1
|
Zhu Q, Guan J, Tian B, Wang P. Rational design of antibiotic-free antimicrobial contact lenses: Trade-offs between antimicrobial performance and biocompatibility. BIOMATERIALS ADVANCES 2024; 164:213990. [PMID: 39154560 DOI: 10.1016/j.bioadv.2024.213990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Microbial keratitis associated with contact lenses (CLs) wear remains a significant clinical concern. Antibiotic therapy is the current standard of care. However, the emergence of multidrug-resistant pathogens necessitates the investigation of alternative strategies. Antibiotic-free antimicrobial contact lenses (AFAMCLs) represent a promising approach in this regard. The effectiveness of CLs constructed with a variety of antibiotic-free antimicrobial strategies against microorganisms has been demonstrated. However, the impact of these antimicrobial strategies on CLs biocompatibility remains unclear. In the design and development of AFAMCLs, striking a balance between robust antimicrobial performance and optimal biocompatibility, including safety and wearing comfort, is a key issue. This review provides a comprehensive overview of recent advancements in AFAMCLs technology. The focus is on the antimicrobial efficacy and safety of various strategies employed in AFAMCLs construction. Furthermore, this review investigates the potential impact of these strategies on CLs parameters related to wearer comfort. This review aims to contribute to the continuous improvement of AFAMCLs and provide a reference for the trade-off between resistance to microorganisms and wearing comfort. In addition, it is hoped that this review can also provide a reference for the antimicrobial design of other medical devices.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Tran PL, Presson CL, Kashem MNH, Li W, Reid TW, de Riese WTW. Complete Growth Inhibition of Pseudomonas aeruginosa by Organo-Selenium-Incorporated Urinary Catheter Material. Antibiotics (Basel) 2024; 13:736. [PMID: 39200036 PMCID: PMC11350670 DOI: 10.3390/antibiotics13080736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
To further investigate the inhibition of Pseudomonas aeruginosa's in vitro growth and biofilm formation by an organo-selenium-incorporated polyurethane (PU) catheter material. P. aeruginosa, Staphylococcus aureus, and Candida albicans were incubated in vitro with organo-selenium and control polyurethane catheter materials in the presence of glutathione. Growth was evaluated by a colony-forming-unit (CFU) count and visualized with confocal laser scanning microscopy. Two different PU catheter materials were used. Using tin-catalyzed PU catheter material, complete inhibition of S. aureus was seen at 1% selenium (Se), whereas no inhibition was seen for P. aeruginosa at up to 3.0% Se. Whereas, using a thermoplastic PU catheter material, 1.5% Se and 2% Se organo-selenium caused several logs of growth inhibition of P. aeruginosa, and 2.5% selenium, incorporation showed complete inhibition (8 logs). Samples with lower than 1.5% selenium did not show adequate growth inhibition for P. aeruginosa. Similar in vitro growth inhibition was achieved against a multidrug-resistant C. albicans strain. It was concluded that optimal inhibition of P. aeruginosa in vitro growth and biofilm formation occurs with 2.5% selenium incorporated as organo-selenium in a thermoplastic PU catheter material. These results suggest that reduced incidence of CAUTIs (catheter associated urinary tract infections) with P. aeruginosa and other bacteria and fungi can be achieved by using organo-selenium-incorporated catheters.
Collapse
Affiliation(s)
- Phat L. Tran
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Caroline L. Presson
- Department of Urology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.L.P.); (W.T.W.d.R.)
| | - Md Nayeem Hasan Kashem
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (M.N.H.K.); (W.L.)
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (M.N.H.K.); (W.L.)
| | - Ted W. Reid
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Werner T. W. de Riese
- Department of Urology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.L.P.); (W.T.W.d.R.)
| |
Collapse
|
3
|
Alawadi A, AbdulAzees PA, Lin CY, Haney SJ, Hanlon JP, Angelara K, Taft RM, Amaechi BT. Application of organoselenium in inhibiting Candida albicans biofilm adhesion on 3D printed denture base material. J Prosthodont 2024; 33:460-466. [PMID: 37422719 DOI: 10.1111/jopr.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Denture Stomatitis, a chronic mucosal inflammation associated with Candida albicans, is common among denture wearers. Several health conditions have been linked to chronic Candida infections. The complex, multifactorial nature of denture stomatitis requires the continuous pursuit of effective long-term solutions. The present in vitro study investigated the effect of incorporating organoselenium into 3D-printed denture base resin on C. albicans adhesion and biofilm formation. MATERIALS AND METHODS Thirty disks were fabricated using 3D-printed denture base resin and assigned to three experimental groups (10/group): disks without organoselenium (control), disks with 0.5% organoselenium (0.5%SE), and disks with 1% organoselenium (1%SE). Each disk was incubated with approximately 1 × 106 cells/mL of C. albicans for 48 h. Microbial viability (CFU/mL) was quantified by the spread plate method, while Confocal laser scanning microscopy and scanning electron microscope were performed for quantifying the biofilm thickness and examining biofilm morphology, respectively. Data were analyzed using One-way ANOVA with Tukey's multiple comparisons test. RESULTS CFU/mL was significantly (p < 0.05) higher in Control when compared with 0.5%SE and 1%SE, but no significant difference between 0.5%SE and 1%SE. A similar trend was observed with biofilm thickness except that there was no significant difference between the Control and 0.5%SE. There was C. albicans biofilm adhesion on the Control disks, with yeast cells and hyphae formation, whereas on 0.5%SE and 1%SE, there was inhibition of yeast cells transition to hyphae formation. CONCLUSIONS Incorporation of organoselenium into 3D-printed denture base resin was effective in reducing C. albicans biofilm formation and growth on denture base material.
Collapse
Affiliation(s)
- Ahmad Alawadi
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Parveez Ahmed AbdulAzees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Chun-Yen Lin
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
- Department of Family Dentistry and Oral Diagnosis, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Stephan J Haney
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - John P Hanlon
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Konstantina Angelara
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Robert M Taft
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Bennett T Amaechi
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| |
Collapse
|
4
|
Xiao Y, Wan C, Wu X, Xu Y, Chen Y, Rao L, Wang B, Shen L, Han W, Zhao H, Shi J, Zhang J, Song Z, Yu F. Novel small-molecule compound YH7 inhibits the biofilm formation of Staphylococcus aureus in a sarX-dependent manner. mSphere 2024; 9:e0056423. [PMID: 38170984 PMCID: PMC10826350 DOI: 10.1128/msphere.00564-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
The emergence of antibiotic-resistant and biofilm-producing Staphylococcus aureus isolates presents major challenges for treating staphylococcal infections. Biofilm inhibition is an important anti-virulence strategy. In this study, a novel maleimide-diselenide hybrid compound (YH7) was synthesized and demonstrated remarkable antimicrobial activity against methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in both planktonic cultures and biofilms. The minimum inhibitory concentration (MIC) of YH7 for S. aureus isolates was 16 µg/mL. Quantification of biofilms demonstrated that the sub-MIC (4 µg/mL) of YH7 significantly inhibits biofilm formation in both MSSA and MRSA. Confocal laser scanning microscopy analysis further confirmed the biofilm inhibitory potential of YH7. YH7 also significantly suppressed bacterial adherence to A549 cells. Moreover, YH7 treatment significantly inhibited S. aureus colonization in nasal tissue of mice. Preliminary mechanistic studies revealed that YH7 exerted potent biofilm-suppressing effects by inhibiting polysaccharide intercellular adhesin (PIA) synthesis, rather than suppressing bacterial autolysis. Real-time quantitative PCR data indicated that YH7 downregulated biofilm formation-related genes (clfA, fnbA, icaA, and icaD) and the global regulatory gene sarX, which promotes PIA synthesis. The sarX-dependent antibiofilm potential of YH7 was validated by constructing S. aureus NCTC8325 sarX knockout and complementation strains. Importantly, YH7 demonstrated a low potential to induce drug resistance in S. aureus and exhibited non-toxic to rabbit erythrocytes, A549, and BEAS-2B cells at antibacterial concentrations. In vivo toxicity assays conducted on Galleria mellonella further confirmed that YH7 is biocompatible. Overall, YH7 demonstrated potent antibiofilm activity supports its potential as an antimicrobial agent against S. aureus biofilm-related infections. IMPORTANCE Biofilm-associated infections, characterized by antibiotic resistance and persistence, present a formidable challenge in healthcare. Traditional antibacterial agents prove inadequate against biofilms. In this study, the novel compound YH7 demonstrates potent antibiofilm properties by impeding the adhesion and the polysaccharide intercellular adhesin production of Staphylococcus aureus. Notably, its exceptional efficacy against both methicillin-resistant and methicillin-susceptible strains highlights its broad applicability. This study highlights the potential of YH7 as a novel therapeutic agent to address the pressing issue of biofilm-driven infections.
Collapse
Affiliation(s)
- Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Xiaocui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulin Rao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Efficacy of organo-selenium-incorporated urinary catheter tubing for in vitro growth inhibition of E. coli, K. pneumoniae, P. aeruginosa, and H. influenzae. Int Urol Nephrol 2023; 55:503-510. [PMID: 36462116 DOI: 10.1007/s11255-022-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Catheter-associated urinary tract infections are of significant medical burden in cost, morbidity, and mortality. Experimental selenium-coated medical devices have demonstrated non-toxic in vitro and in vivo antimicrobial activity. While antimicrobial-coated catheters have shown efficacy in preventing CAUTIs, selenium has not been tested in this context. The purpose of this in vitro study is to evaluate selenium-incorporated urinary catheters for inhibition of uropathogenic bacterial growth and biofilm formation. METHODS Urinary catheters incorporated with 1% organo-selenium and standard (uncoated) catheters were incubated in vitro with E. coli, K. pneumoniae, P. aeruginosa, H. influenzae, and combinations of these bacteria. Growth was evaluated by colony-forming unit count and visualized with confocal laser and scanning electron microscopy. Organo-selenium catheter material integrity was also tested by soaking the tubing in phosphate-buffered saline for 12 weeks at 37 °C. RESULTS Organo-selenium-incorporated catheters demonstrated total reduction (100%) of in vitro bacterial growth and biofilm formation for E. coli, K. pneumoniae, H. influenzae, and a combination of these species when compared to control. P. aeruginosa growth was inhibited by approximately 4 logs (99.99%). Complete inhibition of E. coli growth was maintained after long-term phosphate-buffered saline soaking. CONCLUSION The results demonstrate that organo-selenium was stably incorporated into catheter tubing and inhibited bacterial attachment, growth, and biofilm formation for multiple uropathogenic organisms. Furthermore, long-term soaking of organo-selenium tubing in phosphate-buffered saline did not show any decline in bacterial growth inhibition or biofilm formation. These findings suggest that organo-selenium-incorporated catheters may be advantageous in preventing catheter-associated urinary tract infections and warrant further in vivo and clinical evaluation.
Collapse
|
6
|
AlMojel N, AbdulAzees PA, Lamb EM, Amaechi BT. Determining growth inhibition of Candida albicans biofilm on denture materials after application of an organoselenium-containing dental sealant. J Prosthet Dent 2023; 129:205-212. [PMID: 34078547 DOI: 10.1016/j.prosdent.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/18/2023]
Abstract
STATEMENT OF PROBLEM Denture stomatitis is a chronic inflammatory condition caused by the formation of Candida albicans biofilm on denture bases. It is associated with aggravating intraoral pain, itching, and burning sensations. It can also potentiate cardiovascular diseases and aspiration pneumonia. The problem has thus far eluded efficient, toxic-free, and cost-effective solutions. PURPOSE The purpose of this in vitro study was to investigate the effectiveness of organoselenium to inhibit the formation of C. albicans biofilm on the surface of acrylic resin denture base materials when it is either incorporated into the acrylic resin material or coated on the denture surface as a light-polymerized surface sealant. MATERIAL AND METHODS Sixty heat-polymerized polymethyl methacrylate disks were fabricated and assigned to 4 groups (n=15): disks coated with a light-polymerized organoselenium-containing enamel surface sealant (DenteShield), disks impregnated with 0.5% organoselenium (0.5% selenium), disks impregnated with 1% organoselenium (1% selenium), and disks without organoselenium (control). C. albicans biofilm was grown on each disk which had been placed in a well of the microtiter plate containing 1-mL brain heart infusion broth inoculated with C. albicans. The plates were incubated aerobically at 37 °C for 48 hours. A confocal laser scanning microscope was used to determine the biofilm thickness, biomass, and live/dead cell ratio. Biofilm morphology was examined with scanning electron microscopy, whereas microbial viability was quantified by the spread plate method. The data were analyzed by using ANOVA and Tukey-Kramer multiple comparisons (α=.05). RESULTS The microbial viability, biofilm thickness, biofilm biomass, and live/dead cell ratio were lower (P<.001) on disks in the test groups (DenteShield, 0.5% selenium, 1% selenium) when compared with the control group, with these variables being lowest in the 0.5% selenium and 1% selenium groups. The 0.5% selenium and 1% selenium groups did not differ significantly from each other in any of the variables (P>.05). Scanning electron microscope images showed inhibition of both biofilm growth and yeast to hyphae transition in the DenteShield, 0.5% selenium, and 1% selenium groups, with visible disruption of the biofilm morphology. CONCLUSIONS The present study demonstrated that organoselenium, whether incorporated into or coated on the surface of an acrylic resin denture base material, has the potential to inhibit Candida albicans biofilm growth on denture surfaces and as such can be clinically useful for the prevention of denture stomatitis.
Collapse
Affiliation(s)
- Neda AlMojel
- Former Resident, Postgraduate Prosthodontics, Department of Comprehensive Dentistry, UT Health School of Dentistry, San Antonio, Texas
| | - Parveez Ahmed AbdulAzees
- Post-doctoral fellow, Department of Comprehensive Dentistry, UT Health School of Dentistry, San Antonio, Texas
| | - E Mathew Lamb
- Assistance Professor and program director prosthodontic residency, Department of Comprehensive dentistry, UT Health School of Dentistry, San Antonio, Texas
| | - Bennett T Amaechi
- Professor and Director of Cariology, Department of Comprehensive Dentistry, UT Health School of Dentistry, San Antonio, Texas.
| |
Collapse
|
7
|
Campolo A, Pifer R, Shannon P, Crary M. Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis. Pathogens 2022; 11:1383. [PMID: 36422634 PMCID: PMC9695309 DOI: 10.3390/pathogens11111383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Microbial keratitis (MK), the infection of the cornea, is a devastating disease and the fifth leading cause of blindness and visual impairment around the world. The overwhelming majority of MK cases are linked to contact lens wear combined with factors which promote infection such as corneal abrasion, an immunocompromised state, improper contact lens use, or failing to routinely disinfect lenses after wear. Contact lens-related MK involves the adherence of microorganisms to the contact lens. Therefore, this review discusses the information currently available regarding the disease pathophysiology, the common types of microorganisms causing MK, physical and organic mechanisms of adhesion, material properties which are involved in adhesion, and current antimicrobial strategies. This review also concludes that Pseudomonas aeruginosa is a model organism for the investigation of contact lens microbial adherence due to its prevalence in MK cases, its extremely robust adhesion, antimicrobial-resistant properties, and the severity of the disease it causes.
Collapse
|
8
|
Tran P, Kopel J, Ray C, Reed J, Reid TW. Organo-selenium containing dental sealant inhibits biofilm formation by oral bacteria. Dent Mater 2022; 38:848-857. [DOI: 10.1016/j.dental.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
|
9
|
Kalaiselvan P, Konda N, Pampi N, Vaddavalli PK, Sharma S, Stapleton F, Kumar N, Willcox MDP, Dutta D. Effect of Antimicrobial Contact Lenses on Corneal Infiltrative Events: A Randomized Clinical Trial. Transl Vis Sci Technol 2021; 10:32. [PMID: 34191016 PMCID: PMC8254012 DOI: 10.1167/tvst.10.7.32] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether Mel4-coated antimicrobial contact lenses (MACLs) can reduce the incidence of corneal infiltrative events (CIEs) during extended wear. Methods A prospective, randomized, double-masked, single-center, contralateral, extended contact lens wear clinical trial was conducted with 176 subjects. Each participant was randomly assigned to wear a MACL in one eye and an uncoated control contact lens in the contralateral eye or an extended-wear biweekly disposable modality for 3 months. The main outcome measures were the incidence of CIEs per 100 eye-months, identification of the microbial types colonizing the contact lenses or eyes at the time of the CIEs, and their susceptibility to Mel4. Results Nine participants (5.1%) experienced unilateral CIEs; six participants had contact lens acute red eye, and three participants had infiltrative keratitis. The incidence rate for CIEs (0.4 events per 100 participant months; 1.7%) in the Mel4-coated lenses (test) was 69% less than that of the control lenses (1.3 events per 100 participant months; 3.4%; P = 0.29). All Gram-negative bacteria isolated from lenses and lids of participants with CIEs (Citrobacter diversus, Acinetobacter haemolyticus, and Acinetobacter lwoffii) were susceptible to Mel4 peptide; minimum inhibitory concentrations ranged from 15.6 to 62.5 µg/mL. Reduction of adhesion of these bacteria by Mel4-coated lenses ranged from 2.1 to 2.2 log10 colony-forming units/lens. Conclusions MACLs had the capacity to reduce CIEs by at least 50% compared with uncoated control lenses during extended wear over 3 months; however, due to the relatively low rates of CIEs, the reduction was not statistically different compared with control lenses. Translational Relevance This study provides evidence that antimicrobial contact lenses have the potential to reduce the incidence of corneal infiltrative events during extended wear.
Collapse
Affiliation(s)
| | - Nagaraju Konda
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Nending Pampi
- Bausch & Lomb Contact Lens Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pravin Krishna Vaddavalli
- Bausch & Lomb Contact Lens Centre, L V Prasad Eye Institute, Hyderabad, India.,The Cornea Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
10
|
CLEAR - Contact lens wettability, cleaning, disinfection and interactions with tears. Cont Lens Anterior Eye 2021; 44:157-191. [DOI: 10.1016/j.clae.2021.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
|
11
|
Khan SA, Lee CS. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater 2020; 113:101-118. [PMID: 32622052 DOI: 10.1016/j.actbio.2020.06.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Although contact lenses are widely used for vision correction, they are also the primary cause of a number of ocular diseases such as microbial keratitis (MK), etc. and inflammatory events such as infiltrative keratitis (IK), contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU), etc. These diseases and infiltrative events often result from microbial contamination of lens care solutions and lens cases that can be exacerbated by unsanitary lens care and extended lens wear. The treatment of microbial biofilms (MBs) on lens cases and contact lenses are complicated and challenging due to their resistance to conventional antimicrobial lens care solutions. More importantly, MK caused by MBs can lead to acute visual damage or even vision impairment. Therefore, the development of lens cases, lens care solutions, and contact lenses with effective antimicrobial performance against MK will contribute to the safe use of contact lenses. This review article summarizes and discusses different chemical approaches for the development of antimicrobial contact lenses and lens cases employing passive surface modifications, antimicrobial peptides, free-radical fabricating agents, quorum sensing quenchers, antibiotics, antifungal drugs and various metals and coatings with antimicrobial nanomaterials. The benefits and shortcomings of these approaches are assessed, and alternative solutions for future developments are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
12
|
Park SH, Lee SU, Kim YK, Yu HS, Park SH, Ahn JH, Kim SJ, Shin JH, Lee JE. Anti-staphylococcal Effect of a Nephrite-containing Contact Lens Storage Case. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2020. [DOI: 10.3341/jkos.2020.61.8.868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Dhand C, Ong CY, Dwivedi N, Varadarajan J, Halleluyah Periayah M, Jianyang Lim E, Mayandi V, Goh ETL, Najjar RP, Chan LW, Beuerman RW, Foo LL, Loh XJ, Lakshminarayanan R. Mussel-Inspired Durable Antimicrobial Contact Lenses: The Role of Covalent and Noncovalent Attachment of Antimicrobials. ACS Biomater Sci Eng 2020; 6:3162-3173. [DOI: 10.1021/acsbiomaterials.0c00229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
| | - Chun Yan Ong
- Department of Pharmacy, National University of Singapore, 18 Science Drive, Singapore 117543, Singapore
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal 462026, India
| | - Jayasudha Varadarajan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Mercy Halleluyah Periayah
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Edward Jianyang Lim
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Raymond P. Najjar
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857 Singapore
- Visual Neuroscience Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Lai Wah Chan
- Department of Pharmacy, National University of Singapore, 18 Science Drive, Singapore 117543, Singapore
| | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857 Singapore
| | - Li Lian Foo
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Department of Pharmacy, National University of Singapore, 18 Science Drive, Singapore 117543, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857 Singapore
| |
Collapse
|
14
|
Tran P, Enos T, Luth K, Hamood A, Ray C, Mitchell K, Reid TW. Organo-Selenium-Containing Polyester Bandage Inhibits Bacterial Biofilm Growth on the Bandage and in the Wound. Biomedicines 2020; 8:biomedicines8030062. [PMID: 32192009 PMCID: PMC7148522 DOI: 10.3390/biomedicines8030062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
The dressing material of a wound plays a key role since bacteria can live in the bandage and keep re-infecting the wound, thus a bandage is needed that blocks biofilm in the bandage. Using an in vivo wound biofilm model, we examined the effectiveness of an organo-selenium (OS)-coated polyester dressing to inhibit the growth of bacteria in a wound. Staphylococcus aureus (as well as MRSA, Methicillin resistant Staph aureus), Stenotrophomonas maltophilia, Enterococcus faecalis, Staphylococcus epidermidis, and Pseudomonas aeruginosa were chosen for the wound infection study. All the bacteria were enumerated in the wound dressing and in the wound tissue under the dressing. Using colony-forming unit (CFU) assays, over 7 logs of inhibition (100%) was found for all the bacterial strains on the material of the OS-coated wound dressing and in the tissue under that dressing. Confocal laser scanning microscopy along with IVIS spectrum in vivo imaging confirmed the CFU results. Thus, the dressing acts as a reservoir for a biofilm, which causes wound infection. The same results were obtained after soaking the dressing in PBS at 37 °C for three months before use. These results suggest that an OS coating on polyester dressing is both effective and durable in blocking wound infection.
Collapse
Affiliation(s)
- Phat Tran
- Department of Ophthalmology & Visual Sciences, TTUHSC, Lubbock, TX 79430, USA; (P.T.); (T.E.); (K.L.); (C.R.); (K.M.)
| | - Tyler Enos
- Department of Ophthalmology & Visual Sciences, TTUHSC, Lubbock, TX 79430, USA; (P.T.); (T.E.); (K.L.); (C.R.); (K.M.)
| | - Keaton Luth
- Department of Ophthalmology & Visual Sciences, TTUHSC, Lubbock, TX 79430, USA; (P.T.); (T.E.); (K.L.); (C.R.); (K.M.)
| | - Abdul Hamood
- Department of Microbiology & Immunology, TTUHSC, Lubbock, TX 79430, USA;
| | - Coby Ray
- Department of Ophthalmology & Visual Sciences, TTUHSC, Lubbock, TX 79430, USA; (P.T.); (T.E.); (K.L.); (C.R.); (K.M.)
| | - Kelly Mitchell
- Department of Ophthalmology & Visual Sciences, TTUHSC, Lubbock, TX 79430, USA; (P.T.); (T.E.); (K.L.); (C.R.); (K.M.)
| | - Ted W. Reid
- Department of Ophthalmology & Visual Sciences, TTUHSC, Lubbock, TX 79430, USA; (P.T.); (T.E.); (K.L.); (C.R.); (K.M.)
- SelenBio, Inc., Austin, TX 78735, USA
- Correspondence: ; Tel.: +1-806-743-9982
| |
Collapse
|
15
|
Chatterjee S, Upadhyay P, Mishra M, M. S, Akshara MR, N. K, Zaidi ZS, Iqbal SF, Misra SK. Advances in chemistry and composition of soft materials for drug releasing contact lenses. RSC Adv 2020; 10:36751-36777. [PMID: 35517957 PMCID: PMC9057048 DOI: 10.1039/d0ra06681h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/20/2020] [Indexed: 11/21/2022] Open
Abstract
Ocular drug delivery has always been a challenging feat to achieve in the field of medical sciences. One of the existing methods of non-invasive ocular drug delivery is the use of eye drops. However, drugs administered through these formulations have low bioavailability in the ocular system. This limitation can been overcome by using contact lenses as drug delivery vehicles. According to USA FDA definitions they can be categorized into two main categories-hard and soft contact lenses. Based on the material properties, hard contact lenses are mostly produced from polymers of acrylate monomers such as MMA (methyl methacrylate). These have the least water retention capacity, thereby, having minimal ability to diffuse oxygen into the corneal layer and are not ideal for long term use. Soft material contact lenses are flexible and are mainly hydrogel based. They have higher water retention capacities as compared to rigid contact lenses, which gives them the ability to transmit oxygen to the corneal layer. These hydrogel based soft materials are mainly produced from polymers of acrylate monomers such as HEMA (hydroxyethyl methacrylate) and found to be better for drug delivery contact lenses. These polymer-based soft materials have been efficiently modified in terms of their chemistry to achieve diverse physicochemical properties to produce efficient ocular drug delivery systems. However, complications such as drug leaching during storage and distribution, sterilisation, preservation of integrity of the lens and the possibility of surface roughness due to the incorporated drug molecules still need to be optimised. This review highlights the chemistries of various polymeric molecules through which physicochemical properties can be modified to achieve optimum drug loading and sustained release of the drug for application in the ocular system. Contact lens as controllable route for ocular drug delivery.![]()
Collapse
Affiliation(s)
- Subir Chatterjee
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - Prashant Upadhyay
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - Manjul Mishra
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - Srividya M.
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - M. R. Akshara
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - Kamali N.
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - Zahra Sifat Zaidi
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - Sayeda F. Iqbal
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| | - Santosh K. Misra
- Department of Biological Sciences & Bioengineering
- Indian Institute of Technology Kanpur
- Kalyanpur
- India-208016
| |
Collapse
|
16
|
Aveyard J, Deller RC, Lace R, Williams RL, Kaye SB, Kolegraff KN, Curran JM, D'Sa RA. Antimicrobial Nitric Oxide Releasing Contact Lens Gels for the Treatment of Microbial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37491-37501. [PMID: 31532610 DOI: 10.1021/acsami.9b13958] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial keratitis is a serious sight threatening infection affecting approximately two million individuals worldwide annually. While antibiotic eye drops remain the gold standard treatment for these infections, the significant problems associated with eye drop drug delivery and the alarming rise in antimicrobial resistance has meant that there is an urgent need to develop alternative treatments. In this work, a nitric oxide releasing contact lens gel displaying broad spectrum antimicrobial activity against two of the most common causative pathogens of microbial keratitis is described. The contact lens gel is composed of poly-ε-lysine (pεK) functionalized with nitric oxide (NO) releasing diazeniumdiolate moieties which enables the controlled and sustained release of bactericidal concentrations of NO at physiological pH over a period of 15 h. Diazeniumdiolate functionalization was confirmed by Fourier transform infrared (FTIR), and the concentration of NO released from the gels was determined by chemiluminescence. The bactericidal efficacy of the gels against Pseudomonas aeruginosa and Staphylococcus aureus was ascertained, and between 1 and 4 log reductions in bacterial populations were observed over 24 h. Additional cell cytotoxicity studies with human corneal epithelial cells (hCE-T) also demonstrated that the contact lens gels were not cytotoxic, suggesting that the developed technology could be a viable alternative treatment for microbial keratitis.
Collapse
Affiliation(s)
- Jenny Aveyard
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| | - Robert C Deller
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| | - Rebecca Lace
- Institute of Ageing and Chronic Diseases Department of Eye and Vision Science , University of Liverpool , Apex Building, West Derby Street , Liverpool L7 8TX , United Kingdom
| | - Rachel L Williams
- Institute of Ageing and Chronic Diseases Department of Eye and Vision Science , University of Liverpool , Apex Building, West Derby Street , Liverpool L7 8TX , United Kingdom
| | - Stephen B Kaye
- St Paul's Eye Unit, Department of Corneal and External Eye Diseases , Royal Liverpool University Hospital , Liverpool L7 8XP , United Kingdom
| | - Keli N Kolegraff
- Department of Plastic and Reconstructive Surgery , The Johns Hopkins University School of Medicine , 601 North Caroline Street , Baltimore , Maryland 21287 , United States
| | - Judith M Curran
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| | - Raechelle A D'Sa
- School of Engineering , University of Liverpool , Brownlow Hill , Liverpool L69 3GH , United Kingdom
| |
Collapse
|
17
|
Comparative Analysis of Adverse Events From a Series of Proof-of-Principle Extended Wear Studies. Eye Contact Lens 2018; 45:88-92. [PMID: 30080693 DOI: 10.1097/icl.0000000000000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM A series of proof-of-principle extended wear (EW) contact lens studies were conducted to assess what effect different interventions had on adverse events (AEs). Comparative analysis of AEs across studies was conducted to determine whether some interventions were more effective at reducing inflammatory AEs. METHOD Multiple logistic regression analysis of AEs from 30-day EW studies each with a different intervention including (1) nightly replacement (NR) of lenses, (2) morning replacement (MR) of lenses, (3) instillation of prophylactic antibiotic drops (AB) each morning/evening, (4) daily lens cleaning (LC) each morning. All studies conducted at the same site using same lens type (lotrafilcon A) and EW schedule. RESULTS Comparison of the different interventions to the individual control groups showed no difference in significant corneal infiltrative event (CIE) or mechanical events. Replacing lenses nightly, during an EW schedule, had the highest incidence of significant CIEs (4.9% [NR] vs. 2.5% [MR] vs. 1.8% [AB] vs. 0% [LC]); however, adjusted logistic regression analysis of the combined control data compared with the individual interventions showed no difference in significant CIEs (P=0.086) or mechanical AEs (P=0.140). CONCLUSIONS Replacing lenses each night seemed to be inferior compared with the other interventions of replacing lenses each morning, daily lens cleaning, and daily antibiotic drop instillation during EW. The results of the collective studies and additional analysis suggest that overnight wear of contact lenses seems to create an adverse environment that remains, despite the various interventions intended to improve this adverse environment.
Collapse
|
18
|
Xiao A, Dhand C, Leung CM, Beuerman RW, Ramakrishna S, Lakshminarayanan R. Strategies to design antimicrobial contact lenses and contact lens cases. J Mater Chem B 2018; 6:2171-2186. [PMID: 32254560 DOI: 10.1039/c7tb03136j] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Contact lens wear is a primary risk factor for developing ocular complications, such as contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU) and microbial keratitis (MK). Infections occur due to microbial contamination of contact lenses, lens cases and lens care solution, which are exacerbated by extended lens wear and unsanitary lens care practices. The development of microbial biofilms inside lens cases is an additional complication, as the developed biofilms are resistant to conventional lens cleaning solutions. Ocular infections, particularly in the case of MK, can lead to visual impairment or even blindness, so there is a pressing need for the development of antimicrobial contact lenses and cases. Additionally, with the increasing use of bandage contact lenses and contact lenses as drug depots and with the development of smart contact lenses, contact lens hygiene becomes a therapeutically important issue. In this review, we attempt to compile and summarize various chemical strategies for developing antimicrobial contact lenses and lens cases by using silver, free-radical producing agents, antimicrobial peptides or by employing passive surface modification approaches. We also evaluated the advantages and disadvantages of each system and tried to provide input to future directions. Finally, we summarize the developing technologies of therapeutic contact lenses to shed light on the future of contact lens applications.
Collapse
Affiliation(s)
- Amy Xiao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
19
|
Tran P, Arnett A, Jarvis C, Mosley T, Tran K, Hanes R, Webster D, Mitchell K, Dominguez L, Hamood A, Reid TW. Organo-Selenium Coatings Inhibit Gram-Negative and Gram-Positive Bacterial Attachment to Ophthalmic Scleral Buckle Material. Transl Vis Sci Technol 2017; 6:1. [PMID: 28875063 PMCID: PMC5580502 DOI: 10.1167/tvst.6.5.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/19/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose Biofilm formation is a problem for solid and sponge-type scleral buckles. This can lead to complications that require removal of the buckle, and result in vision loss due to related ocular morbidity, primarily infection, or recurrent retinal detachment. We investigate the ability of a covalent organo-selenium coating to inhibit biofilm formation on a scleral buckle. Methods Sponge and solid Labtican brand scleral buckles were coated with organo-selenium coupled to a silyation reagent. Staphylococcus aureus biofilm formation was monitored by a standard colony-forming unit assay and the confocal laser scanning microscopy, while Pseudomonas aeruginosa biofilm formation was examined by scanning electron microscopy. Stability studies were done, by soaking in phosphate buffer saline (PBS) at room temperature for 2 months. Toxicity against human corneal epithelial cell was examined by growing the cells in the presence of organo-selenium–coated scleral buckles. Results The organo-selenium coating inhibited biofilm formation by gram-negative and gram-positive bacteria. The buckle coatings also were shown to be fully active after soaking in PBS for 2 months. The organo-selenium coatings had no effect on the viability of human corneal epithelial cells. Conclusions Organo-selenium can be used to covalently coat a scleral buckle, which is stable and inhibits biofilm formation for gram-negative and gram-positive bacteria. The organo-selenium buckle coating was stable and nontoxic to cell culture. Translational Relevance This technology provides a means to inhibit bacterial attachment to devices attached to the eye, without damage to ocular cells.
Collapse
Affiliation(s)
- Phat Tran
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Avery Arnett
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Courtney Jarvis
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Thomas Mosley
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Khien Tran
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Dan Webster
- Department of Medical Education, Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kelly Mitchell
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Leo Dominguez
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Abdul Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ted W Reid
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
20
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
21
|
Sancineto L, Piccioni M, De Marco S, Pagiotti R, Nascimento V, Braga AL, Santi C, Pietrella D. Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol 2016; 16:220. [PMID: 27654924 PMCID: PMC5031294 DOI: 10.1186/s12866-016-0837-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Background Organoselenium compounds have antimicrobial activity against some bacteria and fungi; furthermore, the antioxidant activity of diselenides has been demonstrated. The aim of the present work was to examine the in vitro minimal inhibitory concentration of a panel of differently substituted diselenides and their effectiveness in inhibiting biofilm formation and dispersing preformed microbial biofilm of Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa and the yeast Candida albicans, all involved in wound infections. Moreover, the cytotoxicity of the compounds was determined in human dermal fibroblast and keratinocytes. In closing, we tested their direct antioxidant activity. Results Diselenides showed different antimicrobial activity, depending on the microorganism. All diselenides demonstrated a good antibiofilm activity against S. aureus and S. epidermidis, the compounds camphor diselenide, bis[ethyl-N-(2’-selenobenzoyl) glycinate] and bis[2’-seleno-N-(1-methyl-2-phenylethyl) benzamide] were active against S. pyogenes and C. albicans biofilm while only diselenides 2,2’-diselenidyldibenzoic acid and bis[ethyl-N-(2’-selenobenzoyl) glycinate] were effective against P. aeruginosa. Moreover, the compounds bis[ethyl-N-(2’-selenobenzoyl) glycinate] and bis[2’-seleno-N-(1-methyl-2-phenylethyl) benzamide] showed an antioxidant activity at concentrations lower than the 50 % of cytotoxic concentration. Conclusions Because microbial biofilms are implicated in chronic infection of wounds and treatment failure, the combination of antimicrobial activity and potential radical scavenging effects may contribute to the improvement of wound healing. Therefore, this study suggests that bis[ethylN-(2’-selenobenzoyl) glycinate] and bis[2’-seleno-N-(1-methyl-2-phenylethyl) benzamide] are promising compounds to be used in preventing and treating microbial wound infections.
Collapse
Affiliation(s)
- Luca Sancineto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | - Miranda Piccioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | - Stefania De Marco
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | - Rita Pagiotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | - Vanessa Nascimento
- Laboratorio de Sıntese de Substancias de Selenio Bioativas, Centro de Ciencias Fısicas e Matematicas, Departamento de Quımica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Antonio Luiz Braga
- Laboratorio de Sıntese de Substancias de Selenio Bioativas, Centro de Ciencias Fısicas e Matematicas, Departamento de Quımica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | - Donatella Pietrella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122, Perugia, Italy.
| |
Collapse
|
22
|
Kolmas J, Groszyk E, Piotrowska U. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties. NANOSCALE RESEARCH LETTERS 2015; 10:989. [PMID: 26138453 PMCID: PMC4489964 DOI: 10.1186/s11671-015-0989-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/23/2015] [Indexed: 05/29/2023]
Abstract
In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81.
Collapse
Affiliation(s)
- Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy and Laboratory Medicine, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Ewa Groszyk
- Department of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy and Laboratory Medicine, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Inorganic and Analytical Chemistry, Medical University of Warsaw, Faculty of Pharmacy and Laboratory Medicine, ul. Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
23
|
Aribi M, Meziane W, Habi S, Boulatika Y, Marchandin H, Aymeric JL. Macrophage Bactericidal Activities against Staphylococcus aureus Are Enhanced In Vivo by Selenium Supplementation in a Dose-Dependent Manner. PLoS One 2015; 10:e0135515. [PMID: 26340099 PMCID: PMC4560415 DOI: 10.1371/journal.pone.0135515] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/22/2015] [Indexed: 11/27/2022] Open
Abstract
Background Dietary selenium is of fundamental importance to maintain optimal immune function and enhance immunity during infection. To this end, we examined the effect of selenium on macrophage bactericidal activities against Staphylococcus aureus. Methods Assays were performed in golden Syrian hamsters and peritoneal macrophages cultured with S. aureus and different concentrations of selenium. Results Infected and selenium-supplemented animals have significantly decreased levels of serum nitric oxide (NO) production when compared with infected but non-selenium-supplemented animals at day 7 post-infection (p < 0.05). A low dose of 5 ng/mL selenium induced a significant decrease in macrophage NO production, but significant increase in hydrogen peroxide (H2O2) levels (respectively, p = 0.009, p < 0.001). The NO production and H2O2 levels were significantly increased with increasing concentrations of selenium; the optimal macrophage activity levels were reached at 20 ng/mL. The concentration of 5 ng/mL of selenium induced a significant decrease in the bacterial arginase activity but a significant increase in the macrophage arginase activity. The dose of 20 ng/mL selenium induced a significant decrease of bacterial growth (p < 0.0001) and a significant increase in macrophage phagocytic activity, NO production/arginase balance and S. aureus killing (for all comparisons, p < 0.001). Conclusions Selenium acts in a dose-dependent manner on macrophage activation, phagocytosis and bacterial killing suggesting that inadequate doses may cause a loss of macrophage bactericidal activities and that selenium supplementation could enhance the in vivo control of immune response to S. aureus.
Collapse
Affiliation(s)
- Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, Department of Biology, University of Tlemcen, 13000, Tlemcen, Algeria
- * E-mail:
| | - Warda Meziane
- Laboratory of Applied Molecular Biology and Immunology, Department of Biology, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Salim Habi
- Laboratory of Applied Molecular Biology and Immunology, Department of Biology, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Yasser Boulatika
- Laboratory of Applied Molecular Biology and Immunology, Department of Biology, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Hélène Marchandin
- Université Montpellier 1, UMR 5569 HydroSciences Montpellier, Équipe Pathogènes Hydriques Santé Environnements, 34093, Montpellier, Cedex 5, France
- Centre Hospitalier Régional Universitaire, Laboratoire de Bactériologie, 34295, Montpellier, Cedex 5, France
| | - Jean-Luc Aymeric
- UM2-INRA, UMR1333, Laboratoire Diversité, Génomes et Interactions Microorganismes Insectes, Université de Montpellier, Bataillon, 34095, Montpellier, Cedex 05, France
| |
Collapse
|
24
|
Effect of Daily Contact Lens Cleaning on Ocular Adverse Events during Extended Wear. Optom Vis Sci 2015; 92:157-66. [DOI: 10.1097/opx.0000000000000479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
|
26
|
Wang JC, Hamood AN, Saadeh C, Cunningham MJ, Yim MT, Cordero J. Strategies to prevent biofilm-based tympanostomy tube infections. Int J Pediatr Otorhinolaryngol 2014; 78:1433-8. [PMID: 25060938 DOI: 10.1016/j.ijporl.2014.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To review the potential contributory role of biofilms to post-tympanstomy tube otorrhea and plugging as well as the available interventions currently utilized to prevent biofilm formation on tympanostomy tubes. DATA SOURCES A literature review was performed utilizing the MEDLINE/Pubmed database from 1980 to 2013. REVIEW METHODS Electronic database was searched with combinations of keywords "biofilm", "tympanostomy tube", "ventilation tube", and "post-tympanostomy tube otorrhea". RESULTS Two of the most common sequelae that occur after tympanostomy tube insertion are otorrhea and tube occlusion. There is an increased evidence supporting a role for biofilms in the pathogenesis of otitis media. In this review, we have shown a multitude of novel approaches for prevention of biofilm associated sequelae of otitis media with effusion. These interventions include (i) changing the inherent composition of the tube itself, (ii) coating the tubes with antibiotics, polymers, plant extracts, or other biofilm-resistant materials, (iii) tubal impregnation with antimicrobial compounds, and (iv) surface alterations of the tube by ion-bombardment or surface ionization. CONCLUSION Currently, there is not one type of tympanostomy tube in which bacteria will not adhere. The challenges of treating chronic post-tympanostomy tube otorrhea and tube occlusion indicate the need for further research in optimization of tympanostomy tube design in addition to development of novel therapies.
Collapse
Affiliation(s)
- James C Wang
- School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street STOP 8312, Lubbock, TX 79430, USA.
| | - Abdul N Hamood
- Department of Microbiology & Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Charles Saadeh
- School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street STOP 8312, Lubbock, TX 79430, USA
| | - Michael J Cunningham
- Department of Otolaryngology and Communication Enhancement, Children's Hospital Boston, Boston, MA, USA
| | - Michael T Yim
- Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Joehassin Cordero
- Division of Otolaryngology, Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
27
|
Tran PL, Patel S, Hamood AN, Enos T, Mosley T, Jarvis C, Desai A, Lin P, Reid TW. A Novel Organo-Selenium Bandage that Inhibits Biofilm Development in a Wound by Gram-Positive and Gram-Negative Wound Pathogens. Antibiotics (Basel) 2014; 3:435-49. [PMID: 27025754 PMCID: PMC4790367 DOI: 10.3390/antibiotics3030435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022] Open
Abstract
Biofilm formation in wounds is a serious problem which inhibits proper wound healing. One possible contributor to biofilm formation in a wound is the bacteria growing within the overlying bandage. To test this mechanism, we used bandages that contained a coating of organo-selenium that was covalently attached to the bandage. We tested the ability of this coating to kill bacteria on the bandage and in the underlying tissue. The bandage material was tested with both lab strains and clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermidis. It was found that the organo-selenium coated bandage showed inhibition, of biofilm formation on the bandage in vitro (7–8 logs), with all the different bacteria tested, at selenium concentrations in the coating of less than 1.0%. These coatings were found to remain stable for over one month in aqueous solution, 15 min in boiling water, and over 6 years at room temperature. The bandages were also tested on a mouse wound model where the bacteria were injected between the bandage and the wound. Not only did the selenium bandage inhibit biofilm formation in the bandage, but it also inhibited biofilm formation in the wound tissue. Since selenium does not leave the bandage, this would appear to support the idea that a major player in wound biofilm formation is bacteria which grows in the overlying bandage.
Collapse
Affiliation(s)
- Phat L Tran
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Saurabh Patel
- Department of Neonatology, University of Illinois, Chicago, IL 60607, USA.
| | - Abdul N Hamood
- Departments of Medical Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Tyler Enos
- South Western Medical Center, University of Texas, Dallas, TX 75390, USA.
| | - Thomas Mosley
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Courtney Jarvis
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Akash Desai
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Pamela Lin
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ted W Reid
- Departments of Ophthalmology and Visual Sciences, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE Overnight lens wear is associated with increased lens contamination and risk of developing a corneal infiltrate or infectious event. Antibacterial lenses have been proposed as a potential strategy for reducing lens contamination. A proof-of-principle study was conducted to investigate what effect control of potential pathogens, through the use of antibiotic eye drops, would have on the incidence of corneal infiltrative events (CIEs) and on the ocular microbiota and lens contamination. METHODS This is a prospective, open-label, controlled, parallel-group, 1-month clinical study in which 241 subjects were dispensed with lotrafilcon A silicone hydrogel lenses for 30 days of continuous wear. Subjects were randomized into either test (moxifloxacin 0.5%) or control (rewetting solution) group. One drop was instilled into each eye on waking and before sleeping, while lenses were on-eye. Follow-ups were conducted after one night and 1 month. Lid margin swabs were taken at baseline and at 1 month and worn lenses were aseptically collected at 1 month. RESULTS The incidence of CIEs was not significantly different between the test (2.6%) and control (3.9%) groups (p = 0.72). Microorganism levels from the test group swabs were significantly lower than those from the control group (p = 0.001). Gram-positive bacteria were less frequently recovered from lower lid swabs from the test group (39.6% vs. 66.0% [p < 0.001], test vs. control, respectively) or from contact lens samples (1.9% vs. 10.5% [p = 0.015], test vs. control, respectively), but there was no difference in gram-negative bacteria (GNB). Corneal infiltrative events were associated with higher levels of lens contamination (p = 0.014) and contamination of lenses with GNB (CIE: 7.3% vs. 0.6% [p = 0.029], GNB contamination vs. no GNB contamination, respectively). DISCUSSION Twice-daily antibiotic instillation during continuous wear of lenses did not significantly influence the rate of inflammatory events. Corneal infiltrative events were associated with higher levels of lens contamination in general and with contamination by GNB specifically.
Collapse
|
29
|
Tran PL, Hamood AN, Reid TW. Antimicrobial Coatings to Prevent Biofilm Formation on Medical Devices. SPRINGER SERIES ON BIOFILMS 2014. [DOI: 10.1007/978-3-642-53833-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
A laboratory assessment of factors that affect bacterial adhesion to contact lenses. BIOLOGY 2013; 2:1268-81. [PMID: 24833224 PMCID: PMC4009790 DOI: 10.3390/biology2041268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/29/2013] [Indexed: 11/17/2022]
Abstract
Adhesion of pathogenic microbes, particularly bacteria, to contact lenses is implicated in contact lens related microbial adverse events. Various in vitro conditions such as type of bacteria, the size of initial inoculum, contact lens material, nutritional content of media, and incubation period can influence bacterial adhesion to contact lenses and the current study investigated the effect of these conditions on bacterial adhesion to contact lenses. There was no significant difference in numbers of bacteria that adhered to hydrogel etafilcon A or silicone hydrogel senofilcon A contact lenses. Pseudomonas aeruginosa adhered in higher numbers compared to Staphylococcus aureus. Within a genera/species, adhesion of different bacterial strains did not differ appreciably. The size of initial inoculum, nutritional content of media, and incubation period played significant roles in bacterial adhesion to lenses. A set of in vitro assay conditions to help standardize adhesion between studies have been recommended.
Collapse
|
31
|
Fazly Bazzaz BS, Khameneh B, Jalili-Behabadi MM, Malaekeh-Nikouei B, Mohajeri SA. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont Lens Anterior Eye 2013; 37:149-52. [PMID: 24121010 DOI: 10.1016/j.clae.2013.09.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022]
Abstract
PURPOSE Contact lenses that incorporate antimicrobial properties may reduce the risk for microbial-associated adverse events for lens wearers. The aim of this study was to assess the antimicrobial effects of silver nanoparticles (NP) when impregnated in a hydrogel material. METHODS Hydrogel disks, used as a proxy for soft contact lenses, were prepared with silver NPs to add an antimicrobial effect to the polymer. Six groups of disks were created, each with a different concentration of silver NPs. The antimicrobial effect of the hydrogels against Pseudomonas aeruginosa (ATCC15442) and Staphylococcus aureus (ATCC6538) was evaluated at 6, 24, 48 and 72 h. RESULTS Silver NP concentrations ranged from 20.71 to 98.06 μg/disk. All groups demonstrated excellent antibacterial effects against P. aeruginosa at each time point. After 6h all disks didn't exhibit desirable antibacterial activity against S. aureus; whereas except those with 20.71 μg silver NPs showed antibacterial activity at 24h and only the disks with 57.13 and 98.06 μg silver NPs showed antimicrobial activity at 48 and 72 h. CONCLUSIONS The development of contact lenses made of a silver NP-impregnated hydrogel material may bring antimicrobial effects sufficient to decrease the risk of microbial-related adverse events for lens wearers.
Collapse
Affiliation(s)
- Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Students Research Committee, Department of Food and Drug Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Centre, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 2013; 14:18488-501. [PMID: 24018891 PMCID: PMC3794791 DOI: 10.3390/ijms140918488] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Biofilm formation by human bacterial pathogens on implanted medical devices causes major morbidity and mortality among patients, and leads to billions of dollars in healthcare cost. Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. As a result, novel therapeutic solutions other than the conventional antibiotic therapies are in urgent need. In this review, we will discuss the recent research in discovery of alternative approaches to prevent or treat biofilms. Current anti-biofilm technologies could be divided into two groups. The first group focuses on targeting the biofilm forming process of bacteria based on our understanding of the molecular mechanism of biofilm formation. Small molecules and enzymes have been developed to inhibit or disrupt biofilm formation. Another group of anti-biofilm technologies focuses on modifying the biomaterials used in medical devices to make them resistant to biofilm formation. While these novel anti-biofilm approaches are still in nascent phases of development, efforts devoted to these technologies could eventually lead to anti-biofilm therapies that are superior to the current antibiotic treatment.
Collapse
Affiliation(s)
- Meng Chen
- Nanova, Inc. Columbia, MO 65211, USA; E-Mail: or
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA; E-Mail:
| | - Hongmin Sun
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-573-884-1964; Fax: +1-573-884-7743
| |
Collapse
|
33
|
Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJAM, Zaat SAJ, Schultz MJ, Grainger DW. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 2013; 4:153rv10. [PMID: 23019658 DOI: 10.1126/scitranslmed.3004528] [Citation(s) in RCA: 455] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterial-associated infections occur on both permanent implants and temporary devices for restoration or support of human functions. Despite increasing use of biomaterials in an aging society, comparatively few biomaterials have been designed that effectively reduce the incidence of biomaterial-associated infections. This review provides design guidelines for infection-reducing strategies based on the concept that the fate of biomaterial implants or devices is a competition between host tissue cell integration and bacterial colonization at their surfaces.
Collapse
Affiliation(s)
- Henk J Busscher
- Department of BioMedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Holinka J, Pilz M, Kubista B, Presterl E, Windhager R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J 2013; 95-B:678-82. [PMID: 23632681 DOI: 10.1302/0301-620x.95b5.31216] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to evaluate whether coating titanium discs with selenium in the form of sodium selenite decreased bacterial adhesion of Staphylococcus aureus and Staph. epidermidis and impeded osteoblastic cell growth. In order to evaluate bacterial adhesion, sterile titanium discs were coated with increasing concentrations of selenium and incubated with bacterial solutions of Staph. aureus (ATCC 29213) and Staph. epidermidis (DSM 3269) and stained with Safranin-O. The effect of selenium on osteoblastic cell growth was also observed. The adherence of MG-63 cells on the coated discs was detected by staining with Safranin-O. The proportion of covered area was calculated with imaging software. The tested Staph. aureus strain showed a significantly reduced attachment on titanium discs with 0.5% (p = 0.011) and 0.2% (p = 0.02) selenium coating. Our test strain from Staph. epidermidis showed a highly significant reduction in bacterial adherence on discs coated with 0.5% (p = 0.0099) and 0.2% (p = 0.002) selenium solution. There was no inhibitory effect of the selenium coating on the osteoblastic cell growth. Selenium coating is a promising method to reduce bacterial attachment on prosthetic material.
Collapse
Affiliation(s)
- J Holinka
- Medical University of Vienna, Department of Orthopaedic Surgery, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
35
|
Akar N, Asar B, Dizge N, Koyuncu I. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.02.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
The effect of daily lens replacement during overnight wear on ocular adverse events. Optom Vis Sci 2013; 89:1674-81. [PMID: 23160441 DOI: 10.1097/opx.0b013e31827731ac] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Compared with daily disposable wear schedule, continuous wear (CW) or extended wear of contact lenses has been associated with an increased risk of developing an ocular infection. Proof-of-principle studies were conducted to investigate the impact of daily replacement of lenses on the rate of contact lens-related ocular adverse events (AEs) during 30-night CW. METHODS A total of 215 subjects were dispensed with silicone hydrogel lenses on a 30-night CW schedule but replaced lenses daily either each night before sleeping (n = 178 eyes) or each morning after waking (n = 252 eyes). Scheduled clinic visits were conducted at 1 week and 1 month. Neophytes were required to complete 1 week of daily wear before commencing CW. A historical control (n = 191 eyes) using the same site, subject demographics, and visit schedule but monthly lens replacement was used for AE rates. RESULTS Logistic regression analysis showed a significant reduction in mechanical AEs (0.8 vs 5.2%, p = 0.01) and overall AEs (inflammatory and mechanical events) (4.0 vs 8.9%, p = 0.04) when lenses were replaced each morning compared with being replaced monthly. Estimation of handling-related lens contamination of unworn lenses in a subgroup of subjects showed isolation of Staphylococcus aureus from the lenses of 35% of subjects, and 65% of subjects had more than 1000 colony-forming units per lens of gram-positive bacterial contamination. CONCLUSIONS Morning lens replacement during CW reduced mechanical and overall ocular AEs. Replacing lenses at night had no beneficial effects perhaps because the benefit of a fresh lens at night might be partially negated by contamination of the contact lens caused by lens handling before overnight eye closure. Contact lens wearers on an extended wear or CW schedule should be advised to minimize lens handling before sleep to reduce the risk of complications.
Collapse
|
37
|
Abstract
PURPOSE Microbial adhesion to contact lenses is believed to be one of the initiating events in the formation of many corneal infiltrative events, including microbial keratitis, that occur during contact lens wear. The advent of silicone hydrogel lenses has not reduced the incidence of these events. This may partly be related to the ability of microbes to adhere to these lenses. The aim of this study was to review the published literature on microbial adhesion to contact lenses, focusing on adhesion to silicone hydrogel lenses. METHODS The literature on microbial adhesion to contact lenses was searched, along with associated literature on adverse events that occur during contact lens wear. Particular reference was paid to the years 1995 through 2012 because this encompasses the time when the first clinical trials of silicone hydrogel lenses were reported, and their commercial availability and the publication of epidemiology studies on adverse events were studied. RESULTS In vitro studies of bacterial adhesion to unworn silicone hydrogel lens have shown that generally, bacteria adhere to these lenses in greater numbers than to the hydroxyethyl methacrylate-based soft lenses. Lens wear has different effects on microbial adhesion, and this is dependent on the type of lens and microbial species/genera that is studied. Biofilms that can be formed on any lens type tend to protect the bacteria and fungi from the effects on disinfectants. Fungal hyphae can penetrate the surface of most types of lenses. Acanthamoeba adhere in greater numbers to first-generation silicone hydrogel lenses compared with the second-generation or hydroxyethyl methacrylate-based soft lenses. CONCLUSION Microbial adhesion to silicone hydrogel lenses occurs and is associated with the production of corneal infiltrative events during lens wear.
Collapse
|
38
|
Tran P, Hamood A, Mosley T, Gray T, Jarvis C, Webster D, Amaechi B, Enos T, Reid T. Organo-selenium-containing dental sealant inhibits bacterial biofilm. J Dent Res 2013; 92:461-6. [PMID: 23475900 DOI: 10.1177/0022034513482141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oral bacteria, including Streptococcus mutans and Streptococcus salivarius, contribute to tooth decay and plaque formation; therefore, it is essential to develop strategies to prevent dental caries and plaque formation. We recently showed that organo-selenium compounds covalently attached to different biomaterials inhibited bacterial biofilms. Our current study investigates the efficacy of an organo-selenium dental sealant (SeLECT-Defense(TM) sealant) in inhibiting S. mutans and S. salivarius biofilm formation in vitro. The organo-selenium was synthesized and covalently attached to dental sealant material via standard polymer chemistry. By colony-forming unit (CFU) assay and confocal microscopy, SeLECT-Defense(TM) sealant was found to completely inhibit the development of S. mutans and S. salivarius biofilms. To assess the durability of the anti-biofilm effect, we soaked the SeLECT-Defense(TM) sealant in PBS for 2 mos at 37°C and found that the biofilm-inhibitory effect was not diminished after soaking. To determine if organo-selenium inhibits bacterial growth under the sealant, we placed SeLECT-Defense sealant over a lawn of S. mutans. In contrast to a control sealant, SeLECT-Defense(TM) sealant completely inhibited the growth of S. mutans. These results suggest that the inhibitory effect of SeLECT-Defense(TM) sealant against S. mutans and S. salivarius biofilms is very effective and durable.
Collapse
Affiliation(s)
- P Tran
- Departments of Medical Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Colomé-Campos J, Quevedo-Junyent L, Godoy-Barreda N, Martínez-Salcedo I, Romero-Aroca P. Prescribing prophylactic antibiotics to users of therapeutic contact lenses. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2013; 88:92-96. [PMID: 23473085 DOI: 10.1016/j.oftal.2012.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND To describe the benefits and optimum use of prophylactic antibiotics in users of therapeutic contact lenses (TCL). METHODS A microbiological study was carried out on samples from 33 patients who continuously wore TCL. The resistance to antibiotics of bacteria isolated in our health region was also reviewed. An assessment was also made on whether there were microorganisms of a higher pathogenic potential in TCL than conventional contact lenses, as reported in the literature. RESULTS No bacteria were isolated from 17 (52%) of the 33 lenses studied. From the 16 (48%) remaining lenses, coagulase negative Staphylococci were isolated from 10 (62%), Propionibacterium acnes from 4 (25%), and Corynebacterium from 2 (13%). CONCLUSIONS The high number of negative cultures and the presence of saprophytic bacteria indicate that prophylactic antibiotic treatment is not precise. The most frequent pathogenic bacteria found in contact lenses are strongly resistant to the current commercially available antibiotics.
Collapse
|
40
|
|
41
|
Effect of prophylactic antibiotic drops on ocular microbiota and physiology during silicone hydrogel lens wear. Optom Vis Sci 2012; 89:326-35. [PMID: 22246331 DOI: 10.1097/opx.0b013e318243280e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Bacterial contamination of the contact lens surface has been demonstrated to cause corneal infiltrative events. A reduction in the rate of bacterially driven corneal infiltrative events associated with lens wear is one of the major goals of the contact lens industry. There is a concern over the potential of any antimicrobial strategy that there will be unwanted changes to the ocular microbiota or the development of resistance to the antimicrobial. The aim of this study was to investigate the effect of prophylactic topical antibiotic instillation during continuous wear of silicone hydrogel lenses on the normal ocular microbiota, the throat microbiota, and the ocular physiology. METHODS Forty-two male subjects were dispensed with lotrafilcon A silicone hydrogel contact lenses for a 3-month, 30 night continuous wear, monthly replacement trial. Subjects were randomized into either tobramycin 0.3% (test) or saline (control) drop group. Two drops were instilled into each eye on waking and before sleep. At monthly visits, lenses were collected aseptically, and ocular and throat swabs were performed, followed by standard microbial recovery and identifications. Any corneal infiltrative event at scheduled or unscheduled visits was recorded. RESULTS Numbers of microbes recovered from eye swabs from the tobramycin (test) group were significantly lower than the control (p = 0.01). Gram-positive cocci were recovered less frequently from the test group (p = 0.001). There were no significant differences in the numbers and types of microbes recovered from lens samples, or the contamination rate of the lenses between the two groups. There were no changes in the numbers of fungi or bacteria from throat swabs. There was no evidence of changes to resistance profile of microbes in the throat. More eye swabs from the test group (68.5%) were culture-negative than swabs from control (46.5%; p = 0.002). The test group had less corneal staining superiorly (0.0 ± 0.0 vs. 0.3 ± 0.4; p = 0.025) but increased bulbar redness (2.2 ± 0.5 vs. 1.5 ± 0.4; p < 0.001) at the 3-month visit only, compared with control group. CONCLUSIONS Overall, there appeared to be a minimal safety risk with 3-month's prophylactic antibiotic drop use during continuous wear of silicone hydrogel lenses. Clinically, antibiotic drop use induced a mild to moderate increase in bulbar redness by the 3-month time-point. Antibiotic use reduced microbiota on lids but did not affect the microbiota of the throat or change resistance to tobramycin.
Collapse
|
42
|
An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob Agents Chemother 2011; 56:972-8. [PMID: 22123688 DOI: 10.1128/aac.05680-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Colonization of central venous catheters (CVCs) by pathogenic bacteria leads to catheter-related bloodstream infections (CRBSIs). These colonizing bacteria form highly antibiotic-resistant biofilms. Staphylococcus aureus is one of the most frequently isolated pathogens in CRBSIs. Impregnating CVC surfaces with antimicrobial agents has various degrees of effectiveness in reducing the incidence of CRBSIs. We recently showed that organoselenium covalently attached to disks as an antibiofilm agent inhibited the development of S. aureus biofilms. In this study, we investigated the ability of an organoselenium coating on hemodialysis catheters (HDCs) to inhibit S. aureus biofilms in vitro and in vivo. S. aureus failed to develop biofilms on HDCs coated with selenocyanatodiacetic acid (SCAA) in either static or flowthrough continuous-culture systems. The SCAA coating also inhibited the development of S. aureus biofilms on HDCs in vivo for 3 days. The SCAA coating was stable and nontoxic to cell culture or animals. This new method for coating the internal and external surfaces of HDCs with SCAA has the potential to prevent catheter-related infections due to S. aureus.
Collapse
|
43
|
Low D, Hamood A, Reid T, Mosley T, Tran P, Song L, Morse A. Attachment of selenium to a reverse osmosis membrane to inhibit biofilm formation of S. aureus. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Kolar SS, McDermott AM. Role of host-defence peptides in eye diseases. Cell Mol Life Sci 2011; 68:2201-13. [PMID: 21584809 PMCID: PMC3637883 DOI: 10.1007/s00018-011-0713-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.
Collapse
Affiliation(s)
- Satya S. Kolar
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| | - Alison M. McDermott
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| |
Collapse
|
45
|
Corneal Erosions, Bacterial Contamination of Contact Lenses, and Microbial Keratitis. Eye Contact Lens 2010; 36:340-5. [DOI: 10.1097/icl.0b013e3181f57b05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Willcox MD, Hume EB, Vijay AK, Petcavich R. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. JOURNAL OF OPTOMETRY 2010; 3:143-148. [PMCID: PMC3974305 DOI: 10.1016/s1888-4296(10)70020-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/25/2010] [Indexed: 05/28/2023]
Abstract
Purpose To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. Methods Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. Results Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. Conclusions Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.
Collapse
Affiliation(s)
- Mark D.P. Willcox
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Emma B.H. Hume
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
47
|
Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review. Eye Contact Lens 2010; 36:116-29. [PMID: 20168237 DOI: 10.1097/icl.0b013e3181d20cae] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. METHODS The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. RESULTS Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. CONCLUSIONS The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications.
Collapse
|
48
|
Abstract
PURPOSE Microbial contamination of contact lenses is associated with corneal infection and inflammation. This study determined the microbiological, clinical, and demographic factors that are associated with bacterial contamination of a silicone hydrogel contact lens when worn for continuous wear (CW). METHODS Two hundred five healthy subjects were enrolled in the Longitudinal Analysis of Silicone Hydrogel Contact Lens Study and were fitted with lotrafilcon A lenses for monthly CW and followed for 1 year. Lenses were aseptically removed after 1 week and 4 months of wear and cultured using an agar sandwich technique. Lids and conjunctiva were routinely cultured at baseline and after 1 week and 4 months of CW. Lenses and ocular sites were considered to have substantial microbial bioburden when they harbored pathogenic organisms or high levels of commensal organisms. Univariate and multivariate logistic regression analyses were conducted to examine whether substantial conjunctival or lid bioburden, subject demographics, lens-wearing history, symptoms, and biomicroscopic signs were associated with lens bioburden. RESULTS About one third (32.4%) of subjects had substantial bacterial bioburden in either eye across multiple visits. Over half (53.2%) and about one tenth (11.7%) of subjects had substantial lid and conjunctival bioburden, respectively, and 11.2% discontinued because of discomfort. The adjusted odds ratios (and 95% confidence intervals) for presence of substantial lens bioburden were 2.49 (1.17-5.30), 4.24 (1.45-12.40), and 4.11 (1.17-14.46) for substantial lid bioburden, substantial conjunctival bioburden, and lens discomfort, respectively. CONCLUSIONS Bacterial contamination of silicone hydrogel contact lenses is common during CW. Substantial lens bioburden is associated with discomfort precluding successful CW. The presence of substantial lid and conjunctival bioburden is associated with a 2.5-fold and more than fourfold greater risk of substantial lens bioburden and is likely the major route of contamination.
Collapse
|
49
|
Selenium functionalized intraocular lenses inhibit posterior capsule opacification in an ex vivo canine lens capsular bag assay. Exp Eye Res 2009; 89:728-34. [DOI: 10.1016/j.exer.2009.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/04/2009] [Accepted: 06/26/2009] [Indexed: 11/19/2022]
|
50
|
Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl Environ Microbiol 2009; 75:3586-92. [PMID: 19346348 DOI: 10.1128/aem.02683-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.
Collapse
|