pure-tone audiometry for 0.25 to 8 kHz, standard 226 Hz tympanometry, ECR for 0.2 to 6 kHz at 60 dB SPL using the Mimosa Acoustics HearID system, and umbo velocity (VU) for 0.3 to 6 kHz at 70 to 90 dB SPL using the HLV-1000 laser Doppler vibrometer (Polytec Inc). RESULTS Mean power reflectance (|ECR|) was near 1.0 at 0.2 to 0.3 kHz, decreased to a broad minimum of 0.3 to 0.4 between 1 and 4 kHz, and then sharply increased to almost 0.8 by 6 kHz. The mean pressure reflectance phase angle (∠ECR) plotted on a linear frequency scale showed a group delay of approximately 0.1 msec for 0.2 to 6 kHz. Small significant differences were observed in |ECR| at the lowest frequencies between right and left ears and between males and females at 4 kHz. |ECR| decreased with age but reached significance only at 1 kHz. Our ECR measurements were generally similar to previous published reports. Highly significant negative correlations were found between |ECR| and VU for frequencies below 1 kHz. Significant correlations were also found between the tympanometrically determined peak total compliance and |ECR| and VU at frequencies below 1 kHz. The results suggest that middle ear compliance contributes significantly to the measured power reflectance and umbo velocity at frequencies below 1 kHz but not at higher frequencies. CONCLUSIONS This study has established a database of objective measurements of middle ear function (ECR, umbo velocity, tympanometry) in a population of strictly defined normal-hearing ears. These data will promote our understanding of normal middle ear function and will serve as a control for comparison to similar measurements made in pathological ears.
Collapse
|
34
|
Keefe DH, Schairer KS. Specification of absorbed-sound power in the ear canal: application to suppression of stimulus frequency otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:779-91. [PMID: 21361437 PMCID: PMC3070993 DOI: 10.1121/1.3531796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An insert ear-canal probe including sound source and microphone can deliver a calibrated sound power level to the ear. The aural power absorbed is proportional to the product of mean-squared forward pressure, ear-canal area, and absorbance, in which the sound field is represented using forward (reverse) waves traveling toward (away from) the eardrum. Forward pressure is composed of incident pressure and its multiple internal reflections between eardrum and probe. Based on a database of measurements in normal-hearing adults from 0.22 to 8 kHz, the transfer-function level of forward relative to incident pressure is boosted below 0.7 kHz and within 4 dB above. The level of forward relative to total pressure is maximal close to 4 kHz with wide variability across ears. A spectrally flat incident-pressure level across frequency produces a nearly flat absorbed power level, in contrast to 19 dB changes in pressure level. Calibrating an ear-canal sound source based on absorbed power may be useful in audiological and research applications. Specifying the tip-to-tail level difference of the suppression tuning curve of stimulus frequency otoacoustic emissions in terms of absorbed power reveals increased cochlear gain at 8 kHz relative to the level difference measured using total pressure.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | |
Collapse
|
35
|
Keefe DH, Goodman SS, Ellison JC, Fitzpatrick DF, Gorga MP. Detecting high-frequency hearing loss with click-evoked otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:245-61. [PMID: 21303007 PMCID: PMC3055286 DOI: 10.1121/1.3514527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 05/24/2023]
Abstract
In contrast to clinical click-evoked otoacoustic emission (CEOAE) tests that are inaccurate above 4-5 kHz, a research procedure measured CEOAEs up to 16 kHz in 446 ears and predicted the presence/absence of a sensorineural hearing loss. The behavioral threshold test that served as a reference to evaluate CEOAE test accuracy used a yes-no task in a maximum-likelihood adaptive procedure. This test was highly efficient between 0.5 and 12.7 kHz: Thresholds measured in 2 min per frequency had a median standard deviation (SD) of 1.2-1.5 dB across subjects. CEOAE test performance was assessed by the area under the receiver operating characteristic curve (AUC). The mean AUC from 1 to 10 kHz was 0.90 (SD=0.016). AUC decreased to 0.86 at 12.7 kHz and to 0.7 at 0.5 and 16 kHz, possibly due in part to insufficient stimulus levels. Between 1 and 12.7 kHz, the medians of the magnitude difference in CEOAEs and in behavioral thresholds were <4 dB. The improved CEOAE test performance above 4-5 kHz was due to retaining the portion of the CEOAE response with latencies as short as 0.3 ms. Results have potential clinical significance in predicting hearing status from at least 1 to 10 kHz using a single CEOAE response.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | | | | | |
Collapse
|
36
|
Wideband acoustic-reflex test in a test battery to predict middle-ear dysfunction. Hear Res 2009; 263:52-65. [PMID: 19772907 DOI: 10.1016/j.heares.2009.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/04/2009] [Accepted: 09/17/2009] [Indexed: 11/20/2022]
Abstract
A wideband (WB) aural acoustical test battery of middle-ear status, including acoustic-reflex thresholds (ARTs) and acoustic-transfer functions (ATFs, i.e., absorbance and admittance) was hypothesized to be more accurate than 1-kHz tympanometry in classifying ears that pass or refer on a newborn hearing screening (NHS) protocol based on otoacoustic emissions. Assessment of middle-ear status may improve NHS programs by identifying conductive dysfunction and cases in which auditory neuropathy exists. Ipsilateral ARTs were assessed with a stimulus including four broadband-noise or tonal activator pulses alternating with five clicks presented before, between and after the pulses. The reflex shift was defined as the difference between final and initial click responses. ARTs were measured using maximum likelihood both at low frequencies (0.8-2.8 kHz) and high (2.8-8 kHz). The median low-frequency ART was elevated by 24 dB in NHS refers compared to passes. An optimal combination of ATF and ART tests performed better than either test alone in predicting NHS outcomes, and WB tests performed better than 1-kHz tympanometry. Medial olivocochlear efferent shifts in cochlear function may influence ARs, but their presence would also be consistent with normal conductive function. Baseline clinical and WB ARTs were also compared in ipsilateral and contralateral measurements in adults.
Collapse
|
37
|
Jedrzejczak WW, Lorens A, Piotrowska A, Kochanek K, Skarzynski H. Otoacoustic emissions evoked by 0.5 kHz tone bursts. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:3158-3165. [PMID: 19425658 DOI: 10.1121/1.3097464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of this research is to extend previous studies of the time-frequency features of otoacoustic emissions (OAEs) using information about the properties of the signals at low frequencies. Responses to 0.5 kHz tone bursts were compared to OAEs that were evoked by click stimuli and by 1, 2, and 4 kHz tone burst stimuli. The OAEs were measured using 20 and 30 ms intervals between stimuli. The analysis revealed no differences in the time-frequency properties of 1, 2, and 4 kHz bursts measured using these two different acquisition windows. However, at 0.5 kHz the latency of the response was affected significantly if a shorter time window was used. This was caused by the fact that the response reached a maximum after an average time of 15.4 ms, and lasted a few milliseconds longer. Therefore, for this particular stimulus, the use of a 30 ms time window seems more appropriate. In addition, as an example of the possible application of low-frequency OAEs, signals were measured in patients suffering from partial deafness, characterized by steep audiograms with normal thresholds up to 0.5 kHz and almost total deafness above this frequency. Although no response to clicks was observed in these subjects, the use of 0.5 kHz tone bursts did produce OAEs.
Collapse
Affiliation(s)
- W Wiktor Jedrzejczak
- Institute of Physiology and Pathology of Hearing, ul. Zgrupowania AK Kampinos 1, 01-943 Warszawa, Poland
| | | | | | | | | |
Collapse
|
38
|
Keefe DH, Schairer KS, Ellison JC, Fitzpatrick DF, Jesteadt W. Use of stimulus-frequency otoacoustic emissions to investigate efferent and cochlear contributions to temporal overshoot. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:1595-604. [PMID: 19275317 PMCID: PMC2677284 DOI: 10.1121/1.3068443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 05/24/2023]
Abstract
Behavioral threshold for a tone burst presented in a long-duration noise masker decreases as the onset of the tone burst is delayed relative to masker onset. The threshold difference between detection of early- and late-onset tone bursts is called overshoot. Although the underlying mechanisms are unclear, one hypothesis is that overshoot occurs due to efferent suppression of cochlear nonlinearity [von Klitzing, R., and Kohlrausch, A. (1994). J. Acoust. Soc. Am. 95, 2192-2201]. This hypothesis was tested by using overshoot conditions to elicit stimulus-frequency otoacoustic emissions (SFOAEs), which provide a physiological measure of cochlear nonlinearity. SFOAE and behavioral thresholds were estimated using a modified maximum-likelihood yes-no procedure. The masker was a 400-ms "frozen" notched noise. The signal was a 20-ms, 4-kHz tone burst presented at 1 or 200 ms after the noise onset. Behavioral overshoot results replicated previous studies, but no overshoot was observed in SFOAE thresholds. This suggests that either efferent suppression of cochlear nonlinearity is not involved in overshoot, or a SFOAE threshold estimation procedure based on stimuli similar to those used to study behavioral overshoot is not sensitive enough to measure the effect.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Características como a freqüência de ressonância da orelha externa e da orelha média podem interferir na captação das emissões otoacústicas. OBJETIVO: Investigar a influência da freqüência de ressonância da orelha externa e da orelha média na resposta das emissões otoacústicas. DESENHO CIENTÍFICO: Estudo de série, prospectivo, clínico. MATERIAL E MÉTODO: Foram feitas medidas com microfone-sonda na orelha externa, timpanometria de multifreqüência e teste de emissões otoacústicas por transitório e produto de distorção em 19 orelhas direitas e 20 orelhas esquerdas de indivíduos do sexo masculino e 23 orelhas direitas e 23 orelhas esquerdas de indivíduos do sexo feminino com 17 a 30 anos. As 85 orelhas eram audiologicamente normais. RESULTADOS: Não foram observadas relações estatisticamente significantes entre a melhor freqüência de emissões otoacústicas e a freqüência de ressonância da orelha externa oclusa e da orelha média. CONCLUSÃO: Os níveis de respostas das emissões otoacústicas por transitório e produto de distorção não são influenciadas apenas pela ressonância da orelha externa e da orelha média.
Collapse
|
40
|
Couto CMD, Carvallo RMM. The effect external and middle ears have in otoacoustic emissions. Braz J Otorhinolaryngol 2009; 75:15-23. [PMID: 19488555 PMCID: PMC9442167 DOI: 10.1016/s1808-8694(15)30826-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 09/22/2007] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED Characteristics of how external and middle ear resonance frequency can impact the capture of otoacoustic emissions. AIM to study the impact of external and middle ear resonance frequency in otoacoustic emissions. STUDY DESIGN Prospective, clinical, series study. MATERIALS AND METHODS Microphone-probe measurements were made in the external ear, together with multifrequency timpanometry distortion product transient otoacoustic emissions in 19 right and 20 left ears from male individuals and 23 right and 23 left ears from female individuals with 17 to 30 years of age. The 85 ears were audiologically normal. RESULTS We did not observe statistically significant associations between the best otoacoustic emission best frequencies and the occluded external and middle ear resonance frequencies. CONCLUSION Response levels for both transient and distortion product otoacoustic emissions are not influenced by the external and middle ear resonances alone.
Collapse
|
41
|
Factors Affecting Sensitivity of Distortion-Product Otoacoustic Emissions to Ototoxic Hearing Loss. Ear Hear 2008; 29:875-93. [DOI: 10.1097/aud.0b013e318181ad99] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Liu YW, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP, Keefe DH. Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:3708-19. [PMID: 19206798 PMCID: PMC2737248 DOI: 10.1121/1.3001712] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 05/24/2023]
Abstract
A system with potential for middle-ear screening and diagnostic testing was developed for the measurement of wideband energy absorbance (EA) in the ear canal as a function of air pressure, and tested on adults with normal hearing. Using a click stimulus, the EA was measured at 60 frequencies between 0.226 and 8 kHz. Ambient-pressure results were similar to past studies. To perform tympanometry, air pressure in the ear canal was controlled automatically to sweep between -300 and 200 daPa (ascending/descending directions) using sweep speeds of approximately 75, 100, 200, and 400 daPas. Thus, the measurement time for wideband tympanometry ranged from 1.5 to 7 s and was suitable for clinical applications. A bandpass tympanogram, calculated for each ear by frequency averaging EA from 0.38 to 2 kHz, had a single-peak shape; however, its tympanometric peak pressure (TPP) shifted as a function of sweep speed and direction. EA estimated at the TPP was similar across different sweep speeds, but was higher below 2 kHz than EA measured at ambient pressure. Future studies of EA on normal ears of a different age group or on impaired ears may be compared with the adult normal baseline obtained in this study.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | | | |
Collapse
|
43
|
Keefe DH, Abdala C. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:978-93. [PMID: 17348521 PMCID: PMC2440519 DOI: 10.1121/1.2427128] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The purpose of this study is to understand why otoacoustic emission (OAE) levels are higher in normal-hearing human infants relative to adults. In a previous study, distortion product (DP) OAE input/output (I/O) functions were shown to differ at f2 = 6 kHz in adults compared to infants through 6 months of age. These DPOAE I/0 functions were used to noninvasively assess immaturities in forward/reverse transmission through the ear canal and middle ear [Abdala, C., and Keefe, D. H., (2006). J. Acoust Soc. Am. 120, 3832-3842]. In the present study, ear-canal reflectance and DPOAEs measured in the same ears were analyzed using a scattering-matrix model of forward and reverse transmission in the ear canal, middle ear, and cochlea. Reflectance measurements were sensitive to frequency-dependent effects of ear-canal and middle-ear transmission that differed across OAE type and subject age. Results indicated that DPOAE levels were larger in infants mainly because the reverse middle-ear transmittance level varied with ear-canal area, which differed by more than a factor of 7 between term infants and adults. The forward middle-ear transmittance level was -16 dB less in infants, so that the conductive efficiency was poorer in infants than adults.
Collapse
Affiliation(s)
- Douglas H Keefe
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | |
Collapse
|