1
|
Sono T, Shima K, Shimizu T, Murata K, Matsuda S, Otsuki B. Regenerative therapies for lumbar degenerative disc diseases: a literature review. Front Bioeng Biotechnol 2024; 12:1417600. [PMID: 39257444 PMCID: PMC11385613 DOI: 10.3389/fbioe.2024.1417600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
This review aimed to summarize the recent advances and challenges in the field of regenerative therapies for lumbar disc degeneration. The current first-line treatment options for symptomatic lumbar disc degeneration cannot modify the disease process or restore the normal structure, composition, and biomechanical function of the degenerated discs. Cell-based therapies tailored to facilitate intervertebral disc (IVD) regeneration have been developed to restore the IVD extracellular matrix or mitigate inflammatory conditions. Human clinical trials on Mesenchymal Stem Cells (MSCs) have reported promising outcomes exhibited by MSCs in reducing pain and improving function. Nucleus pulposus (NP) cells possess unique regenerative capacities. Biomaterials aimed at NP replacement in IVD regeneration, comprising synthetic and biological materials, aim to restore disc height and segmental stability without compromising the annulus fibrosus. Similarly, composite IVD replacements that combine various biomaterial strategies to mimic the native disc structure, including organized annulus fibrosus and NP components, have shown promise. Furthermore, preclinical studies on regenerative medicine therapies that utilize cells, biomaterials, growth factors, platelet-rich plasma (PRP), and biological agents have demonstrated their promise in repairing degenerated lumbar discs. However, these therapies are associated with significant limitations and challenges that hinder their clinical translation. Thus, further studies must be conducted to address these challenges.
Collapse
Affiliation(s)
- Takashi Sono
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Shima
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
3
|
Herrera Quijano MA, Sharma N, Morissette Martin P, Séguin CA, Flynn LE. Development of 2-D and 3-D culture platforms derived from decellularized nucleus pulposus. Front Bioeng Biotechnol 2022; 10:937239. [PMID: 36237211 PMCID: PMC9551564 DOI: 10.3389/fbioe.2022.937239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a detergent-free protocol was developed for decellularizing bovine nucleus pulposus (NP) tissues that was effective at removing cellular content while preserving key ECM constituents including collagens, glycosaminoglycans, and the cell-adhesive glycoproteins laminin and fibronectin. Next, novel 2-D coatings were generated using the DNP or commercially-sourced bovine collagen type I (COL) as a non-tissue-specific control. In addition, cryo-milled DNP or COL particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels as a 3-D cell culture platform for exploring the effects of ECM particle composition. Culture studies showed that the 2-D coatings derived from the DNP could support cell attachment and growth, but did not maintain or rescue the phenotype of primary bovine NP cells, which de-differentiated when serially passaged in monolayer culture. Similarly, while bovine NP cells remained highly viable following encapsulation and 14 days of culture within the hydrogel composites, the incorporation of DNP particles within the MCS hydrogels was insufficient to maintain or rescue changes in NP phenotype associated with extended in vitro culture based on gene expression patterns. Overall, DNP produced with our new decellularization protocol was successfully applied to generate both 2-D and 3-D bioscaffolds; however, further studies are required to assess if these platforms can be combined with additional components of the endogenous NP microenvironment to stimulate regeneration or lineage-specific cell differentiation.
Collapse
Affiliation(s)
- Marco A. Herrera Quijano
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Nadia Sharma
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cheryle A. Séguin
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| |
Collapse
|
4
|
Laagland LT, Bach FC, Creemers LB, Le Maitre CL, Poramba-Liyanage DW, Tryfonidou MA. Hyperosmolar expansion medium improves nucleus pulposus cell phenotype. JOR Spine 2022; 5:e1219. [PMID: 36203869 PMCID: PMC9520765 DOI: 10.1002/jsp2.1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Repopulating the degenerated intervertebral disc (IVD) with tissue-specific nucleus pulposus cells (NPCs) has already been shown to promote regeneration in various species. Yet the applicability of NPCs as cell-based therapy has been hampered by the low cell numbers that can be extracted from donor IVDs and their potentially limited regenerative capacity due to their degenerated phenotype. To optimize the expansion conditions, we investigated the effects of increasing culture medium osmolarity during expansion on the phenotype of dog NPCs and their ability to produce a healthy extracellular matrix (ECM) in a 3D culture model. Methods Dog NPCs were expanded in expansion medium with a standard osmolarity of 300 mOsm/L or adjusted to 400 or 500 mOsm/L in both normoxic and hypoxic conditions. Following expansion, NPCs were cultured in a 3D culture model in chondrogenic culture medium with a standard osmolarity. Read-out parameters included cell proliferaton rate, morphology, phenotype and healthy ECM production. Results Increasing the expansion medium osmolarity from 300 to 500 mOsm/L resulted in NPCs with a more rounded morphology and a lower cell proliferation rate accompanied by the expression of several healthy NPC and progenitor markers at gene (KRT18, ACAN, COL2, CD73, CD90) and protein (ACAN, PAX1, CD24, TEK, CD73) level. The NPCs expanded at 500 mOsm/L were able to retain most of their phenotypic markers and produce healthy ECM during 3D culture independent of the oxygen level used during expansion. Conclusions Altogether, our findings show that increasing medium osmolarity during expansion results in an NPC population with improved phenotype, which could enhance the potential of cell-based therapies for IVD regeneration.
Collapse
Affiliation(s)
- Lisanne T Laagland
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Frances C Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Laura B Creemers
- Department of Orthopedics University Medical Centre Utrecht Utrecht The Netherlands
| | | | - Deepani W Poramba-Liyanage
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| |
Collapse
|
5
|
Multiphoton microfabrication and micropatternining (MMM)-based screening of multiplex cell niche factors for phenotype maintenance - Bovine nucleus pulposus cell as an example. Biomaterials 2022; 281:121367. [DOI: 10.1016/j.biomaterials.2022.121367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
|
6
|
Muresanu C, Somasundaram SG, Vissarionov SV, Gavryushova LV, Nikolenko VN, Mikhaleva LM, Kirkland CE, Aliev G. Hypothetical Role of Growth Factors to Reduce Intervertebral Disc Degeneration Significantly through Trained Biological Transformations. Curr Pharm Des 2021; 27:2221-2230. [PMID: 33076800 DOI: 10.2174/1381612826666201019104201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Given the evidence of little or no therapeutic benefit of injection-based growth factor therapies, it has been proposed that a naturally triggered uninterrupted blood circulation of the growth factors would be superior. OBJECTIVE We seek to stimulate discussions and more research about the possibility of using the already available growth factors found in the prostate gland and endometrium by starting novel educable physiology, known as biological transformations controlled by the mind. METHODS We summarized the stretch-gated ion channel mechanism of the cell membrane and offer several practical methods that can be applied by anyone, in order to stimulate and enhance the blood circulation of the growth factors from the seminal fluid to sites throughout the body. This study describes, in detail, the practical application of our earlier published studies about biological transformations. RESULTS A previously reported single-patient case study has been extended, adding more from his personal experiences to continually improve this novel physiological training and extending the ideas from our earlier findings in detail. CONCLUSION The biological transformation findings demonstrate the need for additional research to establish the benefits of these natural therapies to repair and rejuvenate tissues affected by various chronic diseases or aging processes.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies (BIODIATECH), Str. Trifoiului nr. 12 G, 400478, Cluj-Napoca, Romania
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, United States
| | - Sergey V Vissarionov
- Department of Spinal Pathology and Neurosurgery, Turner Scientific and Research Institute for Children's Orthopedics, Street Parkovskya 64-68, Pushkin, Saint-Petersburg, 196603, Russian Federation
| | - Liliya V Gavryushova
- Saratov State Medical University named after V.I. Razumovsky, 410012, Saratov, Russian Federation
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Liudmila M Mikhaleva
- Federal State Budgetary Institution, Research Institute of Human Morphology, 3, Tsyurupy Str., Moscow, 117418, Russian Federation
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, United States
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| |
Collapse
|
7
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
8
|
Zhou X, Zhang F, Wang D, Wang J, Wang C, Xia K, Ying L, Huang X, Tao Y, Chen S, Xue D, Hua J, Liang C, Chen Q, Li F. Micro Fragmented Adipose Tissue Promotes the Matrix Synthesis Function of Nucleus Pulposus Cells and Regenerates Degenerated Intervertebral Disc in a Pig Model. Cell Transplant 2020; 29:963689720905798. [PMID: 32030997 PMCID: PMC7444234 DOI: 10.1177/0963689720905798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and consequent lower back pain is a common
disease. Micro fragmented adipose tissue (MFAT) is promising for a wide range of
applications in regenerative medicine. In this study, MFAT was isolated by a
nonenzymatic method and co-cultured with nucleus pulposus cells (NPCs) using an
indirect co-culture system in vitro. A pig disc degeneration
model was used to investigate the regenerative effect of MFAT on degenerated
IVDs in vivo. The mRNA expression of Sox9,
Acan, and Col2 in NPCs was significantly
increased, while no significant increase was observed in the mRNA expression of
proinflammatory cytokine genes after the NPCs were co-cultured with MFAT.
Nucleus pulposus (NP)-specific markers were increased in MFAT cells after
co-culture with NPCs. After injection of MFAT, the disc height, water content,
extracellular matrix, and structure of the degenerated NP were significantly
improved. MFAT promoted the matrix synthesis function of NPCs, and NPCs
stimulated the NP-like differentiation of MFAT cells. In addition, MFAT also
partly regenerated degenerated IVDs in the pig model.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Feng Zhang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Dawei Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Jingkai Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,These authors contributed equally to this article
| | - Chenggui Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Kaishun Xia
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liwei Ying
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Shouyong Chen
- Department of Orthopedics Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Deting Xue
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fangcai Li
- Department of Orthopedics Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
9
|
Farhang N, Ginley-Hidinger M, Berrett KC, Gertz J, Lawrence B, Bowles RD. Lentiviral CRISPR Epigenome Editing of Inflammatory Receptors as a Gene Therapy Strategy for Disc Degeneration. Hum Gene Ther 2019; 30:1161-1175. [PMID: 31140325 PMCID: PMC6761595 DOI: 10.1089/hum.2019.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Degenerative disc disease (DDD) is a primary contributor to low-back pain, a leading cause of disability. Progression of DDD is aided by inflammatory cytokines in the intervertebral disc (IVD), particularly TNF-α and IL-1β, but current treatments fail to effectively target this mechanism. The objective of this study was to explore the feasibility of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) epigenome editing-based therapy for DDD, by modulation of TNFR1/IL1R1 signaling in pathological human IVD cells. Human IVD cells from the nucleus pulposus of patients receiving surgery for back pain were obtained and the regulation of TNFR1/IL1R1 signaling by a lentiviral CRISPR epigenome editing system was tested. These cells were tested for successful lentiviral transduction/expression of deactivated Cas9 fused to Krüppel Associated Box system and regulation of TNFR1/IL1R1 expression. TNFR1/IL1R1 signaling disruption was investigated through measurement of NF-κB activity, apoptosis, and anabolic/catabolic changes in gene expression postinflammatory challenge. CRISPR epigenome editing systems were effectively introduced into pathological human IVD cells and significantly downregulated TNFR1 and IL1R1. This downregulation significantly attenuated deleterious TNFR1 signaling but not IL1R1 signaling. This is attributed to less robust IL1R1 expression downregulation, and IL-1β-driven reversal of IL1R1 expression downregulation in a portion of patient IVD cells. In addition, RNAseq data indicated novel transcription factor targets, IRF1 and TFAP2C, as being primary regulators of inflammatory signaling in IVD cells. These results demonstrate the feasibility of CRISPR epigenome editing of inflammatory receptors in pathological IVD cells, but highlight a limitation in epigenome targeting of IL1R1. This method has potential application as a novel gene therapy for DDD, to attenuate the deleterious effect of inflammatory cytokines present in the degenerative IVD.
Collapse
MESH Headings
- Apoptosis
- Biomarkers
- Cells, Cultured
- Clustered Regularly Interspaced Short Palindromic Repeats
- Epigenesis, Genetic
- Gene Editing
- Gene Expression Regulation
- Gene Order
- Gene Transfer Techniques
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Humans
- Intervertebral Disc Degeneration/genetics
- Intervertebral Disc Degeneration/therapy
- Lentivirus/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Transduction, Genetic
Collapse
Affiliation(s)
- Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | | | | | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Brandon Lawrence
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Robby D. Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Nukaga T, Sakai D, Schol J, Suyama K, Nakai T, Hiyama A, Watanabe M. Minimal Sustainability of Dedifferentiation by ROCK Inhibitor on Rat Nucleus Pulposus Cells In Vitro. Spine Surg Relat Res 2019; 3:385-391. [PMID: 31768460 PMCID: PMC6834460 DOI: 10.22603/ssrr.2019-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction Intervertebral disc degeneration is strongly associated with low back pain. Cell transplantation has been extensively studied as a treatment option for intervertebral disc degeneration. It is often necessary to perform cell culture prior to cell transplantation; however, during cell expansion, the cells tend to dedifferentiate and lose their potency. Although the ability to suppress dedifferentiation by ROCK inhibitor (ROCKi) has recently been reported for chondrocytes, its effects on nucleus pulposus cells are still largely unknown. Methods Rat nucleus pulposus cells were cultured with or without the addition of ROCKi (Y-27632), and cell proliferation; CD24 positivity; expression of SOX9, COL2A1, Aggrecan, and COL1A1; and cell redifferentiation ability in pellet culture were evaluated. Results Although the addition of ROCKi tended to slightly increase the cell proliferative capacity, no significant differences were observed between treated and untreated conditions. The addition of ROCKi showed a trend of minimally increased COL2A1, ACAN, and SOX9 expression. Increases in COL1A1 expression was slightly suppressed by ROCKi. In pellet culture, strong increase in type II collagen deposition was observed by the addition of ROCKi. The addition of ROCKi did not significantly change the levels of CD24 positivity. The supplementation of ROCKi did not significantly enhance nucleus pulposus cell marker expression during monolayer expansion. However, ROCKi addition did result in an increased type II collagen deposition in 3D pellet culture. Conclusions Taken together, the results suggest a minimal effect by ROCKi on nucleus pulposus cell phenotype maintenance.
Collapse
Affiliation(s)
- Tadashi Nukaga
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Kaori Suyama
- Department of Anatomy and Cellular Biology, Tokai University School of Medicine, Isehara, Japan
| | - Tomoko Nakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Akihiko Hiyama
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
11
|
Leite Pereira C, Quelhas Teixeira G, Rita Ferreira J, D'Este M, Eglin D, Alini M, Grad S, Barbosa MA, Gonçalves RM. Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type II Expression in Intervertebral Disc. Tissue Eng Part A 2018; 24:1818-1830. [PMID: 29916307 DOI: 10.1089/ten.tea.2018.0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is characterized by an unbalanced cell catabolic/anabolic activity and cell death, resulting in the degradation of extracellular matrix components and water loss. Repopulating the IVD with new cells may help in recovering tissue homeostasis and reverting the degenerative process. In this study the regenerative potential of a hyaluronan (HA)-based chemoattractant delivery system able to recruit mesenchymal stem cells (MSCs) seeded on the cartilaginous endplate (CEP) of IVD was explored. A HA delivery system containing stromal cell derived factor-1 (SDF-1) (5 ng/μL) (HAPSDF5) was injected in the cavity of nucleotomized bovine discs. Human MSCs (1 × 106) were seeded on the opposite CEP and allowed to migrate for up to 21 days. Migration of fluorescently labelled MSCs from CEP toward the IVD was enhanced by HAPSDF5. Likewise, an increase in collagen type II was detected at earlier time points, whereas no effect on proteoglycan content within the nucleotomized IVDs was found. MSCs produced an increased concentration of pro-catabolic factors, such as interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1). Overall, this study demonstrates that HAPSDF5 increased MSC recruitment, while the higher number of recruited cells partially contributed to accelerate matrix remodeling in nucleotomized IVDs.
Collapse
Affiliation(s)
- Catarina Leite Pereira
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| | - Graciosa Quelhas Teixeira
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| | - Joana Rita Ferreira
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
- 3 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Matteo D'Este
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - David Eglin
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - Maulo Alini
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - Sibylle Grad
- 4 AO Research Institute Davos, AO Foundation , Davos, Switzerland
| | - Mário Adolfo Barbosa
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
- 3 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Raquel Madeira Gonçalves
- 1 Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto , Porto, Portugal
- 2 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| |
Collapse
|
12
|
Hiraishi S, Schol J, Sakai D, Nukaga T, Erickson I, Silverman L, Foley K, Watanabe M. Discogenic cell transplantation directly from a cryopreserved state in an induced intervertebral disc degeneration canine model. JOR Spine 2018; 1:e1013. [PMID: 31463441 PMCID: PMC6686803 DOI: 10.1002/jsp2.1013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
A multitude of studies has indicated the potential of cell therapy as a method for intervertebral disc (IVD) regeneration. Transplantation of a variety of cells has been assessed and shown capable of deterring the rate of degeneration in animal models and in human clinical trials. In this study, a novel approach using human discogenic nucleus pulposus cells directly from their cryopreserved state was assessed. In an established canine disc degeneration model, the degeneration process was evaluated in IVDs receiving precultured discogenic cells, thawed-only discogenic cells, and a saline sham injection after induction of degeneration. Degeneration progression was followed over time by the evaluation of the disc height index (DHI). Finally, after 12 weeks, the manipulated and control discs were explanted, histologically stained, and scored. Treated discs demonstrated retained DHI values for all treatment options. Histologic evaluations demonstrated significant improvement of matrix features compared to the sham. Moreover, thawed-only cells function at least as well as precultured discogenic cells. In short, cell transplantation of human discogenic cells directly from their cryopreserved state can arrest disc height degeneration and maintain histological matrix features in a canine disc degeneration model. The presented work demonstrates the potential of an off-the-shelf cell therapy product to treat degenerative disc disease.
Collapse
Affiliation(s)
- Syunsuke Hiraishi
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Tadashi Nukaga
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | | | - Lara Silverman
- DiscGenics Inc.Salt Lake CityUtah
- Semmes‐Murphey Clinic & Department of NeurosurgeryUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Kevin Foley
- DiscGenics Inc.Salt Lake CityUtah
- Semmes‐Murphey Clinic & Department of NeurosurgeryUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| |
Collapse
|
13
|
Kennon JC, Awad ME, Chutkan N, DeVine J, Fulzele S. Current insights on use of growth factors as therapy for Intervertebral Disc Degeneration. Biomol Concepts 2018; 9:43-52. [PMID: 29779014 DOI: 10.1515/bmc-2018-0003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic low back pain is a critical health problem and a leading cause of disability in aging populations. A major cause of low back pain is considered to be the degeneration of the intervertebral disc (IVD). Recent advances in therapeutics, particularly cell and tissue engineering, offer potential methods for inhibiting or reversing IVD degeneration, which have previously been impossible. The use of growth factors is under serious consideration as a potential therapy to enhance IVD tissue regeneration. We reviewed the role of chosen prototypical growth factors and growth factor combinations that have the capacity to improve IVD restoration. A number of growth factors have demonstrated potential to modulate the anabolic and anticatabolic effects in both in vitro and animal studies of IVD tissue engineering. Members of the transforming growth factor-β superfamily, IGF-1, GDF-5, BMP-2, BMP-7, and platelet-derived growth factor have all been investigated as possible therapeutic options for IVD regeneration. The role of growth factors in IVD tissue engineering appears promising; however, further extensive research is needed at both basic science and clinical levels before its application is appropriate for clinical use.
Collapse
Affiliation(s)
- Justin C Kennon
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| | - Mohamed E Awad
- Department of Oral Biology, Augusta University, Augusta, GA, USA
| | - Norman Chutkan
- Banner University Medical Center, University of Arizona College of Medicine - Phoenix, The CORE Institute, Phoenix, AZ, USA
| | - John DeVine
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Augusta University, Augusta, GA, USA
| |
Collapse
|
14
|
Zhou X, Wang J, Fang W, Tao Y, Zhao T, Xia K, Liang C, Hua J, Li F, Chen Q. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater 2018; 71:496-509. [PMID: 29555463 DOI: 10.1016/j.actbio.2018.03.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/08/2023]
Abstract
Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Although adipose-derived stem cell (ADSC)-based therapy is regarded to be promising for the treatment of degenerated NP, there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. The induction effect of the scaffold on ADSC differentiation was studied in vitro, and a rat coccygeal vertebrae degeneration model was used to investigate the regenerative effect of the CCSA system on the degenerated NP in vivo. The results showed that the CCSA delivery system cross-linked with 0.02% genipin was biocompatible and promoted the expressions of NP-specific genes. After the injection of the CCSA system, the disc height, water content, extracellular matrix synthesis, and structure of the degenerated NP were partly restored. Our CCSA delivery system uses minimally invasive approaches to promote the regeneration of degenerated NP and provides an exciting new avenue for the treatment of degenerative disc disease. STATEMENT OF SIGNIFICANCE Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration and consequent lower back pain. Stem cell-based tissue engineering is a promising method in NP regeneration, but there is a lack of viable cell carriers to transplant ADSCs into the NP while maintaining cell function. In this study, we developed a type II collagen/chondroitin sulfate (CS) composite hydrogel-like ADSC (CCSA) delivery system with genipin as the cross-linking agent. Although several research groups have studied the fabrication of injectable hydrogel with biological matrix, our study differs from other works. We chose type II collagen and CS, the two primary native components in the NP, as the main materials and combined them according to the natural ratio of collagen and sGAG in the NP. The delivery system is preloaded with ADSCs and can be injected into the NP with a needle, followed by in situ gelation. Genipin is used as a cross-linker to improve the bio-stability of the scaffold, with low cytotoxicity. We investigated the stimulatory effects of our scaffold on the differentiation of ADSCs in vitro and the regenerative effect of the CCSA delivery system on degenerated NP in vivo.
Collapse
|
15
|
Zhang YH, Zhao YL, Li B, Song J, Zhang J, Shao J. Lentivirus Is an Efficient and Stable Transduction Vector for Intervertebral Disc Cells. World Neurosurg 2018; 111:e348-e354. [DOI: 10.1016/j.wneu.2017.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/10/2017] [Indexed: 11/25/2022]
|
16
|
Sun H, Qi L, Wang S, Li X, Li C. Hydrogen sulfide is expressed in the human and the rat cultured nucleus pulposus cells and suppresses apoptosis induced by hypoxia. PLoS One 2018; 13:e0192556. [PMID: 29466396 PMCID: PMC5821346 DOI: 10.1371/journal.pone.0192556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
Apoptosis plays pivotal role in the pathogenesis of degenerative disc diseases, which is the primary contributor to low back pain. Although the role of hydrogen sulfide (H2S) in cell apoptosis is well appreciated, the effects and mechanism that H2S regulates the program death of intervertebral disc cell are not yet elucidated. In this study, we utilized the nucleus pulposus (NP) from patients with lumbar disc herniation to investigate the relationship between endogenous H2S and NP cells apoptosis in human. Furthermore, we analyzed primary rat NP cells to study the effects of exogenous H2S on hypoxia induced cell apoptosis. Human NP samples were obtained from patients with lumbar disc herniation and were divided into uncontained and contained herniation groups. Using immunohistochemistry staining and sulphur-sensitive electrode, we detected the expression of cystathionine-β-synthase (CBS) and cystathionine γ-lyase (CSE), as well as the production of endogenous H2S in human NP. Tunel staining showed increased apoptosis in NP from herniated disc; and there was significant correlation between H2S generation and apoptosis in human NP. CoCl2 was then used to induce hypoxia in cultured primary rat NP cells. Annexin V staining indicated that exogenous NaHS attenuated hypoxia induced apoptosis in rat NP cells. Furthermore, hypoxia significantly increased the levels of multiple apoptosis associated proteins (Fas, Cytochromes C, Caspase 9 and cleaved-Caspase-3) in cells, which were eliminated by NaHS. Our study demonstrates the presence of endogenous H2S in human intervertebral disc; and the endogenous H2S generation rate is associated with NP apoptosis in herniated disc. In vitro study showes exogenous H2S donor attenuates hypoxia induced apoptosis in primary rat NP cells. Thus, our work provides insights that H2S may have beneficial effects in treating degenerative disc diseases.
Collapse
Affiliation(s)
- Haolin Sun
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Longtao Qi
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Shijun Wang
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Xuwen Li
- Department of Orthopedic, Peking University First Hospital, Beijing, China
| | - Chunde Li
- Department of Orthopedic, Peking University First Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
miR-155 Inhibits Nucleus Pulposus Cells' Degeneration through Targeting ERK 1/2. DISEASE MARKERS 2016; 2016:6984270. [PMID: 27635110 PMCID: PMC5007319 DOI: 10.1155/2016/6984270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023]
Abstract
We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2.
Collapse
|
18
|
Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nat Commun 2016; 7:12503. [PMID: 27527664 PMCID: PMC4990710 DOI: 10.1038/ncomms12503] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 07/07/2016] [Indexed: 01/07/2023] Open
Abstract
The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx−/− mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration. Homeobox protein Mohwak (Mkx) is involved in tendon and ligament development. Here the authors show that Mkx in the outer annulus fibrosus of the intervertebral disc plays a role in maintenance of the IVD, showing that stem cells overexpressing Mkx enhance therapeutic IVD regeneration in mice.
Collapse
|
19
|
Tavakol S, Saber R, Hoveizi E, Tavakol B, Aligholi H, Ai J, Rezayat SM. Self-Assembling Peptide Nanofiber Containing Long Motif of Laminin Induces Neural Differentiation, Tubulin Polymerization, and Neurogenesis: In Vitro, Ex Vivo, and In Vivo Studies. Mol Neurobiol 2015; 53:5288-99. [DOI: 10.1007/s12035-015-9448-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023]
|
20
|
Tavakol S, Saber R, Hoveizi E, Aligholi H, Ai J, Rezayat SM. Chimeric Self-assembling Nanofiber Containing Bone Marrow Homing Peptide’s Motif Induces Motor Neuron Recovery in Animal Model of Chronic Spinal Cord Injury; an In Vitro and In Vivo Investigation. Mol Neurobiol 2015; 53:3298-3308. [DOI: 10.1007/s12035-015-9266-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/28/2015] [Indexed: 02/04/2023]
|
21
|
Stich S, Stolk M, Girod PP, Thomé C, Sittinger M, Ringe J, Seifert M, Hegewald AA. Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs. PLoS One 2015; 10:e0126954. [PMID: 25993467 PMCID: PMC4438063 DOI: 10.1371/journal.pone.0126954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/09/2015] [Indexed: 12/24/2022] Open
Abstract
Cell-based regenerative approaches have been suggested as primary or adjuvant procedures for the treatment of degenerated intervertebral disc (IVD) diseases. Our aim was to evaluate the regenerative and immunogenic properties of mildly and severely degenerated cervical nucleus pulposus (NP) cells with regard to cell isolation, proliferation and differentiation, as well as to cell surface markers and co-cultures with autologous or allogeneic peripheral blood mononuclear cells (PBMC) including changes in their immunogenic properties after 3-dimensional (3D)-culture. Tissue from the NP compartment of 10 patients with mild or severe grades of IVD degeneration was collected. Cells were isolated, expanded with and without basic fibroblast growth factor and cultured in 3D fibrin/poly (lactic-co-glycolic) acid transplants for 21 days. Real-time reverse-transcription polymerase chain reaction (RT-PCR) showed the expression of characteristic NP markers ACAN, COL1A1 and COL2A1 in 2D- and 3D-culture with degeneration- and culture-dependent differences. In a 5,6-carboxyfluorescein diacetate N-succinimidyl ester-based proliferation assay, NP cells in monolayer, regardless of their grade of degeneration, did not provoke a significant proliferation response in T cells, natural killer (NK) cells or B cells, not only with donor PBMC, but also with allogeneic PBMC. In conjunction with low inflammatory cytokine expression, analyzed by Cytometric Bead Array and fluorescence-activated cell sorting (FACS), a low immunogenicity can be assumed, facilitating possible therapeutic approaches. In 3D-culture, however, we found elevated immune cell proliferation levels, and there was a general trend to higher responses for NP cells from severely degenerated IVD tissue. This emphasizes the importance of considering the specific immunological alterations when including biomaterials in a therapeutic concept. The overall expression of Fas receptor, found on cultured NP cells, could have disadvantageous implications on their potential therapeutic applications because they could be the targets of cytotoxic T-cell activity acting by Fas ligand-induced apoptosis.
Collapse
Affiliation(s)
- Stefan Stich
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Meaghan Stolk
- Institute of Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre Pascal Girod
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Sittinger
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Seifert
- Institute of Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aldemar Andres Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
22
|
Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, Chen Q. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors 2015; 33:23-30. [PMID: 25270389 DOI: 10.3109/08977194.2014.969420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human mesenchymal stem cells (MSCs) are reported to have the capability of differentiating towards nucleus pulposus (NP)-like phenotype under specific culture conditions. So far, the effects of fibroblast growth factor (FGF)-2 and the cocktail effects of transforming growth factor (TGF)-beta and FGF-2 on MSCs remain unclear. Therefore, we designed this study to clarify these effects. MSCs were cultured in conditioned medium containing FGF-2 or TGF-beta/FGF-2, and compared with basal or TGF-beta medium. The groups with FGF-2 showed the increase of cell proliferation. Functional gene markers and novel NP markers decreased in FGF-2 group, together with functional protein expression. Pho-ERK1/2 and pho-Smad3 differed significantly in the two conditioned groups. All these results suggest FGF-2 promotes MSCs' proliferation, synergistically with TGF-beta. However, FGF-2 plays a negative role in cartilage homeostasis. We also demonstrate that FGF-2 has no positive effect in differentiating MSCs into NP-like cells, but hinders the acceleration effect of TGF-beta.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Winkler T, Mahoney EJ, Sinner D, Wylie CC, Dahia CL. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse. PLoS One 2014; 9:e98444. [PMID: 24892825 PMCID: PMC4043533 DOI: 10.1371/journal.pone.0098444] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 05/02/2014] [Indexed: 11/28/2022] Open
Abstract
Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease.
Collapse
Affiliation(s)
- Tamara Winkler
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eric J. Mahoney
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Debora Sinner
- The Perinatal Institute Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Christopher C. Wylie
- Emeritus Professor, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Chitra Lekha Dahia
- Tissue Engineering Regeneration and Repair Program, Hospital for Special Surgery, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Werner BC, Li X, Shen FH. Stem cells in preclinical spine studies. Spine J 2014; 14:542-51. [PMID: 24246748 DOI: 10.1016/j.spinee.2013.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/05/2013] [Accepted: 08/23/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The recent identification and characterization of mesenchymal stem cells have introduced a shift in the research focus for future technologies in spinal surgery to achieve spinal fusion and treat degenerative disc disease. Current and past techniques use allograft to replace diseased tissue or rely on host responses to recruit necessary cellular progenitors. Adult stem cells display long-term proliferation, efficient self-renewal, and multipotent differentiation. PURPOSE This review will focus on two important applications of stem cells in spinal surgery: spine fusion and the management of degenerative disc disease. STUDY DESIGN Review of the literature. METHODS Relevant preclinical literature regarding stem cell sources, growth factors, scaffolds, and animal models for both osteogenesis and chondrogenesis will be reviewed, with an emphasis on those studies that focus on spine applications of these technologies. RESULTS In both osteogenesis and chondrogenesis, adult stem cells derived from bone marrow or adipose show promise in preclinical studies. Various growth factors and scaffolds have also been shown to enhance the properties and eventual clinical potential of these cells. Although its utility in clinical applications has yet to be proven, gene therapy has also been shown to hold promise in preclinical studies. CONCLUSIONS The future of spine surgery is constantly evolving, and the recent advancements in stem cell-based technologies for both spine fusion and the treatment of degenerative disc disease is promising and indicative that stem cells will undoubtedly play a major role clinically. It is likely that these stem cells, growth factors, and scaffolds will play a critical role in the future for replacing diseased tissue in disease processes such as degenerative disc disease and in enhancing host tissue to achieve more reliable spine fusion.
Collapse
Affiliation(s)
- Brian C Werner
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800159, Charlottesville, VA 22908-0159 USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800159, Charlottesville, VA 22908-0159 USA
| | - Francis H Shen
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800159, Charlottesville, VA 22908-0159 USA.
| |
Collapse
|
25
|
Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem 2013; 114:735-42. [PMID: 23060229 DOI: 10.1002/jcb.24418] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/01/2012] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) and degenerative disc disease (DDD) are similar diseases involving the breakdown of cartilage tissue, and a better understanding of the underlying biochemical processes involved in cartilage degeneration may allow for the development of novel biologic therapies aimed at slowing the disease process. Three members of the fibroblast growth factor (FGF) family, FGF-2, FGF-18, and FGF-8, have been implicated as contributing factors in cartilage homeostasis. The role of FGF-2 is controversial in both articular and intervertebral disc (IVD) cartilage as it has been associated with species- and age-dependent anabolic or catabolic events. Recent evidence suggests that FGF-2 selectively activates FGF receptor 1 (FGFR1) to exert catabolic effects in human articular chondrocytes and IVD tissue via upregulation of matrix-degrading enzyme production, inhibition of extracellular matrix (ECM) accumulation and proteoglycan synthesis, and clustering of cells characteristic of arthritic states. FGF-18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating the FGFR3 pathway, inducing ECM formation and chondrogenic cell differentiation, and inhibiting cell proliferation. These changes result in dispersed chondrocytes or disc cells surrounded by abundant matrix. The role of FGF-8 has recently been identified as a catabolic mediator in rat and rabbit articular cartilage, but its precise biological impact on human adult articular cartilage or IVD tissue remains unknown. The available evidence reveals the promise of FGF-2/FGFR1 antagonists, FGF-18/FGFR3 agonists, and FGF-8 antagonists (i.e., anti-FGF-8 antibody) as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future.
Collapse
Affiliation(s)
- M B Ellman
- Department of Biochemistry, Section of Rheumatology, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The nucleus pulposus of the intervertebral disk contains high amounts of the proteoglycan aggrecan, which confers the disk with a remarkable ability to resist compression. Other molecules such as collagens and noncollagenous proteins in the extracellular matrix are also essential for function. During disk degeneration, aggrecan and other molecules are lost due to proteolysis. This can result in loss of disk height, which can ultimately lead to pain. Biological therapy of intervertebral disk degeneration aims at preventing or restoring primarily aggrecan content and other molecules using therapeutic molecules. The purpose of the article is to review recent advances in biological repair of degenerate disks and pain.
Collapse
Affiliation(s)
- Fackson Mwale
- Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada,Address for correspondence Fackson Mwale, PhD Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research3755 Chemin de la Cote Ste-Catherine, Montreal, Quebec H3T 1E2Canada
| |
Collapse
|
27
|
Hiyama A, Sakai D, Mochida J. Cell signaling pathways related to pain receptors in the degenerated disk. Global Spine J 2013; 3:165-74. [PMID: 24436867 PMCID: PMC3856443 DOI: 10.1055/s-0033-1345036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Many of the causes of low back pain are still unknown; sufficient evidence indicates that both degenerative and mechanical change within the intervertebral disk (IVD) is a relevant factor. This article reviews intracellular signaling pathways related to pain receptors in the degenerated IVD. Several reports have demonstrated the number of nerve fibers in the IVD was increased in degenerated disks. In recent years, some groups have reported that an increase in nerve fibers is associated with the presence of inflammatory mediators and/or neurotrophins in the IVD. Cell signaling events, which are regulated by inflammatory mediators and neurotrophins, must be identified to clarify the mechanism underlying low back pain. Major intracellular signaling pathways (nuclear factor kappa β, mitogen-activated protein kinases, and Wnts) potentially play vital roles in mediating the molecular events responsible for the initiation and progression of IVD degeneration. These signaling pathways may represent therapeutic targets for the treatment of IVD degeneration and its associated back pain.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
28
|
Schuliga M, Javeed A, Harris T, Xia Y, Qin C, Wang Z, Zhang X, Lee PVS, Camoretti-Mercado B, Stewart AG. Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Am J Respir Cell Mol Biol 2013; 48:346-53. [PMID: 23239497 PMCID: PMC3604085 DOI: 10.1165/rcmb.2012-0151oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/15/2012] [Indexed: 11/24/2022] Open
Abstract
In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor-β (TGF-β)-stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-β-stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction-dependent manner. The abundance of ordered α-smooth muscle actin (α-SMA) filaments formed in the presence of TGF-β were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-β-stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-β-stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml(-1)), exerted no effect on TGF-β-regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-β treatment, still reduced contractile protein expression, even when the TGF-β-receptor kinase inhibitor, SB431542 (10 μM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-β is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.
Collapse
Affiliation(s)
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan; and
| | | | | | | | - Zhexing Wang
- Department of Chemical and Biomolecular Engineering, and
| | - Xuehua Zhang
- Department of Chemical and Biomolecular Engineering, and
| | - Peter V. S. Lee
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
29
|
Shoukry M, Li J, Pei M. Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells Dev 2013; 22:1162-76. [PMID: 23259403 DOI: 10.1089/scd.2012.0597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nucleus pulposus (NP) plays a prominent role in both the onset and progression of intervertebral disc degeneration. While autologous repair strategies have demonstrated some success, their in vitro culture system is outdated and insufficient for maintaining optimally functioning cells through the required extensive passaging. Consequently, the final population of cells may be unsuitable for the overwhelming task of repairing tissue in vivo and could result in subpar clinical outcomes. Recent work has identified synovium-derived stem cells (SDSCs) as a potentially important new candidate. This population of precursors can promote matrix regeneration and additionally restore the balance of catabolic and anabolic metabolism of surrounding cells. Another promising application is their ability to produce an extracellular matrix in vitro that can be modified via decellularization to produce a tissue-specific substrate for efficient cell expansion, while retaining chondrogenic potential. When combined with hypoxia, soluble factors, and other environmental regulators, the resultant complex microenvironment will more closely resemble the in vivo niche, which further improves the cell capacity, even after extensive passaging. In this review, the adaptive mechanisms NP cells utilize in vivo are considered for insight into what factors are important for constructing a tissue-specific in vitro niche. Evidence for the use of SDSCs for NP regeneration is also discussed. Many aspects of NP behavior are still unknown, which could lead to future work yielding key information on producing sufficient numbers of a high-quality NP-specific population that is able to regenerate deteriorated NP in vivo.
Collapse
Affiliation(s)
- Mark Shoukry
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506-9196, USA
| | | | | |
Collapse
|
30
|
Li X, Ellman MB, Kroin JS, Chen D, Yan D, Mikecz K, Ranjan KC, Xiao G, Stein GS, Kim SG, Cole B, van Wijnen AJ, Im HJ. Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. J Cell Biochem 2012; 113:2532-42. [PMID: 22415882 DOI: 10.1002/jcb.24129] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Existing literature demonstrates that fibroblast growth factor-2 (FGF-2) exerts opposing, contradictory biological effects on cartilage homeostasis in different species. In human articular cartilage, FGF-2 plays a catabolic and anti-anabolic role in cartilage homeostasis, driving homeostasis toward degeneration and osteoarthritis (OA). In murine joints, however, FGF-2 has been identified as an anabolic mediator as ablation of the FGF-2 gene demonstrated increased susceptibility to OA. There have been no previous studies specifically addressing species-specific differences in FGF-2-mediated biological effects. In this study, we provide a mechanistic understanding by which FGF-2 exerts contradictory biological effects in human versus murine tissues. Using human articular cartilage (ex vivo) and a medial meniscal destabilization (DMM) animal model (in vivo), species-specific expression patterns of FGFR receptors (FGFRs) are elucidated between human and murine articular cartilage. In the murine OA model followed by intra-articular injection of FGF-2, we further correlate FGFR profiles to changes in behavioral pain perception, proteoglycan content in articular cartilage, and production of inflammatory (CD11b) and angiogenic (VEGF) mediators in synovium lining cells. Our results suggest that the fundamental differences in cellular responses between human and murine tissues may be secondary to distinctive expression patterns of FGFRs that eventually determine biological outcomes in the presence of FGF-2. The complex interplay of FGFRs and the downstream signaling cascades induced by FGF-2 in human cartilage should add caution to the use of this particular growth factor for biological therapy in the future.
Collapse
Affiliation(s)
- Xin Li
- Department of Biochemistry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Moon JH, Kuh SU, Park HS, Kim KH, Park JY, Chin DK, Kim KS, Cho YE. Triamcinolone decreases bupivacaine toxicity to intervertebral disc cell in vitro. Spine J 2012; 12:665-73. [PMID: 22819189 DOI: 10.1016/j.spinee.2012.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 04/05/2012] [Accepted: 06/05/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Local anesthetics combined with corticosteroids are commonly used for management of back pain in interventional spinal procedures. Several recent studies suggest cytotoxicity of bupivacaine, whereas others report protective and cytotoxic effects of corticosteroids on chondrocytes and intervertebral disc cells. Considering the frequent use of these agents in spinal interventions, it is meaningful to know how they affect intervertebral disc cells. PURPOSE This study was conducted to assess the effects of bupivacaine and triamcinolone, both alone and in combination, on viability of intervertebral disc cells in vitro. STUDY DESIGN Controlled laboratory study. METHODS Nucleus pulposus cells were isolated from human disc specimens from patients undergoing surgery because of disc herniation or degenerative disc disease. They were grown in three-dimensional alginate beads for 1 week to maintain their differentiated phenotypes and to allow for matrix formation before analysis. After 1 week of culture, the cells were exposed to bupivacaine (0.1%, 0.25%, 0.5%, and 1%) or bupivacaine (0.1%, 0.25%, 0.5%, and 1%) with 1 mg of triamcinolone for 1, 3, or 6 hours. Cell viability was measured using trypan blue exclusion assay and flow cytometry. Live cell/dead cell fluorescent imaging was assessed using confocal microscopy. RESULTS Trypan blue exclusion assays demonstrated dose- and time-dependent cytotoxic effects of bupivacaine on human nucleus pulposus cells. Similar but reduced cytotoxicity was observed after exposure to the combination of bupivacaine and 1 mg of triamcinolone. Flow cytometry showed a dose-dependent cytotoxic effect of bupivacaine on nucleus pulposus cells after 3 hours of exposure. The reduced cytotoxicity of bupivacaine combined with 1 mg of triamcinolone was also confirmed in flow cytometry. Confocal images showed that the increase in dead cells correlated with the concentration of bupivacaine. Nevertheless, fewer cells died after exposure to several different concentrations of bupivacaine combined with 1 mg of triamcinolone than did after exposure to bupivacaine alone. CONCLUSIONS The combination of bupivacaine and triamcinolone induced dose- and time-dependent cytotoxicity on human intervertebral disc cells in vitro, but the cytotoxicity was much weaker than that of bupivacaine alone. This study shows a potential protective influence of triamcinolone on intervertebral disc cells.
Collapse
Affiliation(s)
- Ju-Hyung Moon
- Department of Neurosurgery, Spine and Spinal Cord Institute, Gangnam Severance Spine Hospital, Yonsei University College of Medicine, 712 Eonjuro, Gangnam-gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine (Phila Pa 1976) 2012; 37:459-69. [PMID: 21540772 DOI: 10.1097/brs.0b013e31821fcc64] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN After plating for 6 passages on either plastic flasks or extracellular matrix (ECM) deposited by synovium-derived stem cells (SDSCs), expanded nucleus pulposus (NP) cells were evaluated for redifferentiation capacity. OBJECTIVE The aim was to assess the feasibility of using ECM deposited by a tissue-specific stem cell to provide a 3-dimensional microenvironment for NP cell rejuvenation. SUMMARY OF BACKGROUND DATA Autologous disc cell-based therapy is a promising approach for intervertebral disc regeneration. Unfortunately, the current in vitro expansion of NP cells in monolayer results in dedifferentiation of these cells. METHODS Primary NP cells were plated on either plastic flasks or ECM for 6 consecutive passages. At each passage, cell numbers were counted for proliferation rate, cell phenotype was evaluated using flow cytometry, and cell differentiation status was assessed using real-time polymerase chain reaction (PCR). The pellets from expanded NP cells at passages 1, 4, and 6 were incubated in a serum-free defined medium for 14 days. Redifferentiation capacity of the expanded NP cells was evaluated using histology, biochemistry, and real-time PCR. RESULTS NP cells expanded on ECM grew much faster with a smaller size and fibroblast-like shape compared with those on plastic flasks. ECM-treated NP cells acquired an enhanced CD90 expression and higher mRNA levels of types I, II, and X collagen and aggrecan, as well as a robust redifferentiation capacity, evidenced by dramatically increased type II collagen, aggrecan, and Sox9 and decreased type I collagen for up to 6 passages. CONCLUSION SDSC-derived ECM can provide a tissue-specific microenvironment for the rejuvenation of NP cells with a higher proliferation rate and redifferentiation capacity. These characteristics may play a role in improving an autologous disc cell-based minimally invasive therapeutic approach toward physiological reconstruction of a biologically functional disc in the clinical setting.
Collapse
|
33
|
Hegewald AA, Enz A, Endres M, Sittinger M, Woiciechowsky C, Thomé C, Kaps C. Engineering of polymer-based grafts with cells derived from human nucleus pulposus tissue of the lumbar spine. J Tissue Eng Regen Med 2011; 5:275-82. [PMID: 20661901 DOI: 10.1002/term.312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intervertebral disc degeneration is considered a major source of low back pain. We therefore examined an absorbable polyglycolic acid (PGA) biomaterial for its utility to support disc tissue regeneration. Microdiscectomy for lumbar disc herniation was performed in six patients. Intervertebral disc cells were isolated and in vitro cell expansion was accomplished using human serum and FGF2. In a fibrin-hyaluronan solution, disc cells were loaded on PGA scaffolds and cultured for 2 weeks. Formation of disc tissue was documented by histological staining of the extracellular matrix as well as gene expression analysis of typical disc marker genes. The use of human serum and FGF2 ensures efficient isolation and expansion of human disc cells. During this phase, dedifferentiation of the disc cells was observed. Subsequent 3D tissue culture of disc cells in PGA scaffolds, however, is accompanied by the induction of typical disc marker genes, resulting in tissue containing glycosaminoglycans and collagens. Propidium iodide/fluorescein diacetate (PI/FDA) staining documented that 3D assembly of disc cells in PGA scaffolds allows prolonged culture and high viability of disc cells. Disc cells from tissue of the nucleus compartment can be reliably isolated and expanded in vitro with FGF. In combination with a fibrin-hyaluronan solution and loaded on a PGA scaffold, disc cells from expansion culture commence a redifferentiation process. PGA-based scaffolds could be useful as temporal matrices for regenerative disc repair approaches.
Collapse
|
34
|
Minogue BM, Richardson SM, Zeef LAH, Freemont AJ, Hoyland JA. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. ACTA ACUST UNITED AC 2011; 62:3695-705. [PMID: 20722018 DOI: 10.1002/art.27710] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Development of stem cell therapies for regenerating the nucleus pulposus (NP) are hindered by the lack of specific markers by which to distinguish NP cells from articular chondrocytes (ACs). The purpose of this study was to define the phenotype profile of human NP cells using gene expression profiling and to assess whether the identified markers could distinguish mesenchymal stem cell (MSC) differentiation to a correct NP cell phenotype. METHODS Affymetrix MicroArray analyses were conducted on human NP cells and ACs, and differential expression levels for several positive (NP) and negative (AC) marker genes were validated by real-time quantitative polymerase chain reaction (PCR) analysis. Novel marker gene and protein expression was also assessed in human bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) following differentiation in type I collagen gels. RESULTS Analysis identified 12 NP-positive and 36-negative (AC) marker genes that were differentially expressed ≥20-fold, and for a subset of them (NP-positive genes PAX1, FOXF1, HBB, CA12, and OVOS2; AC-positive genes GDF10, CYTL1, IBSP, and FBLN1), differential expression was confirmed by real-time quantitative PCR. Differentiated BM-MSCs and AD-MSCs demonstrated significant increases in the novel NP markers PAX1 and FOXF1. AD-MSCs lacked expression of the AC markers IBSP and FBLN1, whereas BM-MSCs lacked expression of the AC marker IBSP but expressed FBLN1. CONCLUSION This study is the first to use gene expression profiling to identify the human NP cell phenotype. Importantly, these markers can be used to determine the in vitro differentiation of MSCs to an NP-like, rather than an AC-like, phenotype. Interestingly, these results suggest that AD-MSCs may be a more appropriate cell type than BM-MSCs for use in engineering intervertebral disc tissue.
Collapse
|
35
|
Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Müller I. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 2010; 11:11. [PMID: 20109207 PMCID: PMC2827377 DOI: 10.1186/1471-2121-11-11] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 01/28/2010] [Indexed: 12/18/2022] Open
Abstract
Background Human multipotent mesenchymal stromal cells (MSC) can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity. Results After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation. Conclusion Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.
Collapse
Affiliation(s)
- Christina Holzwarth
- Department of General Pediatrics, University Children's Hospital, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Grad S, Alini M, Eglin D, Sakai D, Mochida J, Mahor S, Collin E, Dash B, Pandit A. Cells and Biomaterials for Intervertebral Disc Regeneration. ACTA ACUST UNITED AC 2010. [DOI: 10.2200/s00250ed1v01y201006tis005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Nucleus pulposus tissue engineering: a brief review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2009; 18:1564-72. [PMID: 19603198 DOI: 10.1007/s00586-009-1092-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/27/2009] [Accepted: 06/24/2009] [Indexed: 01/31/2023]
Abstract
Symptomatic intervertebral disc degeneration is associated with several spinal diseases, which cause losses of life quality and money. Tissue engineering provides a promising approach to recover the functionality of the degenerative intervertebral disc. Most studies are directed toward nucleus pulposus (NP) tissue engineering because disc degeneration is believed to originate in NP region, and considerable progress has been made in the past decade. Before this important technique is utilized for clinical treatment of disc degeneration, many challenges need to address including in all three principal components of tissue engineering, i.e., seed cells, signals and biomaterial scaffolds. This article briefly gives certain aspects of state of the art in this field, as well as pays a little more attention to our work published in the past 5 years, on growth and differentiation factor-5 (GDF-5), adipose-derived stem cells (ADSCs) and heparin functionalization of scaffold. We suggest that combinatorial application of ADSCs, GDF-5, heparin functionalization and injectable hydrogels will be advantageous in NP tissue engineering.
Collapse
|
38
|
Kim D, Kim J, Kang SS, Jin EJ. Transforming growth factor-β3-induced Smad signaling regulates actin reorganization during chondrogenesis of chick leg bud mesenchymal cells. J Cell Biochem 2009; 107:622-9. [DOI: 10.1002/jcb.22191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Abstract
Many of the therapeutic interventions for intervertebral disc degeneration attempt to repopulate the nucleus pulposus (NP) tissue; however, NP cells are heterogeneous and not well characterized. To address this, we have investigated the morphology, extracellular gene and protein expression, and apoptosis changes in NP explants cultured in vitro with or without chondrogenic reagents for different periods. We also compared the susceptibility of the explants to different treatments by comparing: treatment of NP explants with GDF5 protein, transfection of NP explants with GDF5 plasmid, and infection of NP explants with GDF5 adenovirus vector. We found that expression levels of two of the major extracellular proteins found in NP tissue, that is, collagen II and aggrecan, could be maintained in an NP explant culture model with a chondrogenic medium up to 7 days, and were significantly higher than that of fresh NP tissue after 14 days of culture in vitro, whether or not chondrogenic medium was used. In addition, the NP explant responded to treatment with growth factor, and could be infected by virus and transfected by plasmid for further evaluation of growth factor gene therapy. NP explant culture could therefore provide an easy in vitro culture model to characterize NP cells and evaluate potential therapeutic reagents.
Collapse
Affiliation(s)
- Gang Feng
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
40
|
Boskey AL. Signaling in response to hypoxia and normoxia in the intervertebral disc. ACTA ACUST UNITED AC 2009; 58:3637-9. [PMID: 19035504 DOI: 10.1002/art.24071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Nesti LJ, Li WJ, Shanti RM, Jiang YJ, Jackson W, Freedman BA, Kuklo TR, Giuliani JR, Tuan RS. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A 2009; 14:1527-37. [PMID: 18707229 DOI: 10.1089/ten.tea.2008.0215] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) represents a significant musculoskeletal disease burden. Although spinal fusion has some efficacy in pain management, spine biomechanics is ultimately compromised. In addition, there is inherent limitation of hardware-based IVD replacement prostheses, which underscores the importance of biological approaches to disc repair. In this study, we have seeded multipotent, adult human mesenchymal stem cells (MSCs) into a novel biomaterial amalgam to develop a biphasic construct that consisted of electrospun, biodegradable nanofibrous scaffold (NFS) enveloping a hyaluronic acid (HA) hydrogel center. The seeded MSCs were induced to undergo chondrogenesis in vitro in the presence of transforming growth factor-beta for up to 28 days. The cartilaginous hyaluronic acid-nanofibrous scaffold (HANFS) construct architecturally resembled a native IVD, with an outer annulus fibrosus-like region and inner nucleus pulposus-like region. Histological and biochemical analyses, immunohistochemistry, and gene expression profiling revealed the time-dependent development of chondrocytic phenotype of the seeded cells. The cells also maintain the microarchitecture of a native IVD. Taken together, these findings suggest the prototypic potential of MSC-seeded HANFS constructs for the tissue engineering of biological replacements of degenerated IVD.
Collapse
Affiliation(s)
- Leon J Nesti
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chou AI, Reza AT, Nicoll SB. Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture. Tissue Eng Part A 2009; 14:2079-87. [PMID: 18636941 DOI: 10.1089/ten.tea.2007.0337] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering strategies have the potential to improve upon current techniques for intervertebral disc repair. However, determining a suitable biomaterial scaffold for disc regeneration is difficult due to the complex fibrocartilaginous structure of the tissue. In this study, cells isolated from three distinct regions of the intervertebral disc, the outer and inner annulus fibrosus and nucleus pulposus, were expanded and seeded on resorbable polyester fiber meshes and encapsulated in calcium crosslinked alginate hydrogels, both chosen to approximate the native tissue architecture. Three-dimensional (3D) constructs were cultured for 14 days in vitro and evaluated histologically and quantitatively for gene expression and production of types I and II collagen and proteoglycans. During monolayer expansion, the cell populations maintained their distinct phenotypic morphology and gene expression profiles. However, after 14 days in 3D culture, there were no significant differences in morphology, gene expression, or protein production between all three cell populations grown in either alginate or polyester fiber meshes. The results of this study indicate that the culture environment may have a greater impact on cellular behavior than the intrinsic origin of the cells, and suggest that only a single-cell type may be required for intervertebral disc regenerative therapies.
Collapse
Affiliation(s)
- Alice I Chou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, USA
| | | | | |
Collapse
|
43
|
Studer RK, Gilbertson LG, Georgescu H, Sowa G, Vo N, Kang JD. p38 MAPK inhibition modulates rabbit nucleus pulposus cell response to IL-1. J Orthop Res 2008; 26:991-8. [PMID: 18302237 DOI: 10.1002/jor.20604] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Analysis of disc gene expression implicated IL-1 in the development of intervertebral disc degeneration (IDD) in a rabbit stab model. The purpose of these studies is to determine the role of p38 Mitogen Activated Protein Kinase (p38 MAPK) signaling in nucleus pulposus cell response to IL-1, and to compare rabbit nucleus pulposus (rNP) cell responses to IL-1 activation with those in a stab model of disc degeneration. NP cells maintained in alginate bead culture were exposed to IL-1, with or without p38 MAPK inhibition. RNA was isolated for reverse transcription polymerase chain reaction (RT-PCR) analysis of gene expression, conditioned media analyzed for accumulation of nitric oxide (NO) and prostaglandin E-2 (PGE-2), and proteoglycan synthesis measured after 10 days. IL-1 upregulation of mRNA for cycloxygenase-2 (COX-2), matrix metalloproteinase-3 (MMP-3), IL-1, and IL-6, was blunted by p38 inhibition while downregulation of matrix proteins (collagen I, collagen II, aggrecan) and insulin-like-growth-factor I (IFG-1) was also reversed. mRNA for tissue inhibitor of matrixmetalloproteinase-1 (TIMP-1) was modestly increased by IL-1, while those for Transforming Growth Factor-beta (TGF-beta) SOX-9, and versican remained unchanged. Blocking p38 MAPK reduced IL-1 induced NO and PGE-2 accumulation and partially restored proteoglycan synthesis. p38 MAPK inhibition in control cells increased mRNA for matrix proteins (aggrecan, collagen II, versican, collagen I) and anabolic factors (IGF-1, TGF, and SOX-9) from 50% to 120%, decreased basal PGE-2 accumulation, but had no effect on message for TIMP-1, MMP-3, or COX-2. Inhibition of p38 MAPK in cytokine-activated disc cells blunts gene expression and production of factors associated with inflammation, pain, and disc matrix catabolism while reversing IL-1 downregulation of matrix protein gene expression and proteoglycan synthesis. The results support the hypothesis that IL-1 could be responsible for many of the mRNA changes seen in rabbit NP in the stab model of disc degeneration, and uphold the concept that development of molecular techniques to block p38 MAPK could provide a therapeutic approach to slow the course of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Rebecca K Studer
- VAPHS, 151-U, 2W-144, University Drive C, Pittsburgh, Pennsylvania 15240, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17:1131-48. [PMID: 18584218 DOI: 10.1007/s00586-008-0712-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 06/04/2008] [Accepted: 06/18/2008] [Indexed: 12/14/2022]
Abstract
The objective of this study was to assess the impact of a landmark annular lesion model on our understanding of the etiopathogenesis of IVD degeneration and to appraise current IVD repairative strategies. A number of studies have utilised the Osti sheep model since its development in 1990. The experimental questions posed at that time are covered in this review, as are significant recent advances in annular repair strategies. The ovine model has provided important spatial and temporal insights into the longitudinal development of annular lesions and how they impact on other discal and paradiscal components such as the NP, cartilaginous end plates, zygapophyseal joints and vertebral bone and blood vessels. Important recent advances have been made in biomatrix design for IVD repair and in the oriented and dynamic culture of annular fibrochondrocytes into planar, spatially relevant, annular type structures. The development of hyaluronan hydrogels capable of rapid in situ gelation offer the possibility of supplementation of matrices with cells and other biomimetics and represent a significant advance in biopolymer design. New generation biological glues and self-curing acrylic formulations which may be augmented with slow delivery biomimetics in microcarriers may also find application in the non-surgical repair of annular defects. Despite major advances, significant technical challenges still have to be overcome before the biological repair of this intractable connective tissue becomes a realistic alternative to conventional surgical intervention for the treatment of chronic degenerate IVDs.
Collapse
|
45
|
Ellman MB, An HS, Muddasani P, Im HJ. Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 2008; 420:82-9. [PMID: 18565695 DOI: 10.1016/j.gene.2008.04.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/09/2008] [Accepted: 04/17/2008] [Indexed: 01/08/2023]
Abstract
Two members of the fibroblast growth factor (FGF) family, basic FGF (bFGF) and FGF-18, have been implicated in the regulation of articular and intervertebral disc (IVD) cartilage homeostasis. Studies on bFGF from a variety of species have yielded contradictory results with regards to its precise role in cartilage matrix synthesis and degradation. In contrast, FGF-18 is a well-known anabolic growth factor involved in chondrogenesis and articular cartilage repair. In this review, we examined the biological actions of bFGF and FGF-18 in articular and IVD cartilage, the specific cell surface receptors bound by each factor, and the unique signaling cascades and molecular pathways utilized to exert their biological effects. Evidence suggests that bFGF selectively activates FGF receptor 1 (FGFR1) to exert degradative effects in both human articular chondrocytes and IVD tissue via upregulation of matrix-degrading enzyme activity, inhibition of matrix production, and increased cell proliferation resulting in clustering of cells seen in arthritic states. FGF-18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating FGFR3, increasing matrix formation and cell differentiation while inhibiting cell proliferation, leading to dispersed cells surrounded by abundant matrix. The results from in vitro and in vivo studies suggest the potential usefulness of bFGF and FGFR1 antagonists, as well as FGF-18 and FGFR3 agonists, as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future.
Collapse
Affiliation(s)
- Michael B Ellman
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| | | | | | | |
Collapse
|
46
|
Li X, An HS, Ellman M, Phillips F, Thonar EJ, Park DK, Udayakumar RK, Im HJ. Action of fibroblast growth factor-2 on the intervertebral disc. Arthritis Res Ther 2008; 10:R48. [PMID: 18435858 PMCID: PMC2453768 DOI: 10.1186/ar2407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/15/2008] [Accepted: 04/24/2008] [Indexed: 01/07/2023] Open
Abstract
Introduction Fibroblast growth factor 2 (FGF2) is a growth factor that is immediately released after cartilage injury and plays a pivotal role in cartilage homeostasis. In human adult articular cartilage, FGF2 mediates anti-anabolic and potentially catabolic effects via the suppression of proteoglycan (PG) production along with the upregulation of matrix-degrading enzyme activity. The aim of the present study was to determine the biological effects of FGF2 in spine disc cells and to elucidate the complex biochemical pathways utilized by FGF2 in bovine intervertebral disc (IVD) cells in an attempt to further understand the pathophysiologic processes involved in disc degeneration. Methods We studied the effect of FGF2 on IVD tissue homeostasis by assessing MMP-13 expression (potent matrix-degrading enzyme), PG accumulation, and PG synthesis in the bovine spine IVD, as well as evaluating whether FGF2 counteracts known anabolic factors such as BMP7. To understand the molecular mechanisms by which FGF2 antagonizes BMP7 activity, we also investigated the signaling pathways utilized by FGF2 in bovine disc tissue. Results The primary receptor expressed in bovine nucleus pulposus cartilage is FGFR1, and this receptor is upregulated in degenerative human IVD tissue compared with normal IVD tissue. Stimulation of bovine nucleus pulposus cells cultured in monolayer with FGF2 augmented the production of MMP-13 at the transcriptional and translational level in a dose-dependent manner. Stimulation of bovine nucleus pulposus cells cultured in alginate beads for 21 days with FGF2 resulted in a dose-dependent decrease in PG accumulation, due at least in part to the inhibition of PG synthesis. Further studies demonstrate that FGF2 (10 ng/ml) antagonizes BMP7-mediated acceleration of PG production in bovine nucleus pulposus cells via the upregulation of noggin, an inhibitor of the transforming growth factor beta/bone morphogenetic protein signaling pathway. Chemical inhibitor studies showed that FGF2 utilizes the mitogen-activated protein kinase and NF-κB pathways to upregulate noggin, serving as one potential mechanism for its anti-anabolic effects. Conclusion FGF2 is anti-anabolic in bovine spine disc cells, revealing the potential of FGF2 antagonists as unique biologic treatments for both prevention and reversal of IVD degeneration.
Collapse
Affiliation(s)
- Xin Li
- Department of Biochemistry, Rush University Medical Center, Cohn Research BD 516, 1735 W, Harrison, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Peng B. Issues concerning the biological repair of intervertebral disc degeneration. ACTA ACUST UNITED AC 2008; 4:226-7. [PMID: 18364719 DOI: 10.1038/ncprheum0771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/12/2008] [Indexed: 12/14/2022]
Affiliation(s)
- Baogan Peng
- Department of Orthopaedics, General Hospital of Armed Police Force, 69 Yongding Road, Beijing 100039, China.
| |
Collapse
|