1
|
Merino D, Fernandez A, Gérard AO, Ben Othman N, Rocher F, Askenazy F, Verstuyft C, Drici MD, Thümmler S. Adverse Drug Reactions of Olanzapine, Clozapine and Loxapine in Children and Youth: A Systematic Pharmacogenetic Review. Pharmaceuticals (Basel) 2022; 15:ph15060749. [PMID: 35745668 PMCID: PMC9230864 DOI: 10.3390/ph15060749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Children and youth treated with antipsychotic drugs (APs) are particularly vulnerable to adverse drug reactions (ADRs) and prone to poor treatment response. In particular, interindividual variations in drug exposure can result from differential metabolism of APs by cytochromes, subject to genetic polymorphism. CYP1A2 is pivotal in the metabolism of the APs olanzapine, clozapine, and loxapine, whose safety profile warrants caution. We aimed to shed some light on the pharmacogenetic profiles possibly associated with these drugs’ ADRs and loss of efficacy in children and youth. We conducted a systematic review relying on four databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 recommendations and checklist, with a quality assessment. Our research yielded 32 publications. The most frequent ADRs were weight gain and metabolic syndrome (18; 56.3%), followed by lack of therapeutic effect (8; 25%) and neurological ADRs (7; 21.8%). The overall mean quality score was 11.3/24 (±2.7). In 11 studies (34.3%), genotyping focused on the study of cytochromes. Findings regarding possible associations were sometimes conflicting. Nonetheless, cases of major clinical improvement were fostered by genotyping. Yet, CYP1A2 remains poorly investigated. Further studies are required to improve the assessment of the risk–benefit balance of prescription for children and youth treated with olanzapine, clozapine, and/or loxapine.
Collapse
Affiliation(s)
- Diane Merino
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Arnaud Fernandez
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
| | - Alexandre O. Gérard
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Nouha Ben Othman
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Fanny Rocher
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Florence Askenazy
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
| | - Céline Verstuyft
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, Groupe Hospitalier Paris Saclay, AP–HP, 94270 Le Kremlin-Bicêtre, France;
- CESP/UMR-S1178, Inserm, Université Paris-Sud, 92290 Paris, France
| | - Milou-Daniel Drici
- Department of Pharmacology and Pharmacovigilance Center, University Hospital of Nice, 06000 Nice, France; (A.O.G.); (N.B.O.); (F.R.); (M.-D.D.)
| | - Susanne Thümmler
- Department of Child and Adolescent Psychiatry, Children’s Hospitals of Nice CHU-Lenval, 06200 Nice, France; (D.M.); (A.F.); (F.A.)
- CoBTek Laboratory, Université Côte d’Azur, 06100 Nice, France
- Correspondence:
| |
Collapse
|
2
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
4
|
Rodrigues DO, Bristot IJ, Klamt F, Frizzo ME. Sertraline reduces glutamate uptake in human platelets. Neurotoxicology 2015; 51:192-7. [PMID: 26529290 DOI: 10.1016/j.neuro.2015.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
Mitochondrial damage and declines in ATP levels have been recently attributed to sertraline. The effects of sertraline on different parameters were investigated in washed platelets from 18 healthy male volunteers, after 24h of drug exposure. Sertraline toxicity was observed only at the highest concentrations, 30 and 100 μM, which significantly reduced platelet viability to 76 ± 3% and 20 ± 2%, respectively. The same concentrations significantly decreased total ATP to 73 ± 3% and 13 ± 2%, respectively. Basal values of glycogen were not significantly affected by sertraline treatment. Glutamate uptake was significantly reduced after treatment with 3, 30 and 100 μM, by 28 ± 6%, 32 ± 5% and 54 ± 4%, respectively. Our data showed that sertraline at therapeutic concentrations does not compromise platelet viability and ATP levels, but they suggest that in a situation where extracellular glutamate levels are potentially increased, sertraline might aggravate an excitotoxic condition.
Collapse
Affiliation(s)
- Débora Olmedo Rodrigues
- Laboratory of Cellular Neurobiology, Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivi Juliana Bristot
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcos Emílio Frizzo
- Laboratory of Cellular Neurobiology, Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|