1
|
Katkeviciute E, Bircher A, Sanchez R, Schwill M, Dorst A, Morsy Y, Conde J, Zamboni N, Gademann K, Scharl M, Montalban-Arques A. Bacteria-derived 3-hydroxydodecanoic acid induces a potent anti-tumor immune response via the GPR84 receptor. Cell Rep 2025; 44:115357. [PMID: 40014452 DOI: 10.1016/j.celrep.2025.115357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/03/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Despite advances in cancer treatment, the development of effective therapies remains an urgent unmet need. Here, we investigate the potential of bacteria-derived metabolites as a therapeutic alternative for the treatment of cancer. We detect 3-hydroxydodecanedioic acid in the serum of tumor-bearing mice treated with serum from mice previously supplemented with a mix of Clostridiales bacteria. Further, 3-hydroxydodecanoic acid, an intermediate derivative between dodecanoic and 3-hydroxydodecanedioic acids, exhibits a strong anti-tumor response via GPR84 receptor signaling and enhances CD8+ T cell infiltration and cytotoxicity within tumor tissue in multiple cancer models. Metabolomics analysis of colorectal cancer patient serum reveals an inverse correlation between the abundance of these metabolites and advanced disease stages. Our findings provide a strong rationale for 3-hydroxydodecanoic acid and the GPR84 receptor to be considered as promising therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Recolony AG, 8092 Zurich, Switzerland
| | - Anna Bircher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Rocio Sanchez
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | - Andrea Dorst
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Javier Conde
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Department of Molecular and Cellular Gastroenterology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Ana Montalban-Arques
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; Recolony AG, 8092 Zurich, Switzerland
| |
Collapse
|
2
|
Li JV, Ashrafian H, Sarafian M, Homola D, Rushton L, Barker G, Cabrera PM, Lewis MR, Darzi A, Lin E, Gletsu-Miller NA, Atkin SL, Sathyapalan T, Gooderham NJ, Nicholson JK, Marchesi JR, Athanasiou T, Holmes E. Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype. MICROBIOME 2021; 9:139. [PMID: 34127058 PMCID: PMC8201742 DOI: 10.1186/s40168-021-01086-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Bariatric surgery, used to achieve effective weight loss in individuals with severe obesity, modifies the gut microbiota and systemic metabolism in both humans and animal models. The aim of the current study was to understand better the metabolic functions of the altered gut microbiome by conducting deep phenotyping of bariatric surgery patients and bacterial culturing to investigate causality of the metabolic observations. METHODS Three bariatric cohorts (n = 84, n = 14 and n = 9) with patients who had undergone Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG) or laparoscopic gastric banding (LGB), respectively, were enrolled. Metabolic and 16S rRNA bacterial profiles were compared between pre- and post-surgery. Faeces from RYGB patients and bacterial isolates were cultured to experimentally associate the observed metabolic changes in biofluids with the altered gut microbiome. RESULTS Compared to SG and LGB, RYGB induced the greatest weight loss and most profound metabolic and bacterial changes. RYGB patients showed increased aromatic amino acids-based host-bacterial co-metabolism, resulting in increased urinary excretion of 4-hydroxyphenylacetate, phenylacetylglutamine, 4-cresyl sulphate and indoxyl sulphate, and increased faecal excretion of tyramine and phenylacetate. Bacterial degradation of choline was increased as evidenced by altered urinary trimethylamine-N-oxide and dimethylamine excretion and faecal concentrations of dimethylamine. RYGB patients' bacteria had a greater capacity to produce tyramine from tyrosine, phenylalanine to phenylacetate and tryptophan to indole and tryptamine, compared to the microbiota from non-surgery, normal weight individuals. 3-Hydroxydicarboxylic acid metabolism and urinary excretion of primary bile acids, serum BCAAs and dimethyl sulfone were also perturbed following bariatric surgery. CONCLUSION Altered bacterial composition and metabolism contribute to metabolic observations in biofluids of patients following RYGB surgery. The impact of these changes on the functional clinical outcomes requires further investigation. Video abstract.
Collapse
Affiliation(s)
- Jia V Li
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Hutan Ashrafian
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Magali Sarafian
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Daniel Homola
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Laura Rushton
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Grace Barker
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Paula Momo Cabrera
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Matthew R Lewis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Ara Darzi
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Edward Lin
- Division of General and Gastrointestinal Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Nana Adwoa Gletsu-Miller
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, 1025 E 7th Street, Bloomington, IN, 47405, USA
| | | | - Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull-York Medical School, Hull, UK
| | - Nigel J Gooderham
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, The Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA, 6150, Australia
| | - Julian R Marchesi
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK
| | - Thanos Athanasiou
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Elaine Holmes
- Division of Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, SW7 2AZ, UK.
- Centre for Computational and Systems Medicine, The Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA, 6150, Australia.
| |
Collapse
|
3
|
Natarajan SK, Ibdah JA. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy. Int J Mol Sci 2018; 19:ijms19010322. [PMID: 29361796 PMCID: PMC5796265 DOI: 10.3390/ijms19010322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA.
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA.
| |
Collapse
|
4
|
Chen A, Roberts DJ. Placental pathologic lesions with a significant recurrence risk - what not to miss! APMIS 2017; 126:589-601. [PMID: 29271494 DOI: 10.1111/apm.12796] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Abstract
Here, we review three important placental pathologies with significant clinical implications and recurrence risks. They are, in order of most to least frequently seen, villitis of unknown etiology, chronic histiocytic intervillositis, and massive perivillous fibrin deposition (also known as maternal floor infarction). These entities occur in both preterm and term gestations and are observed more frequently with maternal and obstetric disorders including prior pregnancy loss, hypertension/preeclampsia, and autoimmune disease. They are associated with, and probably the cause of, significant perinatal morbidity and mortality including intrauterine growth restriction, fetal and neonatal demise, and fetal/neonatal neurocompromise (seizures and cerebral palsy). All three entities have high recurrence risks, with recurrence rates ranging from 34 to 100%. The histologic features of villitis of unknown etiology, chronic histiocytic intervillositis, and massive perivillous fibrin deposition are described herein. We discuss the clinical associations and suggest the subsequent clinical and pathological evaluation. Hypotheses as to the biology of these lesions are reviewed.
Collapse
Affiliation(s)
- Athena Chen
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Kao YT, Chang BL, Liang JJ, Tsai HJ, Lee YL, Lin RJ, Lin YL. Japanese encephalitis virus nonstructural protein NS5 interacts with mitochondrial trifunctional protein and impairs fatty acid β-oxidation. PLoS Pathog 2015; 11:e1004750. [PMID: 25816318 PMCID: PMC4376648 DOI: 10.1371/journal.ppat.1004750] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/17/2015] [Indexed: 01/16/2023] Open
Abstract
Infection with Japanese encephalitis virus (JEV) can induce the expression of pro-inflammatory cytokines and cause acute encephalitis in humans. β-oxidation breaks down fatty acids for ATP production in mitochondria, and impaired β-oxidation can induce pro-inflammatory cytokine expression. To address the role of fatty-acid β-oxidation in JEV infection, we measured the oxygen consumption rate of mock- and JEV-infected cells cultured with or without long chain fatty acid (LCFA) palmitate. Cells with JEV infection showed impaired LCFA β-oxidation and increased interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) expression. JEV nonstructural protein 5 (NS5) interacted with hydroxyacyl-CoA dehydrogenase α and β subunits, two components of the mitochondrial trifunctional protein (MTP) involved in LCFA β-oxidation, and NS5 proteins were detected in mitochondria and co-localized with MTP. LCFA β-oxidation was impaired and higher cytokines were induced in cells overexpressing NS5 protein as compared with control cells. Deletion and mutation studies showed that the N-terminus of NS5 was involved in the MTP association, and a single point mutation of NS5 residue 19 from methionine to alanine (NS5-M19A) reduced its binding ability with MTP. The recombinant JEV with NS5-M19A mutation (JEV-NS5-M19A) was less able to block LCFA β-oxidation and induced lower levels of IL-6 and TNF-α than wild-type JEV. Moreover, mice challenged with JEV-NS5-M19A showed less neurovirulence and neuroinvasiveness. We identified a novel function of JEV NS5 in viral pathogenesis by impairing LCFA β-oxidation and inducing cytokine expression by association with MTP.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Lan Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hang-Jen Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ren-Jye Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Laeremans A, Van de Plas B, Clerens S, Van den Bergh G, Arckens L, Hu TT. Protein expression dynamics during postnatal mouse brain development. J Exp Neurosci 2013; 7:61-74. [PMID: 25157209 PMCID: PMC4089830 DOI: 10.4137/jen.s12453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation.
Collapse
Affiliation(s)
- Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| | - Babs Van de Plas
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| | - Stefan Clerens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium. ; Group of Food & Bio-based Products, AgResearch Ltd., Christchurch, New Zealand
| | - Gert Van den Bergh
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium. ; Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Yamamoto T, Fujimura Y, Emoto Y, Kuriu Y, Iino M, Matoba R. Autopsy case of sudden maternal death from thrombotic thrombocytopenic purpura. J Obstet Gynaecol Res 2012; 39:351-4. [DOI: 10.1111/j.1447-0756.2012.01941.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Douillard C, Mention K, Dobbelaere D, Wemeau JL, Saudubray JM, Vantyghem MC. Hypoglycaemia related to inherited metabolic diseases in adults. Orphanet J Rare Dis 2012; 7:26. [PMID: 22587661 PMCID: PMC3458880 DOI: 10.1186/1750-1172-7-26] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 03/19/2012] [Indexed: 12/15/2022] Open
Abstract
In non-diabetic adult patients, hypoglycaemia may be related to drugs, critical illness, cortisol or glucagon insufficiency, non-islet cell tumour, insulinoma, or it may be surreptitious. Nevertheless, some hypoglycaemic episodes remain unexplained, and inborn errors of metabolism (IEM) should be considered, particularly in cases of multisystemic involvement. In children, IEM are considered a differential diagnosis in cases of hypoglycaemia. In adulthood, IEM-related hypoglycaemia can persist in a previously diagnosed childhood disease. Hypoglycaemia may sometimes be a presenting sign of the IEM. Short stature, hepatomegaly, hypogonadism, dysmorphia or muscular symptoms are signs suggestive of IEM-related hypoglycaemia. In both adults and children, hypoglycaemia can be clinically classified according to its timing. Postprandial hypoglycaemia can be an indicator of either endogenous hyperinsulinism linked to non-insulinoma pancreatogenic hypoglycaemia syndrome (NIPHS, unknown incidence in adults) or very rarely, inherited fructose intolerance. Glucokinase-activating mutations (one family) are the only genetic disorder responsible for NIPH in adults that has been clearly identified so far. Exercise-induced hyperinsulinism is linked to an activating mutation of the monocarboxylate transporter 1 (one family). Fasting hypoglycaemia may be caused by IEM that were already diagnosed in childhood and persist into adulthood: glycogen storage disease (GSD) type I, III, 0, VI and IX; glucose transporter 2 deficiency; fatty acid oxidation; ketogenesis disorders; and gluconeogenesis disorders. Fasting hypoglycaemia in adulthood can also be a rare presenting sign of an IEM, especially in GSD type III, fatty acid oxidation [medium-chain acyl-CoA dehydrogenase (MCAD), ketogenesis disorders (3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) lyase deficiency, and gluconeogenesis disorders (fructose-1,6-biphosphatase deficiency)].
Collapse
Affiliation(s)
- Claire Douillard
- Service d'Endocrinologie et maladies Métaboliques, Hôpital Claude Huriez, Centre Hospitalier Régional et Universitaire de Lille, France.
| | | | | | | | | | | |
Collapse
|
9
|
Natarajan SK, Thangaraj KR, Goel A, Eapen CE, Balasubramanian KA, Ramachandran A. Acute fatty liver of pregnancy: an update on mechanisms. Obstet Med 2011; 4:99-103. [PMID: 27579101 DOI: 10.1258/om.2011.100071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 12/18/2022] Open
Abstract
Acute fatty liver of pregnancy (AFLP), characterized by hepatic microvesicular steatosis, is a sudden catastrophic illness occurring almost exclusively in the third trimester of pregnancy. Defective fatty acid oxidation in the fetus has been shown to be associated with this disease. Since the placenta has the same genetic makeup as the fetus and as AFLP patients generally recover following delivery, we hypothesized that the placenta might be involved in pathogenesis of this disease. In an animal model of hepatic microvesicular steatosis (using sodium valproate), we found that microvesicular steatosis results in mitochondrial structural alterations and oxidative stress in subcellular organelles of the liver. In placentas from patients with AFLP, we observed placental mitochondrial dysfunction and oxidative stress in subcellular organelles. In addition, defective placental fatty acid oxidation results in accumulation of toxic mediators such as arachidonic acid. Escape of these mediators into the maternal circulation might affect the maternal liver resulting in microvesicular steatosis.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College , Ida Scudder Road, Vellore 632004 , India
| | - Kavitha R Thangaraj
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College , Ida Scudder Road, Vellore 632004 , India
| | - Ashish Goel
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College , Ida Scudder Road, Vellore 632004 , India
| | - C E Eapen
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College , Ida Scudder Road, Vellore 632004 , India
| | - K A Balasubramanian
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College , Ida Scudder Road, Vellore 632004 , India
| | - Anup Ramachandran
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College , Ida Scudder Road, Vellore 632004 , India
| |
Collapse
|
10
|
Meng C, Jin X, Xia L, Shen SM, Wang XL, Cai J, Chen GQ, Wang LS, Fang NY. Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J Proteome Res 2009; 8:2463-75. [PMID: 19265432 DOI: 10.1021/pr801059u] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial dysfunction is recently thought to be tightly associated with the development of cardiac hypertrophy as well as hypertension. However, the detailed molecular events in mitochondria at early stages of hypertrophic pathogenesis are still unclear. Applying two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF tandem mass spectrometry, here we identified the changed mitochondrial proteins of left ventricular mitochondria in prehypertensive/hypertensive stages of cardiac hypertrophy through comparing spontaneously hypertensive rats (SHR) and the age-matched normotensive Wistar Kyoto (WKY) rats. The results revealed that in the hypertrophic left ventricle of SHR as early as 4 weeks old with normal blood pressure, 33 mitochondrial protein spots presented significant alterations, with 17 down-regulated and 16 up-regulated. Such alterations were much greater than those in 20-week-old SHR with elevated blood pressure. Of the total alterations, the expression of two mitochondrial enzymes, trifunctional enzyme alpha subunit (Hadha) and NADH dehydrogenase 1 alpha subcomplex 10 (Ndufa10), were found to have special expression modification patterns in SHR strain. These data would provide new clues to investigate the potential contribution of mitochondrial dysfunction to the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Chao Meng
- The Department of Geriatrics, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Inherited defects in mitochondrial fatty-acid beta-oxidation comprise a group of at least 12 diseases characterized by distinct enzyme or transporter deficiencies. Most of these diseases have a variable age of onset and clinical severity. Symptoms are often episodic and associated with mild viral illness, physiologic stress, or prolonged exercise that overwhelms the ability of mitochondria to oxidize fatty acids. Depending on the specific genetic defect, patients develop fasting hypoketotic hypoglycemia, cardiomyopathy, rhabdomyolysis, liver dysfunction, or sudden death. Neuropathy and pigmentary retinopathy are seen in some of the diseases. The diagnosis is based on finding an accumulation of specific biochemical markers such as acylcarnitine metabolites in blood and urinary dicarboxylic acids and acylglycines. Confirmatory testing requires enzymatic studies and DNA analysis. Therapeutic approaches are generally effective in preventing severe symptomatic episodes, including sudden death. Newborn screening for fatty-acid oxidation disorders promises to identify many affected patients before the onset of symptoms.
Collapse
Affiliation(s)
- Michelle Kompare
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
12
|
Butt YM, Kamrudin SA, Rakheja D. Highly active antiretroviral therapy does not affect mitochondrial beta-oxidation of fatty acids: an in vitro study in fibroblasts. Pediatr Dev Pathol 2008; 11:35-8. [PMID: 18240871 DOI: 10.2350/06-11-0186.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 05/24/2007] [Indexed: 11/20/2022]
Abstract
Preeclampsia is a multifactorial pregnancy-specific disease. In some cases, severe preeclampsia and related disorders of acute fatty liver of pregnancy and hemolysis, elevated liver enzymes, low platelets syndrome are associated with inherited defects in mitochondrial beta-oxidation of fatty acids, especially a deficiency of long-chain 3-hydroxyacyl coenzyme A dehydrogenase (LCHAD). Recently, an unexplained increase in the incidence of preeclampsia has been documented in human immunodeficiency virus (HIV)-infected pregnant women on treatment with highly active antiretroviral therapy (HAART). We performed this study to determine if antiretroviral drugs affect mitochondrial beta-oxidation fatty acids in vitro. Two normal and 1 heterozygous LCHAD-deficient cell lines were exposed to up to 5 times the therapeutic concentrations of the following antiretroviral drugs: nevirapine, didanosine, lamivudine, and a combination of nelfinavir, zidovudine, and lamivudine. One homozygous LCHAD-deficient cell line served as the positive control. After exposure of the fibroblasts to these drugs for periods ranging from 2 to 10 days, accumulations of even-chain 3-hydroxy fatty acids (3-OH-C6 to 3-OH-C18) in the culture media were measured by stable-isotope dilution gas chromatography/mass spectrometry. Compared to the respective unexposed fibroblasts, there was no significant build-up of 3-hydroxy fatty acids in the culture media of normal or heterozygous LCHAD-deficient fibroblasts exposed to antiretroviral drugs. Our results show that the commonly used antiretroviral drugs do not adversely affect fatty acid oxidation in fibroblasts. Therefore, an altered fatty acid oxidation may not be the mechanism for the reported increased risk of preeclampsia in HIV-infected pregnant women on HAART.
Collapse
|
13
|
Przkora R, Haslbeck M, Jeschke MG, Heyde C, Ertel W, Herndon DN, Bolder U. Heat stress modulates hepatocyte membrane proteins during endotoxemia. Burns 2007; 33:628-33. [PMID: 17374454 DOI: 10.1016/j.burns.2006.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 08/15/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatic failure following sepsis is one of the important features of burns. Studies have shown that in septic rats, heat stress (HS) has a protective effect on bile acid transporters in hepatocyte membranes. This study investigates the influence of HS on hepatocyte membrane proteins during endotoxemia using 2D gel electrophoresis. METHODS Endotoxemia in rats was induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (n=24), while control rats (n=24) received saline. Twelve rats from each group were exposed to HS 2h prior to LPS or saline injection by external warming to 42 degrees C for 10 min and 12 rats in each group were exposed to ambient temperature 2h prior to LPS or saline injection. Membrane fractions were extracted 12, 24 and 72 h after LPS or saline treatment. Extracted proteins were separated using 2D gel electrophoresis. The most dominant spots were analyzed by MALDI-TOF-MS. RESULTS Two-dimensional gel electrophoresis differentially identified expressed proteins in all treatment groups. The majority of the spots developed 24h after injection. Membrane proteins; Wnt 13, ribosomal protein L14, VLCAD, BHMT and HIT-40 were found only in HS-LPS. Protein profiles of the groups returned to normal after 72 h. CONCLUSION We propose that HS during endotoxemia changes hepatic membrane proteins expression, which are involved in metabolism.
Collapse
Affiliation(s)
- Rene Przkora
- Shriners Hospital for Children and Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
McClaskey JH, Leman AR, Rothberg PG. Homogeneous amplification nucleobase quenching assay to detect the E474Q LCHAD deficiency mutation. ACTA ACUST UNITED AC 2005; 9:1-5. [PMID: 15857179 DOI: 10.1089/gte.2005.9.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency is a rare and potentially fatal autosomal recessive disorder of fatty acid metabolism. Early institution of dietary therapy is essential and places a premium on rapid diagnosis. Pregnancy with an LCHAD-deficient fetus is often complicated in the third trimester by liver disease, particularly acute fatty liver of pregnancy. All cases of isolated LCHAD deficiency have at least one copy of the E474Q mutation in the gene encoding the alpha-subunit of the mitochondrial trifunctional protein. Previously published methods for detecting this mutation are based upon allele-specific restriction enzyme digestion of a DNA fragment generated by PCR, followed by gel electrophoresis to resolve the products. We have developed a faster and less expensive assay for the E474Q mutation using PCR followed directly by differential melting of a fluorescently labeled oligodeoxyribonucleotide probe, using nucleobase quenching to detect probe hybridization.
Collapse
Affiliation(s)
- John H McClaskey
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
15
|
Outlaw WM, Ibdah JA. Impaired fatty acid oxidation as a cause of liver disease associated with hyperemesis gravidarum. Med Hypotheses 2005; 65:1150-3. [PMID: 16040200 DOI: 10.1016/j.mehy.2005.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 05/19/2005] [Indexed: 12/27/2022]
Abstract
Hyperemesis gravidarum (HG) is the most severe form of illness within the spectrum of nausea and vomiting of pregnancy. Liver disease, usually consisting of mild serum transaminase elevation, occurs in almost 50% of patients with HG. While multiple risk factors have been proposed, the etiology and underlying mechanism of maternal liver disease associated with HG remains unclear. In this report, we hypothesize that impairment of mitochondrial fatty acid oxidation (FAO) plays a role in the pathogenesis of maternal liver disease associated with HG. We hypothesize that women heterozygous for FAO defects develop HG associated with liver disease while carrying fetuses with FAO defects due to accumulation of fatty acids in placenta and subsequent generation of reactive oxygen species. Alternatively, it is possible that starvation leading to peripheral lipolysis and increased load of fatty acids in maternal-fetal circulation, combined with reduced capacity of the mitochondria to oxidize fatty acids in mothers heterozygous for FAO defects, can also cause HG and liver injury while carrying non-affected fetuses. The rationale for this hypothesis is discussed.
Collapse
Affiliation(s)
- William M Outlaw
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | | |
Collapse
|
16
|
Sander J, Sander S, Steuerwald U, Janzen N, Peter M, Wanders RJA, Marquardt I, Korenke GC, Das AM. Neonatal screening for defects of the mitochondrial trifunctional protein. Mol Genet Metab 2005; 85:108-14. [PMID: 15896654 DOI: 10.1016/j.ymgme.2005.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/02/2005] [Accepted: 02/04/2005] [Indexed: 01/04/2023]
Abstract
Long-chain l-3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency has been included in the routine neonatal screening program by the German screening commission. As tandem mass spectrometry (TMS) does not discriminate between the different defects of the mitochondrial trifunctional protein (MTP) screening for isolated LCHAD deficiency includes the detection of long-chain 3-ketoacyl-CoA thiolase and complete MTP deficiencies as well. We identified 11 patients with abnormalities of the MTP out of 1.2 million newborns screened in our laboratory during the last 6 years. Treatment was started on the day the screening result was obtained (day 3 to day 9 of life). Seven of these newborns developed satisfactorily during an observation period of up to 64 months. They had isolated LCHAD deficiency, four of them caused by the typical mutation (1528 G>C), three others had no molecular genetic analysis done or were shown to have previously unknown mutations. Four children did not survive, two of them showing complete deficiency of MTP and two showing deficiency of long-chain 3-ketoacyl-CoA thiolase. We conclude that, despite the rarity of the disease, screening for MTP deficiencies is justified based on the following criteria: improved quality of life for patients with isolated LCHAD deficiency, absence of stigmatisation of babies showing mild variants without necessity of treatment, no significant increase of the total number of false positive screening results, no false negative results to our knowledge. Finally, extension of analysis to MTP deficiencies is achieved without additional costs for screening laboratories already using TMS.
Collapse
Affiliation(s)
- Johannes Sander
- Screening Laboratory, Hannover, Postfach 911009, D 30430 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Holub M, Bodamer OA, Item C, Mühl A, Pollak A, Stöckler-Ipsiroglu S. Lack of correlation between fatty acid oxidation disorders and haemolysis, elevated liver enzymes, low platelets (HELLP) syndrome? Acta Paediatr 2005; 94:48-52. [PMID: 15858960 DOI: 10.1111/j.1651-2227.2005.tb01787.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Fatty acid beta-oxidation defects comprise a heterogeneous group of disorders that may precipitate acute life threatening metabolic crises particularly during catabolic episodes. Several studies have demonstrated a possible association between fatty acid beta-oxidation defects, including long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and severe pregnancy complications. However, the precise percentage of women with haemolysis, elevated liver enzymes, low platelets (HELLP) syndrome associated with foetal fatty acid beta-oxidation defects is not known. METHODS We carried out a multicentre retrospective study on 88 infants, born to women with HELLP syndrome. Acylcarnitine profiles from blood dried on filter paper cards were analysed by tandem mass spectrometry for the diagnosis of fatty acid beta-oxidation defects. In addition, we screened for the common long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency mutation using a standard restriction fragment length polymorphism polymerase chain reaction method. RESULTS None of the infants studied carried the common long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency mutation. There was no evidence of fatty acid beta-oxidation defects, including long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency, as expected by unremarkable acylcarnitine profiles, while three infants with fatty acid beta-oxidation defects were diagnosed in the control group. CONCLUSIONS Neither foetal long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency, including heterozygosity for the common long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency mutation, nor fatty acid beta-oxidation defects in general are a major risk factor for HELLP syndrome in Austria.
Collapse
Affiliation(s)
- M Holub
- Department of Neonatology and Paediatric Intensive Care Medicine, University Hospital Vienna, Austria
| | | | | | | | | | | |
Collapse
|
19
|
Blish KR, Ibdah JA. Maternal heterozygosity for a mitochondrial trifunctional protein mutation as a cause for liver disease in pregnancy. Med Hypotheses 2005; 64:96-100. [PMID: 15533621 DOI: 10.1016/j.mehy.2004.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 06/04/2004] [Indexed: 12/27/2022]
Abstract
Acute fatty liver of pregnancy (AFLP) and hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome are serious complications of pregnancy associated with significant maternal and perinatal morbidity and mortality. In previous reports, we have documented an association between AFLP and fetal deficiency of long-chain 3-hydroxyacyl coenzyme A dehydrogenase (LCHAD) [N. Engl. J. Med. 340 (1999) 1723-1731; JAMA 288 (2002) 2163-2166]. LCHAD activity resides in the alpha-subunit of the mitochondrial trifunctional protein (MTP), a complex protein that catalyzes beta-oxidation of long chain fatty acids. In all reported cases, the fetus carried a common alpha-subunit MTP mutation (G1528C, E474Q) on one or both alleles. However, the association between fetal LCHAD deficiency and the maternal HELLP syndrome has been limited. Here, we report a case history of a 27-year-old black female who underwent Cesarean section for placenta previa and fetal distress at 36 weeks gestation. The newborn was a healthy male child. Post-delivery, the mother developed severe HELLP syndrome with complications resulting in death of the patient. We used single strand conformation variance and nucleotide sequence analyses to screen DNA isolated from the mother and the newborn for mutations in the MTP alpha-subunit. The mother was heterozygous for a novel mutation (C1072A, Q322K) in exon 11 of the LCHAD domain of the MTP, while the fetal genotype was completely normal. We hypothesize that, in some cases, maternal heterozygosity for an MTP mutation maybe sufficient to cause the development of maternal liver disease without carrying an affected fetus. Combination of the metabolic stress of pregnancy and other environmental stresses may overwhelm the heterozygous mother's capacity for effective metabolism of long chain fatty acids, leading to an accumulation of potentially toxic fatty acid metabolites in the maternal circulation with subsequent damage to the maternal liver.
Collapse
Affiliation(s)
- Kimberly R Blish
- Division of Gastroenterology, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|