1
|
Welle TM, Rajgor D, Kareemo DJ, Garcia JD, Zych SM, Wolfe SE, Gookin SE, Martinez TP, Dell'Acqua ML, Ford CP, Kennedy MJ, Smith KR. miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity. EMBO Rep 2024; 25:5141-5168. [PMID: 39294503 PMCID: PMC11549329 DOI: 10.1038/s44319-024-00253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Dean J Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah M Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Wolfe
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Tyler P Martinez
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Niraula S, Yan SS, Subramanian J. Amyloid Pathology Impairs Experience-Dependent Inhibitory Synaptic Plasticity. J Neurosci 2024; 44:e0702232023. [PMID: 38050105 PMCID: PMC10860629 DOI: 10.1523/jneurosci.0702-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by subtle broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
3
|
Welle TM, Rajgor D, Garcia JD, Kareemo D, Zych SM, Gookin SE, Martinez TP, Dell’Acqua ML, Ford CP, Kennedy MJ, Smith KR. miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.570420. [PMID: 38168421 PMCID: PMC10760056 DOI: 10.1101/2023.12.12.570420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Activity-dependent protein synthesis is crucial for many long-lasting forms of synaptic plasticity. However, our understanding of the translational mechanisms controlling inhibitory synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the precise mechanisms controlling gephyrin translation during this process remain unknown. Here, we identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting GABAergic synaptic structure and function. We find that iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and allowing for increased de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Overall, this work delineates a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Theresa M. Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
- T.M.W and D.R. contributed equally to this work
| | - Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
- T.M.W and D.R. contributed equally to this work
| | - Joshua D. Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Dean Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Sarah M. Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Sara E. Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Tyler P. Martinez
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Matthew J. Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Katharine R. Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| |
Collapse
|
4
|
Niraula S, Yan SS, Subramanian J. Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539450. [PMID: 37205469 PMCID: PMC10187277 DOI: 10.1101/2023.05.04.539450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by the broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Ferreira MJC, Soares Martins T, Alves SR, Rosa IM, Vogelgsang J, Hansen N, Wiltfang J, da Cruz E Silva OAB, Vitorino R, Henriques AG. Bioinformatic analysis of the SPs and NFTs proteomes unravel putative biomarker candidates for Alzheimer's disease. Proteomics 2023; 23:e2200515. [PMID: 37062942 DOI: 10.1002/pmic.202200515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
Aging is the main risk factor for the appearance of age-related neurodegenerative diseases, including Alzheimer's disease (AD). AD is the most common form of dementia, characterized by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs), the main histopathological hallmarks in AD brains. The core of these deposits are predominantly amyloid fibrils in SPs and hyperphosphorylated Tau protein in NFTs, but other molecular components can be found associated with these pathological lesions. Herein, an extensive literature review was carried out to obtain the SPs and NFTs proteomes, followed by a bioinformatic analysis and further putative biomarker validation. For SPs, 857 proteins were recovered, and, for NFTs, 627 proteins of which 375 occur in both groups and represent the common proteome. Gene Ontology (GO) enrichment analysis permitted the identification of biological processes and the molecular functions most associated with these lesions. Analysis of the SPs and NFTs common proteins unraveled pathways and molecular targets linking both histopathological events. Further, validation of a putative phosphotarget arising from the in silico analysis was performed in serum-derived extracellular vesicles from AD patients. This bioinformatic approach contributed to the identification of putative molecular targets, valuable for AD diagnostic or therapeutic intervention.
Collapse
Affiliation(s)
- Maria J Cardoso Ferreira
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Tânia Soares Martins
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Steven R Alves
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ilka Martins Rosa
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
| | - Jens Wiltfang
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Odete A B da Cruz E Silva
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Scaduto P, Lauterborn JC, Cox CD, Fracassi A, Zeppillo T, Gutierrez BA, Keene CD, Crane PK, Mukherjee S, Russell WK, Taglialatela G, Limon A. Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer's disease neuropathologic change. Acta Neuropathol 2023; 145:303-324. [PMID: 36538112 PMCID: PMC9925531 DOI: 10.1007/s00401-022-02526-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.
Collapse
Affiliation(s)
- Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Berenice A Gutierrez
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
7
|
Kuhse J, Groeneweg F, Kins S, Gorgas K, Nawrotzki R, Kirsch J, Kiss E. Loss of Extrasynaptic Inhibitory Glycine Receptors in the Hippocampus of an AD Mouse Model Is Restored by Treatment with Artesunate. Int J Mol Sci 2023; 24:ijms24054623. [PMID: 36902054 PMCID: PMC10002537 DOI: 10.3390/ijms24054623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by synaptic failure and neuronal loss. Recently, we demonstrated that artemisinins restored the levels of key proteins of inhibitory GABAergic synapses in the hippocampus of APP/PS1 mice, a model of cerebral amyloidosis. In the present study, we analyzed the protein levels and subcellular localization of α2 and α3 subunits of GlyRs, indicated as the most abundant receptor subtypes in the mature hippocampus, in early and late stages of AD pathogenesis, and upon treatment with two different doses of artesunate (ARS). Immunofluorescence microscopy and Western blot analysis demonstrated that the protein levels of both α2 and α3 GlyRs are considerably reduced in the CA1 and the dentate gyrus of 12-month-old APP/PS1 mice when compared to WT mice. Notably, treatment with low-dose ARS affected GlyR expression in a subunit-specific way; the protein levels of α3 GlyR subunits were rescued to about WT levels, whereas that of α2 GlyRs were not affected significantly. Moreover, double labeling with a presynaptic marker indicated that the changes in GlyR α3 expression levels primarily involve extracellular GlyRs. Correspondingly, low concentrations of artesunate (≤1 µM) also increased the extrasynaptic GlyR cluster density in hAPPswe-transfected primary hippocampal neurons, whereas the number of GlyR clusters overlapping presynaptic VIAAT immunoreactivities remained unchanged. Thus, here we provide evidence that the protein levels and subcellular localization of α2 and α3 subunits of GlyRs show regional and temporal alterations in the hippocampus of APP/PS1 mice that can be modulated by the application of artesunate.
Collapse
Affiliation(s)
- Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Femke Groeneweg
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
- Institute of Neuroanatomy, Medical Faculty Mannheim, University Heidelberg, 68167 Mannheim, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ralph Nawrotzki
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
- Correspondence:
| |
Collapse
|
8
|
Vakili O, Asili P, Babaei Z, Mirahmad M, Keshavarzmotamed A, Asemi Z, Mafi A. Circular RNAs in Alzheimer's Disease: A New Perspective of Diagnostic and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-125997. [PMID: 36043720 DOI: 10.2174/1871527321666220829164211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs), as covalently closed single-stranded noncoding RNA molecules, have been recently identified to involve in several biological processes, principally through targeting microRNAs. Among various neurodegenerative diseases (NDs), accumulating evidence has proposed key roles for circRNAs in the pathogenesis of Alzheimer's disease (AD); although the exact relationship between these RNA molecules and AD progression is not clear, they have been believed to mostly act as miRNA sponges or gene transcription modulators through correlating with multiple proteins, involved in the accumulation of Amyloid β (Aβ) peptides, as well as tau protein, as AD's pathological hallmark. More interestingly, circRNAs have also been reported to play diagnostic and therapeutic roles during AD progression. OBJECTIVE Literature review indicated that circRNAs could essentially contribute to the onset and development of AD. Thus, in the current review, the circRNAs' biogenesis and functions are addressed at first, and then the interplay between particular circRNAs and AD is comprehensively discussed. Eventually, the diagnostic and therapeutic significance of these noncoding RNAs is highlighted in brief. RESULTS A large number of circRNAs are expressed in the brain. Thereby, these RNA molecules are noticed as potential regulators of neural functions in healthy circumstances, as well as neurological disorders. Moreover, circRNAs have also been reported to have potential diagnostic and therapeutic capacities in relation to AD, the most prevalent ND. CONCLUSION CircRNAs have been shown to act as sponges for miRNAs, thereby regulating the function of related miRNAs, including oxidative stress, reduction of neuroinflammation, and the formation and metabolism of Aβ, all of which developed in AD. CircRNAs have also been proposed as biomarkers that have potential diagnostic capacities in AD. Despite these characteristics, the use of circRNAs as therapeutic targets and promising diagnostic biomarkers will require further investigation and characterization of the function of these RNA molecules in AD.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Complex regulation of Gephyrin splicing is a determinant of inhibitory postsynaptic diversity. Nat Commun 2022; 13:3507. [PMID: 35717442 PMCID: PMC9206673 DOI: 10.1038/s41467-022-31264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/10/2022] [Indexed: 01/05/2023] Open
Abstract
Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses. The protein gephyrin is involved in organizing synapses. Here, the authors show how different transcripts of gephyrin form and regulate inhibitory synapses.
Collapse
|
10
|
Proteomic Analysis of Retinal Tissue in an S100B Autoimmune Glaucoma Model. BIOLOGY 2021; 11:biology11010016. [PMID: 35053014 PMCID: PMC8773367 DOI: 10.3390/biology11010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is a neurodegenerative disease that leads to damage of retinal ganglion cells and the optic nerve. Patients display altered antibody profiles and increased antibody titer, e.g., against S100B. To identify the meaning of these antibodies, animals were immunized with S100B. Retinal ganglion cell loss, optic nerve degeneration, and increased glial cell activity were noted. Here, we aimed to gain more insights into the pathophysiology from a proteomic point of view. Hence, rats were immunized with S100B, while controls received sodium chloride. After 7 and 14 days, retinae were analyzed through mass spectrometry and immunohistology. Using data-independent acquisition-based mass spectrometry, we identified more than 1700 proteins on a high confidence level for both study groups, respectively. Of these 1700, 43 proteins were significantly altered in retinae after 7 days and 67 proteins revealed significant alterations at 14 days. For example, α2-macroglobulin was found significantly increased not only by mass spectrometry analysis, but also with immunohistological staining in S100B retinae at 7 and 14 days. All in all, the identified proteins are often associated with the immune system, such as heat shock protein 60. Once more, these data underline the important role of immunological factors in glaucoma pathogenesis.
Collapse
|
11
|
Lauterborn JC, Scaduto P, Cox CD, Schulmann A, Lynch G, Gall CM, Keene CD, Limon A. Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer's disease. Nat Commun 2021; 12:2603. [PMID: 33972518 PMCID: PMC8110554 DOI: 10.1038/s41467-021-22742-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer's disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.
Collapse
Affiliation(s)
- Julie C Lauterborn
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA.
| | - Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - Anton Schulmann
- National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
- Department of Psychiatry & Human Behavior, University of California at Irvine, Irvine, CA, 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases. School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA.
| |
Collapse
|
12
|
Artesunate restores the levels of inhibitory synapse proteins and reduces amyloid-β and C-terminal fragments (CTFs) of the amyloid precursor protein in an AD-mouse model. Mol Cell Neurosci 2021; 113:103624. [PMID: 33933588 DOI: 10.1016/j.mcn.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia, characterized histopathologically by the formation of amyloid plaques and neurofibrillary tangles in the brain. Amyloid β-peptide (Aβ) is a major component of amyloid plaques and is released together with carboxy-terminal fragments (CTFs) from the amyloid precursor protein (APP) through proteolytic cleavage, thought to contribute to synapse dysfunction and loss along the progression of AD. Artemisinins, primarily antimalarial drugs, reduce neuroinflammation and improve cognitive capabilities in mouse models of AD. Furthermore, artemisinins were demonstrated to target gephyrin, the main scaffold protein of inhibitory synapses and modulate GABAergic neurotransmission in vitro. Previously, we reported a robust decrease of inhibitory synapse proteins in the hippocampus of 12-month-old double transgenic APP-PS1 mice which overexpress in addition to the Swedish mutated form of the human APP a mutated presenilin 1 (PS1) gene and are characterized by a high plaque load at this age. Here, we provide in vivo evidence that treating these mice with artemisinin or its semisynthetic derivative artesunate in two different doses (10 mg/kg and 100 mg/kg), these compounds affect differently inhibitory synapse components, amyloid plaque load and APP-processing. Immunofluorescence microscopy demonstrated the rescue of gephyrin and γ2-GABAA-receptor protein levels in the brain of treated mice with both, artemisinin and artesunate, most efficiently with a low dose of artesunate. Remarkably, artemisinin reduced only in low dose the amyloid plaque load correlating with lower levels of mutated human APP (hAPPswe) whereas artesunate treatment in both doses resulted in significantly lower plaque numbers. Correspondingly, the level of APP-cleavage products, specifically the amount of CTFs in hippocampus homogenates was reduced significantly only by artesunate, in line with the findings in hAPPswe expressing cultured hippocampal neurons evidencing a concentration-dependent inhibition of CTF-release by artesunate already in the nanomolar range. Thus, our data support artemisinins as neuroprotective multi-target drugs, exhibiting a potent anti-amyloidogenic activity and reinforcing key proteins of inhibitory synapses.
Collapse
|
13
|
Benning L, Reinehr S, Grotegut P, Kuehn S, Stute G, Dick HB, Joachim SC. Synapse and Receptor Alterations in Two Different S100B-Induced Glaucoma-Like Models. Int J Mol Sci 2020; 21:ijms21196998. [PMID: 32977518 PMCID: PMC7583988 DOI: 10.3390/ijms21196998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 11/03/2022] Open
Abstract
Glaucoma is identified by an irreversible retinal ganglion cell (RGC) loss and optic nerve damage. Over the past few years, the immune system gained importance in its genesis. In a glaucoma-like animal model with intraocular S100B injection, RGC death occurs at 14 days. In an experimental autoimmune glaucoma model with systemic S100B immunization, a loss of RGCs is accompanied by a decreased synaptic signal at 28 days. Here, we aimed to study synaptic alterations in these two models. In one group, rats received a systemic S100B immunization (n = 7/group), while in the other group, S100B was injected intraocularly (n = 6–7/group). Both groups were compared to appropriate controls and investigated after 14 days. While inhibitory post-synapses remained unchanged in both models, excitatory post-synapses degenerated in animals with intraocular S100B injection (p = 0.03). Excitatory pre-synapses tendentially increased in animals with systemic S100B immunization (p = 0.08) and significantly decreased in intraocular ones (p = 0.04). Significantly more N-methyl-d-aspartate (NMDA) receptors (both p ≤ 0.04) as well as gamma-aminobutyric acid (GABA) receptors (both p < 0.03) were observed in S100B animals in both models. We assume that an upregulation of these receptors causes the interacting synapse types to degenerate. Heightened levels of excitatory pre-synapses could be explained by remodeling followed by degeneration.
Collapse
|
14
|
Pizzarelli R, Griguoli M, Zacchi P, Petrini EM, Barberis A, Cattaneo A, Cherubini E. Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions. Neuroscience 2020; 439:125-136. [PMID: 31356900 PMCID: PMC7351109 DOI: 10.1016/j.neuroscience.2019.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/15/2023]
Abstract
To be highly reliable, synaptic transmission needs postsynaptic receptors (Rs) in precise apposition to the presynaptic release sites. At inhibitory synapses, the postsynaptic protein gephyrin self-assembles to form a scaffold that anchors glycine and GABAARs to the cytoskeleton, thus ensuring the accurate accumulation of postsynaptic receptors at the right place. This protein undergoes several post-translational modifications which control protein-protein interaction and downstream signaling pathways. In addition, through the constant exchange of scaffolding elements and receptors in and out of synapses, gephyrin dynamically regulates synaptic strength and plasticity. The aim of the present review is to highlight recent findings on the functional role of gephyrin at GABAergic inhibitory synapses. We will discuss different approaches used to interfere with gephyrin in order to unveil its function. In addition, we will focus on the impact of gephyrin structure and distribution at the nanoscale level on the functional properties of inhibitory synapses as well as the implications of this scaffold protein in synaptic plasticity processes. Finally, we will emphasize how gephyrin genetic mutations or alterations in protein expression levels are implicated in several neuropathological disorders, including autism spectrum disorders, schizophrenia, temporal lobe epilepsy and Alzheimer's disease, all associated with severe deficits of GABAergic signaling. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrica Maria Petrini
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Andrea Barberis
- Fondazione Istituto Italiano di Tecnologia (IIT), Department of Neuroscience and Brain Technologies, Plasticity of inhibitory networks Unit, Genoa, Italy
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Normale Superiore, Pisa, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Roma, Italy; Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.
| |
Collapse
|
15
|
Li Y, Fan H, Sun J, Ni M, Zhang L, Chen C, Hong X, Fang F, Zhang W, Ma P. Circular RNA expression profile of Alzheimer's disease and its clinical significance as biomarkers for the disease risk and progression. Int J Biochem Cell Biol 2020; 123:105747. [PMID: 32315771 DOI: 10.1016/j.biocel.2020.105747] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate circular RNA (circRNA) expression profile via microarray, and further assess the potential of candidate circRNAs as biomarkers in Alzheimer's disease (AD). METHODS CircRNA expression profile in cerebrospinal fluid from 8 AD patients and 8 control (Ctrl) subjects was assessed by microarray. Subsequently, 10 candidate circRNAs from microarray were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cerebrospinal fluid from 80 AD patients and 40 Ctrl subjects. RESULTS By microarray, 112 circRNAs were upregulated and 51 circRNAs were downregulated in AD patients compared with Ctrl subjects, and these circRNAs were enriched in AD related pathways such as neurotrophin signaling pathway, natural killer cell mediated cytotoxicity and cholinergic synapse. By RT-qPCR, circ-LPAR1, circ-AXL and circ-GPHN were increased, whereas circ-PCCA, circ-HAUS4, circ-KIF18B and circ-TTC39C were decreased in AD patients compared with Ctrl subjects, and these circRNAs were disclosed to predict AD risk by receiver operating characteristics curve analysis. Further forward-stepwise multivariate logistic regression revealed that circ-AXL, circ-GPHN, circ-ITPR3, circ-PCCA and cic-TTC39C were independent predictive factors for AD risk. Besides, in AD patients, circ-AXL and circ-GPHN negatively correlated, while circ-PCCA and circ-HAUS4 positively correlated with mini-mental state examination score; Circ-AXL negatively correlated, while circ-PCCA, circ-HAUS4 and circ-KIF18B positively correlated with Aβ42; Circ-AXL and circ-GPHN positively correlated, whereas circ-HAUS4 negatively correlated with t-tau; Circ-AXL positively correlated with p-tau. CONCLUSION Our study provides an overview of circRNA expression profile in AD, and identifies that circ-AXL, circ-GPHN and circ-PCCA hold clinical implications for guiding disease management in AD patients.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Hua Fan
- The First Affiliated Hospital of Henan University of Science and Technology, School of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jun Sun
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Ming Ni
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Lei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Ci Chen
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xuejiao Hong
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fengqin Fang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Wei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, China.
| |
Collapse
|
16
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
17
|
Kasaragod VB, Schindelin H. Structure of Heteropentameric GABA A Receptors and Receptor-Anchoring Properties of Gephyrin. Front Mol Neurosci 2019; 12:191. [PMID: 31440140 PMCID: PMC6693554 DOI: 10.3389/fnmol.2019.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) mediate the majority of fast synaptic inhibition in the central nervous system (CNS). GABAARs belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGIC) and are assembled from 19 different subunits. As dysfunctional GABAergic neurotransmission manifests itself in neurodevelopmental disorders including epilepsy and anxiety, GABAARs are key drug targets. The majority of synaptic GABAARs are anchored at the inhibitory postsynaptic membrane by the principal scaffolding protein gephyrin, which acts as the central organizer in maintaining the architecture of the inhibitory postsynaptic density (iPSD). This interaction is mediated by the long intracellular loop located in between transmembrane helices 3 and 4 (M3–M4 loop) of the receptors and a universal receptor-binding pocket residing in the C-terminal domain of gephyrin. In 2014, the crystal structure of the β3-homopentameric GABAAR provided crucial information regarding the architecture of the receptor; however, an understanding of the structure and assembly of heteropentameric receptors at the atomic level was lacking. This review article will highlight recent advances in understanding the structure of heteropentameric synaptic GABAARs and how these structures have provided fundamental insights into the assembly of these multi-subunit receptors as well as their modulation by diverse ligands including the physiological agonist GABA. We will further discuss the role of gephyrin in the anchoring of synaptic GABAARs and glycine receptors (GlyRs), which are crucial for maintaining the architecture of the iPSD. Finally, we will also summarize how anti-malarial artemisinin drugs modulate gephyrin-mediated inhibitory neurotransmission.
Collapse
Affiliation(s)
- Vikram Babu Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Transfer of the Experimental Autoimmune Glaucoma Model from Rats to Mice-New Options to Study Glaucoma Disease. Int J Mol Sci 2019; 20:ijms20102563. [PMID: 31137749 PMCID: PMC6566658 DOI: 10.3390/ijms20102563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022] Open
Abstract
Studies have suggested an involvement of the immune system in glaucoma. Hence, a rat experimental autoimmune glaucoma model (EAG) was developed to investigate the role of the immune response. Here, we transferred this model into mice. Either 0.8 mg/mL of the optic nerve antigen homogenate (ONA; ONA 0.8) or 1.0 mg/mL ONA (ONA 1.0) were injected in 129/Sv mice. Controls received sodium chloride. Before and 6 weeks after immunization, the intraocular pressure (IOP) was measured. At 6 weeks, retinal neurons, glia cells, and synapses were analyzed via immunohistology and quantitative real-time PCR (RT-qPCR). Additionally, optic nerves were examined. The IOP stayed in the normal physiological range throughout the study (p > 0.05). A significant reduction of retinal ganglion cells (RGCs) was noted in both immunized groups (p < 0.001). Remodeling of glutamatergic and GABAergic synapses was seen in ONA 1.0 retinas. Furthermore, both ONA groups revealed optic nerve degeneration and macrogliosis (all: p < 0.001). An increase of activated microglia was noted in ONA retinas and optic nerves (p < 0.05). Both ONA concentrations led to RGC loss and optic nerve degeneration. Therefore, the EAG model was successfully transferred from rats to mice. In further studies, transgenic knockout mice can be used to investigate the pathomechanisms of glaucoma more precisely.
Collapse
|
19
|
Kasaragod VB, Hausrat TJ, Schaefer N, Kuhn M, Christensen NR, Tessmer I, Maric HM, Madsen KL, Sotriffer C, Villmann C, Kneussel M, Schindelin H. Elucidating the Molecular Basis for Inhibitory Neurotransmission Regulation by Artemisinins. Neuron 2019; 101:673-689.e11. [DOI: 10.1016/j.neuron.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/11/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
|
20
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
21
|
Kasaragod VB, Schindelin H. Structure-Function Relationships of Glycine and GABA A Receptors and Their Interplay With the Scaffolding Protein Gephyrin. Front Mol Neurosci 2018; 11:317. [PMID: 30258351 PMCID: PMC6143783 DOI: 10.3389/fnmol.2018.00317] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/16/2018] [Indexed: 12/03/2022] Open
Abstract
Glycine and γ-aminobutyric acid (GABA) are the major determinants of inhibition in the central nervous system (CNS). These neurotransmitters target glycine and GABAA receptors, respectively, which both belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs). Interactions of the neurotransmitters with the cognate receptors result in receptor opening and a subsequent influx of chloride ions, which, in turn, leads to hyperpolarization of the membrane potential, thus counteracting excitatory stimuli. The majority of glycine receptors and a significant fraction of GABAA receptors (GABAARs) are recruited and anchored to the post-synaptic membrane by the central scaffolding protein gephyrin. This ∼93 kDa moonlighting protein is structurally organized into an N-terminal G-domain (GephG) connected to a C-terminal E-domain (GephE) via a long unstructured linker. Both inhibitory neurotransmitter receptors interact via a short peptide motif located in the large cytoplasmic loop located in between transmembrane helices 3 and 4 (TM3-TM4) of the receptors with a universal receptor-binding epitope residing in GephE. Gephyrin engages in nearly identical interactions with the receptors at the N-terminal end of the peptide motif, and receptor-specific interaction toward the C-terminal region of the peptide. In addition to its receptor-anchoring function, gephyrin also interacts with a rather large collection of macromolecules including different cytoskeletal elements, thus acting as central scaffold at inhibitory post-synaptic specializations. Dysfunctions in receptor-mediated or gephyrin-mediated neurotransmission have been identified in various severe neurodevelopmental disorders. Although biochemical, cellular and electrophysiological studies have helped to understand the physiological and pharmacological roles of the receptors, recent high resolution structures of the receptors have strengthened our understanding of the receptors and their gating mechanisms. Besides that, multiple crystal structures of GephE in complex with receptor-derived peptides have shed light into receptor clustering by gephyrin at inhibitory post-synapses. This review will highlight recent biochemical and structural insights into gephyrin and the GlyRs as well as GABAA receptors, which provide a deeper understanding of the molecular machinery mediating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Vikram B Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Takayama M, Kashiwagi M, Matsusue A, Waters B, Hara K, Ikematsu N, Kubo SI. Quantification of immunohistochemical findings of neurofibrillary tangles and senile plaques for a diagnosis of dementia in forensic autopsy cases. Leg Med (Tokyo) 2016; 22:82-9. [DOI: 10.1016/j.legalmed.2016.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/28/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
23
|
Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2279-91. [DOI: 10.1016/j.ajpath.2016.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/20/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022]
|
24
|
Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions. PLoS One 2016; 11:e0152342. [PMID: 27050411 PMCID: PMC4822961 DOI: 10.1371/journal.pone.0152342] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we identified the presence of 23 non-coding features, including four miRNA precursors (miR-7, miR570, miR-1229 and miR-6821), dysregulated across the brain regions. Furthermore, we compared our results with two popular meta-analysis methods RankProd and GeneMeta to validate our findings and performed a sensitivity analysis by removing one dataset at a time to assess the robustness of our results. These new findings may provide new insights into the disease mechanisms and thus make a significant contribution in the near future towards understanding, prevention and cure of AD.
Collapse
Affiliation(s)
- Nisha Puthiyedth
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Carlos Riveros
- Clinical Research Design, Information Technology and Statistics Suport Unit, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Regina Berretta
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Pablo Moscato
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
- * E-mail:
| |
Collapse
|
25
|
Rangaraju S, Gearing M, Jin LW, Levey A. Potassium channel Kv1.3 is highly expressed by microglia in human Alzheimer's disease. J Alzheimers Dis 2015; 44:797-808. [PMID: 25362031 DOI: 10.3233/jad-141704] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent genetic studies suggest a central role for innate immunity in Alzheimer's disease (AD) pathogenesis, wherein microglia orchestrate neuroinflammation. Kv1.3, a voltage-gated potassium channel of therapeutic relevance in autoimmunity, is upregulated by activated microglia and mediates amyloid-mediated microglial priming and reactive oxygen species production in vitro. We hypothesized that Kv1.3 channel expression is increased in human AD brain tissue. In a blinded postmortem immunohistochemical semi-quantitative analysis performed on ten AD patients and ten non-disease controls, we observed a significantly higher Kv1.3 staining intensity (p = 0.03) and Kv1.3-positive cell density (p = 0.03) in the frontal cortex of AD brains, compared to controls. This paralleled an increased number of Iba1-positive microglia in AD brains. Kv1.3-positive cells had microglial morphology and were associated with amyloid-β plaques. In immunofluorescence studies, Kv1.3 channels co-localized primarily with Iba1 but not with astrocyte marker GFAP, confirming that elevated Kv1.3 expression is limited to microglia. Higher Kv1.3 expression in AD brains was also confirmed by western blot analysis. Our findings support that Kv1.3 channels are biologically relevant and microglia-specific targets in human AD.
Collapse
Affiliation(s)
| | - Marla Gearing
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, University of California Davis, CA, USA
| | - Allan Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
26
|
Choii G, Ko J. Gephyrin: a central GABAergic synapse organizer. Exp Mol Med 2015; 47:e158. [PMID: 25882190 DOI: 10.1038/emm.2015.5] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023] Open
Abstract
Gephyrin is a central element that anchors, clusters and stabilizes glycine and γ-aminobutyric acid type A receptors at inhibitory synapses of the mammalian brain. It self-assembles into a hexagonal lattice and interacts with various inhibitory synaptic proteins. Intriguingly, the clustering of gephyrin, which is regulated by multiple posttranslational modifications, is critical for inhibitory synapse formation and function. In this review, we summarize the basic properties of gephyrin and describe recent findings regarding its roles in inhibitory synapse formation, function and plasticity. We will also discuss the implications for the pathophysiology of brain disorders and raise the remaining open questions in this field.
Collapse
Affiliation(s)
- Gayoung Choii
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jaewon Ko
- 1] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea [2] Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Climer S, Templeton AR, Zhang W. Human gephyrin is encompassed within giant functional noncoding yin-yang sequences. Nat Commun 2015; 6:6534. [PMID: 25813846 PMCID: PMC4380243 DOI: 10.1038/ncomms7534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/06/2015] [Indexed: 12/31/2022] Open
Abstract
Gephyrin is a highly-conserved gene that is vital for the organization of proteins at inhibitory receptors, molybdenum cofactor biosynthesis, and other diverse functions. Its specific function is intricately regulated and its aberrant activities have been observed for a number of human diseases. Here we report a remarkable yin-yang haplotype pattern encompassing gephyrin. Yin-yang haplotypes arise when a stretch of DNA evolves to present two disparate forms that bear differing states for nucleotide variations along their lengths. The gephyrin yin-yang pair consists of 284 divergent nucleotide states and both variants vary drastically from their mutual ancestral haplotype, suggesting rapid evolution. Several independent lines of evidence indicate strong positive selection on the region and suggest these high-frequency haplotypes represent two distinct functional mechanisms. This discovery holds potential to deepen our understanding of variable human-specific regulation of gephyrin while providing clues for rapid evolutionary events and allelic migrations buried within human history.
Collapse
Affiliation(s)
- Sharlee Climer
- Department of Computer Science and Engineering, Washington University, St Louis, Missouri 63130, USA
| | - Alan R Templeton
- 1] Department of Biology, Washington University, St Louis, Missouri 63130, USA [2] Department of Genetics, Washington University, St Louis, Missouri 63110, USA [3] Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - Weixiong Zhang
- 1] Department of Computer Science and Engineering, Washington University, St Louis, Missouri 63130, USA [2] Department of Genetics, Washington University, St Louis, Missouri 63110, USA [3] Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
28
|
Abstract
Little is known regarding the identity of the population of proteins that are transported and localized to synapses. Here we describe a new approach that involves the isolation and systematic proteomic characterization of molecular motor kinesins to identify the populations of proteins transported to synapses. We used this approach to identify and compare proteins transported to synapses by kinesin (Kif) complexes Kif5C and Kif3A in the mouse hippocampus and prefrontal cortex. Approximately 40-50% of the protein cargos identified in our proteomics analysis of kinesin complexes are known synaptic proteins. We also found that the identity of kinesins and where they are expressed determine what proteins they transport. Our results reveal a previously unappreciated role of kinesins in regulating the composition of synaptic proteome.
Collapse
|
29
|
Dihydromyricetin Ameliorates Behavioral Deficits and Reverses Neuropathology of Transgenic Mouse Models of Alzheimer’s Disease. Neurochem Res 2014; 39:1171-81. [DOI: 10.1007/s11064-014-1304-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
|