1
|
Abou-El-Naga AM, Mansour HAELH, El-Sawi MR, El-Dein MA, Tag YM, Ghanem RA, Shawki MA. Restorative effects of Momordica charantia extract on cerebellar GFAP and NGF expression in pregnant diabetic rats and their offspring. PLoS One 2025; 20:e0321022. [PMID: 40184394 PMCID: PMC11970674 DOI: 10.1371/journal.pone.0321022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 04/06/2025] Open
Abstract
Maternal diabetes mellitus is linked to neurobiological and cognitive impairments, increasing the risk of brain and cerebellar defects in diabetic pregnant rats and their offspring. Momordica charantia (bitter melon) possesses antidiabetic properties due to its bioactive compounds, including phenolics, alkaloids, proteins, steroids, inorganic compounds, and lipids. Forty pregnant rats were randomly assigned to four groups: control; M charantia (BM); diabetic (DM); and diabetic treated with M charantia (BM+DM). Diabetic maternal rats showed significantly elevated serum glucose, insulin, leptin, and homeostasis model assessment of insulin resistance (HOMA-IR) levels, with a concomitant decrease in insulin sensitivity check index (QUICKI), glucose transporter 4 (GLUT4), adenosine monophosphate-activated protein kinase (AMPK), acetylcholine (ACh), and dopamine. Oxidative stress markers in cerebellar tissue indicated increased malondialdehyde (MDA) and decreased glutathione (GSH) levels. Cerebellar tissue analysis revealed significantly reduced superoxide dismutase (SOD), catalase (CAT), B-cell lymphoma 2 (Bcl-2), and nerve growth factor (NGF), while Bcl-2-associated X protein (BAX) and glial fibrillary acidic protein (GFAP) were elevated. Histological and ultrastructural analysis of the diabetic maternal cerebellum showed moderate vacuolation of the neuropil in all cerebellar cortical layers, along with Purkinje cell degeneration and necrosis, including Nissl substance loss. Offspring of diabetic mothers exhibited multifocal Purkinje cell loss, empty baskets, and cerebellar cortical dysplasia with abnormal tissue development and organization. In conclusion, M. charantia supports central nervous system health in diabetic pregnant rats and their offspring by enhancing antioxidant markers, regulating GFAP and NGF, and mitigating apoptosis, ultimately improving cerebellar pathology and neural development.
Collapse
Affiliation(s)
| | | | - Mamdouh R. El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mai Alaa El-Dein
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Yasmin M. Tag
- Oral BiologyDepartment, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamsa, Egypt
| | - Reham A. Ghanem
- Oral BiologyDepartment, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamsa, Egypt
| | - Manar A. Shawki
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Ismail OI, Rashed NA. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci Rep 2022; 12:19346. [PMID: 36369258 PMCID: PMC9652251 DOI: 10.1038/s41598-022-23894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Tartrazine is a synthetic yellowish dye considered one of the most common food colorants. Extensive usage of tartrazine in humans led to harmful health impacts. To investigate the impact of tartrazine administration on the cerebellum and to assess the potential role of riboflavin co-administration in the adult male albino rat. Four groups of adult albino rats were included in this study. Group I was supplied with distilled water. Group II was supplied tartrazine orally at a dose of 7.5 mg/kg BW dissolved in distilled water. Group III was supplied with tartrazine at the same previously mentioned dose and riboflavin orally at a dose of 25 mg/kg BW dissolved in distilled water. Group IV was supplied with riboflavin at the same previously mentioned dose. The study was conducted for 30 days then rats were sacrificed, weighted and the cerebella extracted and handled for light, ultrastructural and immunohistochemical evaluation. It was found with tartrazine treatment focal areas of Purkinje cell loss leaving empty spaces, a broad spread of neuronal affection to the degree of the disappearance of some of the granular cells, reduced the thickness of the molecular and granular layers, and strong positive GFAP immunoreactions. With riboflavin coadministration restored continuous Purkinje layer with normal appeared Purkinje cells, but some cells were still shrunken and vacuolated as well as the molecular and granular cell layers appeared normal. Tartrazine had deleterious effects on the cerebellar cytoarchitecture, and riboflavin co-administration alleviated these neurotoxic effects.
Collapse
Affiliation(s)
- Omnia I Ismail
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Noha A Rashed
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
3
|
Abdelhafez D, Aboelkomsan E, El Sadik A, Lasheen N, Ashur S, Elshimy A, Morcos GNB. The Role of Mesenchymal Stem Cells with Ascorbic Acid and N-Acetylcysteine on TNF- α, IL 1 β, and NF- κβ Expressions in Acute Pancreatitis in Albino Rats. J Diabetes Res 2021; 2021:6229460. [PMID: 34697592 PMCID: PMC8541853 DOI: 10.1155/2021/6229460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/16/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a necrotic pancreatic inflammation associated with high mortality rate (up to 70%). Bone marrow (BM) mesenchymal stem cells (MSCs) have been investigated in pancreatic cellular regeneration, but still their effects are controversial. Therefore, the present study is aimed at examining the enrichment of the stem cells with ascorbic acid (AA) and N-acetylcysteine (NAC) and explore their combined action on the expression of the inflammatory cytokines: interleukin 1β (IL 1β), tumor necrosis factor-α (TNF-α), and nuclear factor-κβ (NF-κβ). A total of twenty adult male Sprague-Dawley albino rats were divided into four groups: the control group, cerulein group (to induce acute pancreatitis), BM-MSCs group, and combined BM-MSCs with AA and NAC group. Homing and proliferation of stem cells were revealed by the appearance of PKH26-labelled BM-MSCs in the islets of Langerhans. AA and NAC combination with BM-MSCs (group IV) was demonstrated to affect the expression of the inflammatory cytokines: IL 1β, TNF-α, and NF-κβ. In addition, improvement of the biochemical and histological parameters is represented in increasing body weight, normal blood glucose, and insulin levels and regeneration of the islet cells. Immunohistochemical studies showed an increase in proliferating cell nuclear antigen (PCNA) and decrease in caspase-3 reactions, detected markedly in group IV, after the marked distortion of the classic pancreatic lobular architecture was induced by cerulein. It could be concluded that treatment with BM-MSCs combined with antioxidants could provide a promising therapy for acute pancreatitis and improve the degeneration, apoptosis, necrosis, and inflammatory processes of the islets of Langerhans. TNF-α, IL 1β, and NF-κβ are essential biomarkers for the evaluation of MSC regenerative effectiveness.
Collapse
Affiliation(s)
- Dalia Abdelhafez
- Department of Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | | | - Abir El Sadik
- Department of Anatomy and Histology, College of Medicine, Qassim University, Saudi Arabia and Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Lasheen
- Department of Physiology, Faculty of Medicine, Ain Shams and Galala Universities, Cairo, Egypt
| | - Sara Ashur
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal Elshimy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - George N. B. Morcos
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, and Department of Basic Medical Science, Faculty of Medicine, King Salman International University, Cairo, Egypt
| |
Collapse
|
4
|
Abdel Fattah S, Waly H, El-Enein AA, Kamel A, Labib H. Mesenchymal stem cells versus curcumin in enhancing the alterations in the cerebellar cortex of streptozocin-induced diabetic albino rats. The role of GFAP, PLC and α-synuclein. J Chem Neuroanat 2020; 109:101842. [PMID: 32599256 DOI: 10.1016/j.jchemneu.2020.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diabetes mellitus is the disease, termed either by insulin paucity or resistance and hyperglycemia. The selection of the cerebellum was built on its specific functions. The aim of this study was to investigate a comparison between the possible therapeutic effects of MSCs and curcumin against fluctuations in the cerebellar cortex of STZ-induced diabetic albino rats. MATERIALS AND METHODS Forty rats were divided into five groups: control, sham control, streptozotocin-induced diabetes, diabetes and MSCs administered and diabetes and curcumin administered. Light microscopic (H&E), immune-histochemical; Glial fibrillary acidic protein (GFAP), real-time PCR; phospholipase-C (PLC) and α-synuclein, histomorphometric analysis, oxidative / anti-oxidatants; malondialdehyde (MDA)/ superoxide dismutase (SOD) glutathione (GSH) and were made. RESULTS The histopathological examination of the STZ-induced diabetic rats revealed alterations in the molecular, purkinje and granular layers. Abnormal organizations, vacuolation, patchy loss of purkinje cells were detected. Some purkinje cells migrated into the granular layer.Hemorrhage in pia mater outspreading to cerebellar layers is discerned. Purkinje cells showed karyorrhexis. The mean value of area percentage for GFAP immune- reactivity revealed 360 % significant increase compared to that of the control group. Also, MDA level was significantly increased while the SOD and GSH levels were significantly lower when compared to the control group. Meanwhile, mean values of PLC demonstrated significant decrease, while α-synuclein levels displayed a significant increment in the diabetic group. Administration of curcumin and MSCs extremely ameliorated the previous alterations. CONCLUSION the deleterious alterations on the cerebellar cortex induced by diabetes were obviously improved when treated with either MSCs or curcumin.
Collapse
Affiliation(s)
- Shereen Abdel Fattah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Hafiz Waly
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Abou El-Enein
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt; Faculty of Medicine KAU (Rabigh), Saudi Arabia
| | - Asmaa Kamel
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Labib
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
El-Mahalaway AM, El-Azab NEE. The potential neuroprotective role of mesenchymal stem cell-derived exosomes in cerebellar cortex lipopolysaccharide-induced neuroinflammation in rats: a histological and immunohistochemical study. Ultrastruct Pathol 2020; 44:159-173. [PMID: 32041457 DOI: 10.1080/01913123.2020.1726547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipopolysaccharide (LPS) is an endotoxin that prompts neuroinflammation and initiates neurodegenerative disorders. Exosome is a recent therapeutic agent for many diseases such as neurological diseases. This study aimed to evaluate the potential protective role of bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXs) in cerebellar cortex LPS-induced neuroinflammation in rats. Twenty-seven adult male rats were divided into three groups: Group I: control rats; Group II: LPS-treated rats; Group III: LPS/BMSC-EXs-treated rats. Cerebellar specimens were taken and processed for histological and immunohistochemical analysis. Morphometrical studies and statistical analysis were done. Groups II showed neuronal degeneration and apoptosis. The mean number of Purkinje cells was significantly (P<0.01) decreased, while glial fibrillary acidic protein (GFAP) immunoexpression was significantly increased in the neuroglial cells. Ultrastructural examination showed shrunken Purkinje cells with irregular nuclei and disrupted mitochondria. Group III showed improvement of most of the changes mentioned previously. EXs therapy is a promising neuroprotective tool for treatment of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
| | - Nahla El-Eraky El-Azab
- Department of Histology and Cell Biology, Benha Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
6
|
Oyelaja-Akinsipo OB, Dare EO, Katare DP. Protective role of diosgenin against hyperglycaemia-mediated cerebral ischemic brain injury in zebrafish model of type II diabetes mellitus. Heliyon 2020; 6:e03296. [PMID: 32051868 PMCID: PMC7002854 DOI: 10.1016/j.heliyon.2020.e03296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 01/21/2023] Open
Abstract
Impairment in glucose regulation is an indicatory effect capable of mediating multiple dysfunction such as cerebrovascular disorder with ischemia and brain damage inclusive. This study aims at investigating the glucose-lowering and neuroprotective capability of Diosgenin (DG) towards hyperglycemia-induced cerebral injury in a developed type 2 diabetes mellitus (T2DM) Zebrafish (ZF) model. T2DM was developed in ZF with 20 mg/kg body weight (b.w) multiple-low dose (MLD) Streptozotocin (STZ) for 28 days. Different doses of 20 mg/kg b.w (DG1) and 40 mg/kg b.w (DG2) DG was intraperitoneally administered twice in 7 days for a period of 28 days after T2DM was completely developed. Weight and behavioral changes were monitored and the catalytic activity including the plasma glucose level of diseased and treated ZF was spectrometrically estimated. Histopathological studies were employed to image the brain pathological condition during disease and treatment. SPSS was used as the statistical tool for result analysis and comparison of data obtained. STZ significantly (###p < 0.001) induced hyperglycemia when compared to control as plasma glucose increases from 101.56 ± 4.52 mgdL−1 to 175.87 ± 6.00 mg/dL. Our results have indicated a marked reduction in glucose concentration from a mean average of 175.87 ± 6.00 mgdL−1 to 105.68 ± 4.48 mgdL−1 and 82.06 ± 7.27 mgdL−1 in DG 1 and DG 2 respectively. Catalytic activity significantly decreases (p < 0.05) from 206.42 ± 30.77 unit/mL to 123.85 ± 29.99 unit/mL at a minimum and maximum value of 103.21 and 275.23 in diseased ZF respectively. On DG treatment, catalytic activity significantly (p < 0.01) rise from 101.58 ± 11.29 and 130.73 ± 27.52 to 130.98 ± 17.13 and 255.96 ± 30.34 with DG1 and DG2 treatment respectively. Studies on the behavioral pattern of STZ-induced anxiolytic effect on ZF confirmed changes in the number of transitions and time spent in both Novel tank test (NTT) and Dark/light test (LDT). Histopathological analysis confirmed the cerebral cortex with inflammatory brain cells in the diseased condition and an attenuation of damage posed revealed in diseased state was largely reversed with DG. As compared to the normal control, a significant (#p < 0.05 and ###p < 0.001) changes in weight of fishes were recorded and DG1 and DG2 significantly promotes (***p < 0.001) body weight and improves the irregularities in weight of ZF during disease progression. Our study confirms that the potential of DG towards the management of hyperglycemia and hyperglycemia–mediated cerebral ischemic injury is through its blood glucose-lowering properties, anti-inflammatory activity, antioxidant effect, and anxiolytic capabilities.
Collapse
Affiliation(s)
- Oyesolape B Oyelaja-Akinsipo
- Department of Chemical Sciences, College of Science and Information Technology, Tai Solarin University of Education, Ijagun, Ogun State, PMB 2118, Nigeria.,Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Alabata, Abeokuta Ogun State, 110282, Nigeria.,Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Enock O Dare
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Alabata, Abeokuta Ogun State, 110282, Nigeria
| | - Deepshikha P Katare
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201303, India
| |
Collapse
|
7
|
Comparative histological study on the effect of ginger versus α-lipoic acid on the cerebellum of a male albino rat model of induced diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1097/01.ehx.0000512117.56425.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
ÖZDEMİR NG, AKBAŞ F, KOTİL T, YILMAZ A. Analysis of diabetes-related cerebellar changes in streptozotocin-induced diabetic rats. Turk J Med Sci 2016; 46:1579-1592. [DOI: 10.3906/sag-1412-125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 01/11/2016] [Indexed: 11/03/2022] Open
|
9
|
Effect of genistein on the cerebellar cortex of adult male albino rats with streptozotocin-induced diabetes mellitus. ACTA ACUST UNITED AC 2015. [DOI: 10.1097/01.ehx.0000473710.76297.3b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|