1
|
Torghabe SY, Alavi P, Rostami S, Davies NM, Kesharwani P, Karav S, Sahebkar A. Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer. Pathol Res Pract 2025; 265:155741. [PMID: 39612810 DOI: 10.1016/j.prp.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps. Dietary phytochemicals have been identified as having the potential to inhibit carcinogenesis recently. As part of this group of phytochemicals, curcumin can play a crucial role in suppressing carcinogenesis by changing many reactions affected by the ubiquitin-proteasome pathway. Due to its ability to change some biological processes such as NF-κB, inhibit some cyclins, and induce apoptosis, it can be used as a drug in cancer treatment.
Collapse
Affiliation(s)
- Shima Yahoo Torghabe
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Parisa Alavi
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Rostami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Science and Culture University, Tehran, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Alessandroni L, Sagratini G, Gagaoua M. Proteomics and bioinformatics analyses based on two-dimensional electrophoresis and LC-MS/MS for the primary characterization of protein changes in chicken breast meat from divergent farming systems: Organic versus antibiotic-free. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100194. [PMID: 38298469 PMCID: PMC10828576 DOI: 10.1016/j.fochms.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024]
Abstract
Proteomics is a key analytical method in meat research thanks to its potential in investigating the proteins at interplay in post-mortem muscles. This study aimed to characterize for the first time the differences in early post-mortem muscle proteomes of chickens raised under two farming systems: organic versus antibiotic-free. Forty post-mortem Pectoralis major muscle samples from two chicken strains (Ross 308 versus Ranger Classic) reared under organic versus antibiotic-free farming systems were characterized and compared using two-dimensional electrophoresis and LC-MS/MS mass spectrometry. Within antibiotic-free and organic farming systems, 14 and 16 proteins were differentially abundant between Ross 308 and Ranger Classic, respectively. Within Ross 308 and Ranger Classic chicken strains, 12 and 18 proteins were differentially abundant between organic and antibiotic-free, respectively. Bioinformatics was applied to investigate the molecular pathways at interplay, which highlighted the key role of muscle structure and energy metabolism. Antibiotic-free and organic farming systems were found to significantly impact the muscle proteome of chicken breast meat. This paper further proposes a primary list of putative protein biomarkers that can be used for chicken meat or farming system authenticity.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | | |
Collapse
|
3
|
McMahon A, Zhao J, Yan S. Ubiquitin-mediated regulation of APE2 protein abundance. J Biol Chem 2024; 300:107337. [PMID: 38705397 PMCID: PMC11157268 DOI: 10.1016/j.jbc.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
APE2 plays important roles in the maintenance of genomic and epigenomic stability including DNA repair and DNA damage response. Accumulating evidence has suggested that APE2 is upregulated in multiple cancers at the protein and mRNA levels and that APE2 upregulation is correlative with higher and lower overall survival of cancer patients depending on tumor type. However, it remains unknown how APE2 protein abundance is maintained and regulated in cells. Here, we provide the first evidence of APE2 regulation via the posttranslational modification ubiquitin. APE2 is poly-ubiquitinated via K48-linked chains and degraded via the ubiquitin-proteasome system where K371 is the key residue within APE2 responsible for its ubiquitination and degradation. We further characterize MKRN3 as the E3 ubiquitin ligase for APE2 ubiquitination in cells and in vitro. In summary, this study offers the first definition of the APE2 proteostasis network and lays the foundation for future studies pertaining to the posttranslational modification regulation and functions of APE2 in genome integrity and cancer etiology/treatment.
Collapse
Affiliation(s)
- Anne McMahon
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, North Carolina, USA; Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.
| |
Collapse
|
4
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
5
|
Hurtado Silva M, van Waardenberg AJ, Mostafa A, Schoch S, Dietrich D, Graham ME. Multiomics of early epileptogenesis in mice reveals phosphorylation and dephosphorylation-directed growth and synaptic weakening. iScience 2024; 27:109534. [PMID: 38600976 PMCID: PMC11005001 DOI: 10.1016/j.isci.2024.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2022] [Revised: 01/26/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
To investigate the phosphorylation-based signaling and protein changes occurring early in epileptogenesis, the hippocampi of mice treated with pilocarpine were examined by quantitative mass spectrometry at 4 and 24 h post-status epilepticus at vast depth. Hundreds of posttranscriptional regulatory proteins were the major early targets of increased phosphorylation. At 24 h, many protein level changes were detected and the phosphoproteome continued to be perturbed. The major targets of decreased phosphorylation at 4 and 24 h were a subset of postsynaptic density scaffold proteins, ion channels, and neurotransmitter receptors. Many proteins targeted by dephosphorylation at 4 h also had decreased protein abundance at 24 h, indicating a phosphatase-mediated weakening of synapses. Increased translation was indicated by protein changes at 24 h. These observations, and many additional indicators within this multiomic resource, suggest that early epileptogenesis is characterized by signaling that stimulates both growth and a homeostatic response that weakens excitability.
Collapse
Affiliation(s)
- Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | | - Aya Mostafa
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Mark E. Graham
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
6
|
Das I, Shay-Winkler K, Emmert ME, Goh Q, Cornwall R. The Relative Efficacy of Available Proteasome Inhibitors in Preventing Muscle Contractures Following Neonatal Brachial Plexus Injury. J Bone Joint Surg Am 2024; 106:727-734. [PMID: 38194588 PMCID: PMC11023787 DOI: 10.2106/jbjs.23.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Contractures following neonatal brachial plexus injury (NBPI) are associated with growth deficits in denervated muscles. This impairment is mediated by an increase in muscle protein degradation, as contractures can be prevented in an NBPI mouse model with bortezomib (BTZ), a proteasome inhibitor (PI). However, BTZ treatment causes substantial toxicity (0% to 80% mortality). The current study tested the hypothesis that newer-generation PIs can prevent contractures with less severe toxicity than BTZ. METHODS Unilateral brachial plexus injuries were surgically created in postnatal (5-day-old) mice. Following NBPI, mice were treated with either saline solution or various doses of 1 of 3 different PIs: ixazomib (IXZ), carfilzomib (CFZ), or marizomib (MRZ). Four weeks post-NBPI, mice were assessed for bilateral passive range of motion at the shoulder and elbow joints, with blinding to the treatment group, through an established digital photography technique to determine contracture severity. Drug toxicity was assessed with survival curves. RESULTS All PIs prevented contractures at both the elbow and shoulder (p < 0.05 versus saline solution controls), with the exception of IXZ, which did not prevent shoulder contractures. However, their efficacies and toxicity profiles differed. At lower doses, CFZ was limited by toxicity (30% to 40% mortality), whereas MRZ was limited by efficacy. At higher doses, CFZ was limited by loss of efficacy, MRZ was limited by toxicity (50% to 60% mortality), and IXZ was limited by toxicity (80% to 100% mortality) and loss of efficacy. Comparisons of the data on these drugs as well as data on BTZ generated in prior studies revealed BTZ to be optimal for preventing contractures, although it, too, was limited by toxicity. CONCLUSIONS All of the tested second-generation PIs were able to reduce NBPI-induced contractures, offering further proof of concept for a regulatory role of the proteasome in contracture formation. However, the narrow dose ranges of efficacy for all PIs highlight the necessity of precise proteasome regulation for preventing contractures. Finally, the substantial toxicity stemming from proteasome inhibition underscores the importance of identifying muscle-targeted strategies to suppress protein degradation and prevent contractures safely. CLINICAL RELEVANCE Although PIs offer unique opportunities to establish critical mechanistic insights into contracture pathophysiology, their clinical use is contraindicated in patients with NPBI at this time.
Collapse
Affiliation(s)
- Indranshu Das
- Department of Medical Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
7
|
Nelson S, Harris TJ, Muli CS, Maresch ME, Baker B, Smith C, Neumann C, Trader DJ, Parkinson EI. Discovery and Development of Cyclic Peptide Proteasome Stimulators. Chembiochem 2024; 25:e202300671. [PMID: 38055197 PMCID: PMC10993313 DOI: 10.1002/cbic.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
The proteasome degrades proteins, which is essential for cellular homeostasis. Ubiquitin independent proteolysis degrades highly disordered and misfolded proteins. A decline of proteasomal activity has been associated with multiple neurodegenerative diseases due to the accumulation of misfolded proteins. In this work, cyclic peptide proteasome stimulators (CyPPSs) that enhance the clearance of misfolded proteins were discovered. In the initial screen of predicted natural products (pNPs), several cyclic peptides were found to stimulate the 20S core particle (20S CP). Development of a robust structural activity relationship led to the identification of potent, cell permeable CyPPSs. In vitro assays revealed that CyPPSs stimulate degradation of highly disordered and misfolded proteins without affecting ordered proteins. Furthermore, using a novel flow-based assay for proteasome activity, several CyPPSs were found to stimulate the 20S CP in cellulo. Overall, this work describes the development of CyPPSs as chemical tools capable of stimulating the proteasome and provides strong support for proteasome stimulation as a therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Samantha Nelson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Timothy J. Harris
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Marianne E. Maresch
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Braden Baker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chloe Smith
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Chris Neumann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California, 92697, United States
| | - Elizabeth I. Parkinson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
8
|
Chandran A, Oliver HJ, Rochet JC. Role of NFE2L1 in the Regulation of Proteostasis: Implications for Aging and Neurodegenerative Diseases. BIOLOGY 2023; 12:1169. [PMID: 37759569 PMCID: PMC10525699 DOI: 10.3390/biology12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023]
Abstract
A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis ("proteostasis") that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in the clearance of small, short-lived proteins, including amyloidogenic proteins that form aggregates in neurodegenerative diseases. Age-dependent decreases in proteasome subunit expression coupled with the inhibition of proteasome function by aggregated UPS substrates result in a feedforward loop that accelerates disease progression. Nuclear factor erythroid 2- like 1 (NFE2L1) is a transcription factor primarily responsible for the proteasome inhibitor-induced "bounce-back effect" regulating the expression of proteasome subunits. NFE2L1 is localized to the endoplasmic reticulum (ER), where it is rapidly degraded under basal conditions by the ER-associated degradation (ERAD) pathway. Under conditions leading to proteasome impairment, NFE2L1 is cleaved and transported to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter region of proteasome subunit genes, thereby stimulating their transcription. In this review, we summarize the role of UPS impairment in aging and neurodegenerative disease etiology and consider the potential benefit of enhancing NFE2L1 function as a strategy to upregulate proteasome function and alleviate pathology in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Haley Jane Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
de Souza W, Gemini-Piperni S, Grenho L, Rocha LA, Granjeiro JM, Melo SA, Fernandes MH, Ribeiro AR. Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cells. Biomater Sci 2023; 11:2427-2444. [PMID: 36756939 DOI: 10.1039/d2bm01854c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/10/2023]
Abstract
Titanium (Ti) and its alloys are the most widely used metallic biomaterials in total joint replacement; however, increasing evidence supports the degradation of its surface due to corrosion and wear processes releasing debris (ions, and micro and nanoparticles) and contribute to particle-induced osteolysis and implant loosening. Cell-to-cell communication involving several cell types is one of the major biological processes occurring during bone healing and regeneration at the implant-bone interface. In addition to the internal response of cells to the uptake and intracellular localization of wear debris, a red flag is the ability of titanium dioxide nanoparticles (mimicking wear debris) to alter cellular communication with the tissue background, disturbing the balance between osseous tissue integrity and bone regenerative processes. This study aims to understand whether titanium dioxide nanoparticles (TiO2 NPs) alter osteoblast-derived exosome (Exo) biogenesis and whether exosomal protein cargos affect the communication of osteoblasts with human mesenchymal stem/stromal cells (HMSCs). Osteoblasts are derived from mesenchymal stem cells coexisting in the bone microenvironment during development and remodelling. We observed that TiO2 NPs stimulate immature osteoblast- and mature osteoblast-derived Exo secretion that present a distinct proteomic cargo. Functional tests confirmed that Exos derived from both osteoblasts decrease the osteogenic differentiation of HMSCs. These findings are clinically relevant since wear debris alter extracellular communication in the bone periprosthetic niche, contributing to particle-induced osteolysis and consequent prosthetic joint failure.
Collapse
Affiliation(s)
- Wanderson de Souza
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - S Gemini-Piperni
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil.,Lab∈n Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Liliana Grenho
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Luís A Rocha
- Physics Department, Paulista State University, São Paulo, Brazil.,IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - José M Granjeiro
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil.,Dental School, Fluminense Federal University, Niterói, Brazil
| | - Sonia A Melo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Maria H Fernandes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Ana R Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,NanoSafety group, International Iberian Nanotechnology Laboratory - INL, 4715-330, Braga, Portugal.
| |
Collapse
|
10
|
Urbański A, Johnston P, Bittermann E, Keshavarz M, Paris V, Walkowiak-Nowicka K, Konopińska N, Marciniak P, Rolff J. Tachykinin-related peptides modulate immune-gene expression in the mealworm beetle Tenebrio molitor L. Sci Rep 2022; 12:17277. [PMID: 36241888 PMCID: PMC9568666 DOI: 10.1038/s41598-022-21605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tachykinins (TKs) are a group of conserved neuropeptides. In insects, tachykinin-related peptides (TRPs) are important modulators of several functions such as nociception and lipid metabolism. Recently, it has become clear that TRPs also play a role in regulating the insect immune system. Here, we report a transcriptomic analysis of changes in the expression levels of immune-related genes in the storage pest Tenebrio molitor after treatment with Tenmo-TRP-7. We tested two concentrations (10-8 and 10-6 M) at two time points, 6 and 24 h post-injection. We found significant changes in the transcript levels of a wide spectrum of immune-related genes. Some changes were observed 6 h after the injection of Tenmo-TRP-7, especially in relation to its putative anti-apoptotic action. Interestingly, 24 h after the injection of 10-8 M Tenmo-TRP-7, most changes were related to the regulation of the cellular response. Applying 10-6 M Tenmo-TRP-7 resulted in the downregulation of genes associated with humoral responses. Injecting Tenmo-TRP-7 did not affect beetle survival but led to a reduction in haemolymph lysozyme-like antibacterial activity, consistent with the transcriptomic data. The results confirmed the immunomodulatory role of TRP and shed new light on the functional homology between TRPs and TKs.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland ,grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Paul Johnston
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany ,grid.419247.d0000 0001 2108 8097Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Elisa Bittermann
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Maryam Keshavarz
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Véronique Paris
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.1008.90000 0001 2179 088XBio 21 Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Karolina Walkowiak-Nowicka
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Konopińska
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Marciniak
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jens Rolff
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
11
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Kuttikrishnan S, Bhat AA, Mateo JM, Ahmad F, Alali FQ, El-Elimat T, Oberlies NH, Pearce CJ, Uddin S. Anticancer activity of Neosetophomone B by targeting AKT/SKP2/MTH1 axis in leukemic cells. Biochem Biophys Res Commun 2022; 601:59-64. [PMID: 35228122 DOI: 10.1016/j.bbrc.2022.02.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
|
13
|
Seyed MA, Ayesha S. Marine-derived pipeline anticancer natural products: a review of their pharmacotherapeutic potential and molecular mechanisms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer is a complex and most widespread disease and its prevalence is increasing worldwide, more in countries that are witnessing urbanization and rapid industrialization changes. Although tremendous progress has been made, the interest in targeting cancer has grown rapidly every year. This review underscores the importance of preventive and therapeutic strategies.
Main text
Natural products (NPs) from various sources including plants have always played a crucial role in cancer treatment. In this growing list, numerous unique secondary metabolites from marine sources have added and gaining attention and became potential players in drug discovery and development for various biomedical applications. Many NPs found in nature that normally contain both pharmacological and biological activity employed in pharmaceutical industry predominantly in anticancer pharmaceuticals because of their enormous range of structure entities with unique functional groups that attract and inspire for the creation of several new drug leads through synthetic chemistry. Although terrestrial medicinal plants have been the focus for the development of NPs, however, in the last three decades, marine origins that include invertebrates, plants, algae, and bacteria have unearthed numerous novel pharmaceutical compounds, generally referred as marine NPs and are evolving continuously as discipline in the molecular targeted drug discovery with the inclusion of advanced screening tools which revolutionized and became the component of antitumor modern research.
Conclusions
This comprehensive review summarizes some important and interesting pipeline marine NPs such as Salinosporamide A, Dolastatin derivatives, Aplidine/plitidepsin (Aplidin®) and Coibamide A, their anticancer properties and describes their mechanisms of action (MoA) with their efficacy and clinical potential as they have attracted interest for potential use in the treatment of various types of cancers.
Collapse
|
14
|
Red Blood Cell Proteasome in Beta-Thalassemia Trait: Topology of Activity and Networking in Blood Bank Conditions. MEMBRANES 2021; 11:membranes11090716. [PMID: 34564533 PMCID: PMC8466122 DOI: 10.3390/membranes11090716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023]
Abstract
Proteasomes are multi-catalytic complexes with important roles in protein control. Their activity in stored red blood cells (RBCs) is affected by both storage time and the donor’s characteristics. However, apart from their abundancy in the membrane proteome, not much is known about their topology, activity, and networking during the storage of RBCs from beta-thalassemia trait donors (βThal+). For this purpose, RBC units from fourteen βThal+ donors were fractionated and studied for proteasome activity distribution and interactome through fluorometric and correlation analyses against units of sex- and aged-matched controls. In all the samples examined, we observed a time-dependent translocation and/or activation of the proteasome in the membrane and a tight connection of activity with the oxidative burden of cells. Proteasomes were more active in the βThal+ membranes and supernatants, while the early storage networking of 20S core particles and activities showed a higher degree of connectivity with chaperones, calpains, and peroxiredoxins, which were nonetheless present in all interactomes. Moreover, the βThal+ interactomes were specially enriched in kinases, metabolic enzymes, and proteins differentially expressed in βThal+ membrane, including arginase-1, piezo-1, and phospholipid scramblase. Overall, it seems that βThal+ erythrocytes maintain a considerable “proteo-vigilance” during storage, which is closely connected to their distinct antioxidant dynamics and membrane protein profile.
Collapse
|
15
|
Li K, Liu T. Evaluation of Oncogene NUP37 as a Potential Novel Biomarker in Breast Cancer. Front Oncol 2021; 11:669655. [PMID: 34386417 PMCID: PMC8353244 DOI: 10.3389/fonc.2021.669655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose There is an urgent need to identify oncogenes that may be beneficial to diagnose and develop target therapy for breast cancer. Methods Based on the GEO database, DECenter was used to screen the differentially overexpressed genes in breast cancer samples. Search Tool for the Retrieval of Interacting Genes and Cytoscape were performed to construct the PPI network to predict the hub gene. Functional and pathway enrichment were performed based on GO analysis. GEO2R, Oncomine, human tissue microarray staining, and western blot were applied to confirm the expression of NUP37. The association between NUP37 expression and prognosis in patients with breast cancer were assessed using the Kaplan–Meier plotter online tool and OncoLnc. siRNAs were used to knock down NUP37 and evaluate proliferation, migration, and stemness in breast cancer cells. Results We found that 138 genes were differentially upregulated in breast cancer samples, mainly comprising components of the nucleus and involved in the cell cycle process. NUP37 was identified as a hub gene that is upregulated in breast cancer patients related to a significantly worse survival rate. Furthermore, we confirmed that the downregulation of NUP37 in breast cancer cells results in the inhibition of cell growth, migration, and stemness. Conclusions High expression of NUP37 in breast cancer patients is associated with a poorer prognosis and promotion of cell growth, migration, and stemness. The multiple bioinformatics and experimental analysis help provide a comprehensive understanding of the roles of NUP37 as a potential marker for diagnosis and prognosis and as a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Liu
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Tangri A, Lighty K, Loganathan J, Mesmar F, Podicheti R, Zhang C, Iwanicki M, Drapkin R, Nakshatri H, Mitra S. Deubiquitinase UCHL1 Maintains Protein Homeostasis through the PSMA7-APEH-Proteasome Axis in High-grade Serous Ovarian Carcinoma. Mol Cancer Res 2021; 19:1168-1181. [PMID: 33753553 DOI: 10.1158/1541-7786.mcr-20-0883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand that exacerbate misfolded, unfolded, and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. This study reports that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions). High UCHL1 levels correlated with higher tumor grade and poor patient survival. UCHL1 inhibition reduced HGSOC cell proliferation and invasion, as well as significantly decreased the in vivo metastatic growth of ovarian cancer xenografts. Transcriptional profiling of UCHL1-silenced HGSOC cells revealed downregulation of genes implicated with proteasome activity along with upregulation of endoplasmic reticulum stress-induced genes. Reduced expression of proteasome subunit alpha 7 (PSMA7) and acylaminoacyl peptide hydrolase (APEH), upon silencing of UCHL1, resulted in a significant decrease in proteasome activity, impaired protein degradation, and abrogated HGSOC growth. Furthermore, the accumulation of polyubiquitinated proteins in the UCHL1-silenced cells led to attenuation of mTORC1 activity and protein synthesis, and induction of terminal unfolded protein response. Collectively, these results indicate that UCHL1 promotes HGSOC growth by mediating protein homeostasis through the PSMA7-APEH-proteasome axis. IMPLICATIONS: This study identifies the novel links in the proteostasis network to target protein homeostasis in HGSOC and recognizes the potential of inhibiting UCHL1 and APEH to sensitize cancer cells to proteotoxic stress in solid tumors.
Collapse
Affiliation(s)
- Apoorva Tangri
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kinzie Lighty
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jagadish Loganathan
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fahmi Mesmar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey
| | - Ronny Drapkin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Sumegha Mitra
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana.
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana
| |
Collapse
|
17
|
Suppression of proteasome induces apoptosis in APL cells and increases chemo-sensitivity to arsenic trioxide: Proposing a perception in APL treatment. Cancer Treat Res Commun 2021; 26:100284. [PMID: 33387871 DOI: 10.1016/j.ctarc.2020.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
In the last three decades, the pathogenesis of acute promyelocytic leukemia (APL) has been mostly studied with regard to the oncogenic role of PML/RAR fusion protein; however, the latest discoveries have stated that the concerns with the treatment of APL patients would not be resolved until the role of aberrant networks is overlooked. The present study was designed to evaluate the anti-cancer property of second-generation of the proteasome inhibitors carfilzomib (CFZ) on APL-derived NB4 cells. Our results showed that pharmacologic targeting of proteasome in NB4 reduced the proliferative rate of malignant cells through a c-Myc-mediated G2/M cell cycle arrest. Moreover, we found that the suppression of proteasome was coupled with the induction of apoptotic NB4 cell death, which is probably mediated through down-regulation of anti-apoptotic target genes. Interestingly, our results suggested that the suppression of the autophagy system using chloroquine could serve as a mechanism through which the cytotoxicity of CFZ in APL cells was ameliorated. Finally, and consistent with the favorable efficacy of single agent of CFZ, we also noted an intensifying effect of the inhibitor on the anti-leukemic activity of arsenic trioxide (ATO) when it was used in combination. Overall, this study suggests that pharmaceutical targeting of proteasome using CFZ, either as a single agent or in combination with ATO, could be a promising mechanism through which the obstacle on the way of APL would be tackled; however, further investigations are needed to determine the advantages of the inhibitor in clinical applications.
Collapse
|
18
|
Reeg S, Castro JP, Hugo M, Grune T. Accumulation of polyubiquitinated proteins: A consequence of early inactivation of the 26S proteasome. Free Radic Biol Med 2020; 160:293-302. [PMID: 32822745 DOI: 10.1016/j.freeradbiomed.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
The proteasomal degradation system is one of the most important protein degradation systems in the cytosol and nucleus. This system is present in two major forms: the ATP-stimulated 26S/30 S proteasome or the ATP-independent 20S core proteasome. While the first recognize ubiquitin-tagged target proteins and degrade them, the 20S proteasome works also independent from ATP, but requires partially unfolded substrates. While the role of the proteasome in the selective removal of oxidized proteins is undoubted, the debate about a selective ubiquitination of oxidized proteins is still ongoing. Here we demonstrate, that under some conditions of oxidative stress an accumulation of oxidized and of K48-ubiquitinated proteins occurs. However, the removal of oxidized proteins seems not to be linked to ubiquitination. In further experiments, we could show that the accumulation of ubiquitinated proteins under certain oxidative stress conditions is rather a result of a different sensitivity of the 26S proteasome and the ubiquitination machinery towards oxidants.
Collapse
Affiliation(s)
- Sandra Reeg
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - José P Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Martin Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| |
Collapse
|
19
|
Schneider SM, Lee BH, Nicola AV. Viral entry and the ubiquitin-proteasome system. Cell Microbiol 2020; 23:e13276. [PMID: 33037857 DOI: 10.1111/cmi.13276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Viruses confiscate cellular components of the ubiquitin-proteasome system (UPS) to facilitate many aspects of the infectious cycle. The 26S proteasome is an ATP-dependent, multisubunit proteolytic machine present in all eukaryotic cells. The proteasome executes the controlled degradation of functional proteins, as well as the hydrolysis of aberrantly folded polypeptides. There is growing evidence for the role of the UPS in viral entry. The UPS assists in several steps of the initiation of infection, including endosomal escape of the entering virion, intracellular transport of incoming nucleocapsids and uncoating of the viral genome. Inhibitors of proteasome activity, including MG132, epoxomicin, lactacystin and bortezomib have been integral to developments in this area. Here, we review the mechanistic details of UPS involvement in the entry process of viruses from a multitude of families. The possibility of proteasome inhibitors as therapeutic antiviral agents is highlighted.
Collapse
Affiliation(s)
- Seth M Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Becky H Lee
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
20
|
Zhang W, Chen Q, Xu L, Cai J, Zhang J. The potential role of PSMA6 in modulating fat deposition in pigs by promoting preadipocyte proliferation and differentiation. Gene 2020; 769:145228. [PMID: 33096182 DOI: 10.1016/j.gene.2020.145228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
To investigate whether the proteasome subunit alpha 6 (PSMA6) gene has an effect on fat deposition, the gene expression profile was first detected in Berkshire pigs and Jinhua pigs (JHP). The results demonstrated that significantly higher levels of mRNA expression were identified in adipose tissues and the liver. Interestingly, when compared to the longissimus dorsi muscle (LDM) in each breed, it was discovered that the expression levels of the PSMA6 gene in these tissues of JHP were considerably higher than those in Berkshire pigs. Meantime, some significant correlations of PSMA6 mRNA expression in lipid metabolism-related tissues such as the liver and LDM with the marbling score, as well as the content of intramuscular fat (IMF), in pigs were found by correlation coefficient analysis. To further explore the effects of PSMA6 expression on fat deposition, we performed PSMA6 overexpression in 3T3-L1 cells via Lentivirus infection. Our results indicated that PSMA6 could promote cell proliferation and accelerate cell division. It was also found that the transcription factors CCAAT/enhancer-binding protein alpha (CEBPA) and peroxisome proliferator-activated receptor gamma (PPARG), as well as the key genes related to adipogenesis, were upregulated, while the genes related to fat oxidation were significantly downregulated, which indicated that the PSMA6 gene could stimulate the differentiation of preadipocytes.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liaoyi Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
21
|
Ghannam K, Martinez Gamboa L, Kedor C, Spengler L, Kuckelkorn U, Häupl T, Burmester G, Feist E. Response to abatacept is associated with the inhibition of proteasome β1i expression in T cells of patients with rheumatoid arthritis. RMD Open 2020; 6:rmdopen-2020-001248. [PMID: 32998980 PMCID: PMC7547540 DOI: 10.1136/rmdopen-2020-001248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Objective Abatacept is a biological disease-modifying antirheumatic drug (DMARD) used for the treatment of rheumatoid arthritis (RA) and modulates the costimulatory signal by cluster of differentiation (CD)28:CD80/CD86 interaction required for T cell activation. Since CD28-mediated signalling regulates many T cell functions including cytokine production of, for example, interferons (IFNs), it is of interest to clarify, whether response to abatacept has an effect on the IFN inducible immunoproteasome, as a central regulator of the immune response. Methods Effects of abatacept on the proteasome were investigated in 39 patients with RA over a period of 24 weeks. Using real-time PCR, transcript levels of constitutive and corresponding immunoproteasome catalytic subunits were investigated at baseline (T0), week 16 (T16) and week 24 (T24) in sorted blood cells. Proteasomal activity and induction of apoptosis after proteasome inhibition were also evaluated. Results Abatacept achieved remission or low disease activity in 55% of patients at T16 and in 70% of patients at T24. By two-way analysis of variance (ANOVA), a significant reduction of proteasome immunosubunit β1i was shown only in CD4+ and CD8+ T cells of sustained responders at both T16 and T24. One-way ANOVA analysis for each response group confirmed the results and showed a significant reduction at T24 in CD4+ and CD8+ T cells of the same group. Abatacept did not influence chymotrypsin-like activity of proteasome and had no effect on induction of apoptosis under exposure to a proteasome inhibitor in vitro. Conclusion The reduction of proteasome immunosubunit β1i in T cells of patients with RA with sustained response to abatacept suggests association of the immunoproteasome of T cells with RA disease activity.
Collapse
Affiliation(s)
- Khetam Ghannam
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Lorena Martinez Gamboa
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Claudia Kedor
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Lydia Spengler
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Ulrike Kuckelkorn
- Institute of Biochemistry, Charite University Hospital Berlin, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Gerd Burmester
- Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Eugen Feist
- Helios Fachklinik Vogelsang-Gommern GmbH, Vogelsang-Gommern, Germany.,Department of Rheumatology and Clinical Immunology, Charite University Hospital Berlin, Berlin, Germany
| |
Collapse
|
22
|
Park CW, Bae JS, Ryu KY. Simultaneous Disruption of Both Polyubiquitin Genes Affects Proteasome Function and Decreases Cellular Proliferation. Cell Biochem Biophys 2020; 78:321-329. [PMID: 32705536 DOI: 10.1007/s12013-020-00933-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
The ubiquitin (Ub) proteasome system is important for maintaining protein homeostasis and has various roles in cell signaling, proliferation, and cell cycle regulation. In mammals, Ub is encoded by two monoubiquitin and two polyubiquitin genes. Although reduced levels of Ub due to the disruption of one polyubiquitin gene are known to decrease cell proliferation, the effect of disrupting both polyubiquitin genes remains elusive. Polyubiquitin gene Ubc knockout mice are embryonically lethal and polyubiquitin gene Ubb knockout mice are infertile. Thus, it is difficult to study the effects of double knockouts (DKOs). In the present study, the CRISPR/Cas9 system was used to simultaneously knockout both polyubiquitin genes, UBB and UBC, in HEK293T and HeLa cells. In DKO cells, growth decreased significantly compared to the control cells. We observed reduced proteasome function and reduced levels of free Ub in DKO cells. However, the levels of purified proteasome were not different between control and DKO cells, although the mRNA levels of proteasomal subunits were significantly increased in latter. We propose that the reduction of Ub levels, by disruption of both polyubiquitin genes, resulted in an altered proteasomal status, leading to the reduced proteasome activity, and decreased cellular proliferation.
Collapse
Affiliation(s)
- Chul-Woo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jin-Sil Bae
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
23
|
Kiwada T, Katakasu H, Okumura S, Odani A. Characterization of platinum(II) complexes exhibiting inhibitory activity against the 20S proteasome. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200545. [PMID: 32968518 PMCID: PMC7481701 DOI: 10.1098/rsos.200545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/08/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Proteasome inhibitors are useful for biochemical research and clinical treatment. In our previous study, we reported that the 4N-coordinated platinum complexes with anthracenyl ring and heterocycle exhibited proteasome-inhibitory activity. In the present study, the structure-activity relationships and characterization of these complexes were determined for the elucidation of the role of aromatic ligands. Lineweaver-Burk analysis revealed that the chemical structure of heterocycles affects the binding mode of platinum complexes. Platinum complexes with anthracenyl ring and pyridine showed competitive inhibition, although platinum complexes with anthracenyl ring and phenanthroline showed non-competitive inhibition. The structure-activity relationships demonstrated that anthracenyl moiety plays a crucial role in proteasome-inhibitory activity. The platinum complexes with naphthyl or phenyl rings exhibited lower inhibitory activities than the platinum complex with anthracenyl ring. The reactivity with N-acetylcysteine varied according to the chemical structure of complexes.
Collapse
Affiliation(s)
- Tatsuto Kiwada
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiromu Katakasu
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Serina Okumura
- School of Pharmacy, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Akira Odani
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
24
|
Park CW, Jung BK, Ryu KY. Disruption of the polyubiquitin gene Ubb reduces the self-renewal capacity of neural stem cells. Biochem Biophys Res Commun 2020; 527:372-378. [PMID: 32321641 DOI: 10.1016/j.bbrc.2020.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 02/08/2023]
Abstract
Ubiquitin (Ub) is a highly conserved eukaryotic protein that plays pivotal roles in cellular signal transduction, differentiation, and proteolysis. Although we have previously reported that disruption of the polyubiquitin gene Ubb is associated with the dysregulated differentiation of neural stem cells (NSCs) into neurons, it is unclear how gene expression patterns are altered in Ubb knockout (KO) NSCs, and whether this altered gene expression contributes to Ubb KO neural phenotypes. To answer these questions, we used RNA-Seq to compare the transcriptomes of Ubb KO NSCs and Ubb heterozygous (HT) controls. We found that the expression levels of most proliferation markers were decreased in Ubb KO NSCs. To determine whether the reduced levels of proliferation markers were due to reduced self-renewal of NSCs, such as radial glia, we measured the levels of the radial glia marker, Pax6, in mouse embryonic brains at 14.5 dpc. We found that Pax6 levels were decreased and the ventricular zone was thinner in the embryonic brains of Ubb KO mice compared to those of wild-type (WT) control mice. To determine whether the decreased self-renewal of Ubb KO NSCs was caused by cell-autonomous defects and not due to their microenvironment, we transplanted NSCs into WT mouse brains using a cannula system. In mouse brain sections, immunoreactivity of the NSC marker, nestin, was much lower in Ubb KO NSCs than in Ubb HT controls. Therefore, our data suggest that cell-autonomous defects, due to the disruption of Ubb, lead to a decrease in the self-renewal capacity of NSCs and may contribute to their dysregulated differentiation into neurons.
Collapse
Affiliation(s)
- Chul-Woo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
25
|
Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the ubiquitin-proteasome system in platelets. J Thromb Haemost 2020; 18:771-780. [PMID: 31898400 DOI: 10.1111/jth.14730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Platelets are small anucleate blood cells with a life span of 7 to 10 days. They are main regulators of hemostasis. Balanced platelet activity is crucial to prevent bleeding or occlusive thrombus formation. Growing evidence supports that platelets also participate in immune reactions, and interaction between platelets and leukocytes contributes to both thrombosis and inflammation. The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis by its ability to degrade non-functional self-, foreign, or short-lived regulatory proteins. Platelets express standard and immunoproteasomes. Inhibition of the proteasome impairs platelet production and platelet function. Platelets also express major histocompatibility complex (MHC) class I molecules. Peptide fragments released by proteasomes can bind to MHC class I, which makes it also likely that platelets can activate epitope specific cytotoxic T lymphocytes (CTLs). In this review, we focus on current knowledge on the significance of the proteasome for the functions of platelets as critical regulators of hemostasis as well as modulators of the immune response.
Collapse
Affiliation(s)
- Lisa Colberg
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Dmytruk O, Bulbotka N, Zazulya A, Semkiv M, Dmytruk K, Sibirny A. Fructose-1,6-bisphosphatase degradation in the methylotrophic yeast Komagataella phaffii occurs in autophagy pathway. Cell Biol Int 2020; 45:528-535. [PMID: 31903651 DOI: 10.1002/cbin.11304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Accepted: 01/04/2020] [Indexed: 11/11/2022]
Abstract
Many enzymes of methanol metabolism of methylotrophic yeasts are located in peroxisomes whereas some of them have the cytosolic localization. After shift of methanol-grown cells of methylotrophic yeasts to glucose medium, a decrease in the activity of cytosolic (formaldehyde dehydrogenase, formate dehydrogenase, and fructose-1,6-bisphosphatase [FBP]) along with peroxisomal enzymes of methanol metabolism is observed. Mechanisms of inactivation of cytosolic enzymes remain unknown. To study the mechanism of FBP inactivation, the changes in its specific activity of the wild type strain GS200, the strain with the deletion of the GSS1 hexose sensor gene and strain defected in autophagy pathway SMD1163 of Komagataella phaffii with or without the addition of the MG132 (proteasome degradation inhibitor) were investigated after shift of methanol-grown cells in glucose medium. Western blot analysis showed that inactivation of FBP in GS200 occurred due to protein degradation whereas inactivation in the strains SMD1163 and gss1Δ was negligible in such conditions. The effect of the proteasome inhibitor MG132 on FBP inactivation was insignificant. To confirm FBP degradation pathway, the recombinant strains with GFP-labeled Fbp1 of K. phaffii and red fluorescent protein-labeled peroxisomes were constructed on the background of GS200 and SMD1163. The fluorescent microscopy analysis of the constructed strains was performed using the vacuolar membrane dye FM4-64. Microscopic data confirmed that Fbp1 degrades by autophagy pathway in K. phaffii. K. phaffii transformants, which express heterologous β-galactosidase under FLD promoter, have been constructed.
Collapse
Affiliation(s)
- Olena Dmytruk
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Nina Bulbotka
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Anastasya Zazulya
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Marta Semkiv
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Kostyantyn Dmytruk
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine
| | - Andriy Sibirny
- Institute of Cell Biology, National Academy of Science of Ukraine, Drahomanov Street 14/16, 79005, Lviv, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| |
Collapse
|
27
|
Eldeeb MA, Fahlman RP, Ragheb MA, Esmaili M. Does N‐Terminal Protein Acetylation Lead to Protein Degradation? Bioessays 2019; 41:e1800167. [DOI: 10.1002/bies.201800167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2018] [Revised: 08/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Mohamed A. Eldeeb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University Montreal Quebec H3A 2B4 Canada
| | - Richard P. Fahlman
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
| | - Mansoore Esmaili
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| |
Collapse
|
28
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Kiwada T, Takayama H, Katakasu H, Ogawa K, Odani A. 20S Proteasome Inhibitory Activity of [ N-(9-Anthracenylmethyl)-1,3-propanediamine] (2,2′-Bipyridine) Palladium(II) Chloride. CHEM LETT 2019. [DOI: 10.1246/cl.190251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuto Kiwada
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Takayama
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiromu Katakasu
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuma Ogawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Odani
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
30
|
Stokes BH, Yoo E, Murithi JM, Luth MR, Afanasyev P, da Fonseca PCA, Winzeler EA, Ng CL, Bogyo M, Fidock DA. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog 2019; 15:e1007722. [PMID: 31170268 PMCID: PMC6553790 DOI: 10.1371/journal.ppat.1007722] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2018] [Accepted: 03/21/2019] [Indexed: 01/12/2023] Open
Abstract
Therapeutics with novel modes of action and a low risk of generating resistance are urgently needed to combat drug-resistant Plasmodium falciparum malaria. Here, we report that the peptide vinyl sulfones WLL-vs (WLL) and WLW-vs (WLW), highly selective covalent inhibitors of the P. falciparum proteasome, potently eliminate genetically diverse parasites, including K13-mutant, artemisinin-resistant lines, and are particularly active against ring-stage parasites. Selection studies reveal that parasites do not readily acquire resistance to WLL or WLW and that mutations in the β2, β5 or β6 subunits of the 20S proteasome core particle or in components of the 19S proteasome regulatory particle yield only <five-fold decreases in parasite susceptibility. This result compares favorably against previously published non-covalent inhibitors of the Plasmodium proteasome that can select for resistant parasites with >hundred-fold decreases in susceptibility. We observed no cross-resistance between WLL and WLW. Moreover, most mutations that conferred a modest loss of parasite susceptibility to one inhibitor significantly increased sensitivity to the other. These inhibitors potently synergized multiple chemically diverse classes of antimalarial agents, implicating a shared disruption of proteostasis in their modes of action. These results underscore the potential of targeting the Plasmodium proteasome with covalent small molecule inhibitors as a means of combating multidrug-resistant malaria. The spread of artemisinin-resistant Plasmodium falciparum malaria across Southeast Asia creates an imperative to develop new treatment options with compounds that are not susceptible to existing mechanisms of antimalarial drug resistance. Recent work has identified the P. falciparum proteasome as a promising drug target. Here, we report potent antimalarial activity of highly selective vinyl sulfone-conjugated peptide proteasome inhibitors, including against artemisinin-resistant P. falciparum early ring-stage parasites that are traditionally difficult to treat. Unlike many advanced antimalarial candidates, these covalent proteasome inhibitors do not readily select for resistance. Selection studies with cultured parasites reveal infrequent and minor decreases in susceptibility resulting from point mutations in components of the 26S proteasome, which we model using cryo-electron microscopy-based structural data. No parasites were observed to be cross-resistant to both compounds; in fact, partial resistance to one compound often created hypersensitivity to the other. We also document potent synergy between these covalent proteasome inhibitors and multiple classes of antimalarial agents, including dihydroartemisinin, the clinical candidate OZ439, and the parasite transmission-blocking agent methylene blue. Proteasome inhibitors have significant promise as components of novel combination therapies to treat multidrug-resistant malaria.
Collapse
Affiliation(s)
- Barbara H. Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Euna Yoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Madeline R. Luth
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, School of Medicine, San Diego, CA, United States of America
| | - Pavel Afanasyev
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Paula C. A. da Fonseca
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Elizabeth A. Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, School of Medicine, San Diego, CA, United States of America
| | - Caroline L. Ng
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
- * E-mail: (CLN); (MB); (DAF)
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail: (CLN); (MB); (DAF)
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
- * E-mail: (CLN); (MB); (DAF)
| |
Collapse
|
31
|
Protective Effect of Pyropia yezoensis Peptide on Dexamethasone-Induced Myotube Atrophy in C2C12 Myotubes. Mar Drugs 2019; 17:md17050284. [PMID: 31083497 PMCID: PMC6563069 DOI: 10.3390/md17050284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dexamethasone (DEX), a synthetic glucocorticoid, causes skeletal muscle atrophy. This study examined the protective effects of Pyropia yezoensis peptide (PYP15) against DEX-induced myotube atrophy and its association with insulin-like growth factor-I (IGF-I) and the Akt/mammalian target of rapamycin (mTOR)-forkhead box O (FoxO) signaling pathway. To elucidate the molecular mechanisms underlying the effects of PYP15 on DEX-induced myotube atrophy, C2C12 myotubes were treated for 24 h with 100 μM DEX in the presence or absence of 500 ng/mL PYP15. Cell viability assays revealed no PYP15 toxicity in C2C12 myotubes. PYP15 activated the insulin-like growth factor-I receptor (IGF-IR) and Akt-mTORC1 signaling pathway in DEX-induced myotube atrophy. In addition, PYP15 markedly downregulated the nuclear translocation of transcription factors FoxO1 and FoxO3a, and inhibited 20S proteasome activity. Furthermore, PYP15 inhibited the autophagy-lysosomal pathway in DEX-stimulated myotube atrophy. Our findings suggest that PYP15 treatment protected against myotube atrophy by regulating IGF-I and the Akt-mTORC1-FoxO signaling pathway in skeletal muscle. Therefore, PYP15 treatment appears to exert protective effects against skeletal muscle atrophy.
Collapse
|
32
|
A new pyridazinone exhibits potent cytotoxicity on human cancer cells via apoptosis and poly-ubiquitinated protein accumulation. Cell Biol Toxicol 2019; 35:503-519. [PMID: 30825052 DOI: 10.1007/s10565-019-09466-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2018] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
In the last 15 years, pyridazinone derivatives have acquired extensive attention due to their widespread biological activities and pharmacological applications. Pyridazinones are well known for their anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and cardiovascular activities, among others. In this study, we evaluated the anti-cancer activity of a new pyridazinone derivative and propose it as a potential anti-neoplastic agent in acute promyelocytic leukemia cells. Pyr-1 cytotoxicity was assessed on several human cancer and two non-cancerous cell lines by the DNS assay. Pyr-1 demonstrated potent cytotoxicity against 22 human cancer cell lines, exhibiting the most favorable selective cytotoxicity on leukemia (CEM and HL-60), breast (MDA-MB-231 and MDA-MB-468), and lung (A-549) cancer cell lines, when compared with non-cancerous breast epithelial MCF-10A cells. Analyses of apoptosis/necrosis pathways, reactive oxygen species (ROS) production, mitochondria health, caspase-3 activation, and cell cycle profile were performed via flow cytometry. Both hmox-1 RNA and protein expression levels were evaluated by quantitative real-time PCR and Western blotting assays, respectively. Pyr-1 induced apoptosis in acute promyelocytic leukemia cells as confirmed by phosphatidylserine externalization, mitochondrial depolarization, caspase-3 activation, DNA fragmentation, and disrupted cell cycle progression. Additionally, it was determined that Pyr-1 generates oxidative and proteotoxic stress by provoking the accumulation of ROS, resulting in the overexpression of the stress-related hmox-1 mRNA transcripts and protein and a marked increase in poly-ubiquitinated proteins. Our data demonstrate that Pyr-1 induces cell death via the intrinsic apoptosis pathway by accumulating ROS and by impairing proteasome activity.
Collapse
|
33
|
Covalent docking modelling-based discovery of tripeptidyl epoxyketone proteasome inhibitors composed of aliphatic-heterocycles. Eur J Med Chem 2019; 164:602-614. [DOI: 10.1016/j.ejmech.2018.12.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 02/08/2023]
|
34
|
Yu J, Liu J, Li D, Xu L, Hong D, Chang S, Xu L, Li J, Liu T, Zhou Y. Exploration of novel macrocyclic dipeptide N-benzyl amides as proteasome inhibitors. Eur J Med Chem 2019; 164:423-439. [DOI: 10.1016/j.ejmech.2018.12.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
|
35
|
|
36
|
Regulating Apoptosis by Degradation: The N-End Rule-Mediated Regulation of Apoptotic Proteolytic Fragments in Mammalian Cells. Int J Mol Sci 2018; 19:ijms19113414. [PMID: 30384441 PMCID: PMC6274719 DOI: 10.3390/ijms19113414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
A pivotal hallmark of some cancer cells is the evasion of apoptotic cell death. Importantly, the initiation of apoptosis often results in the activation of caspases, which, in turn, culminates in the generation of proteolytically-activated protein fragments with potentially new or altered roles. Recent investigations have revealed that the activity of a significant number of the protease-generated, activated, pro-apoptotic protein fragments can be curbed via their selective degradation by the N-end rule degradation pathways. Of note, previous work revealed that several proteolytically-generated, pro-apoptotic fragments are unstable in cells, as their destabilizing N-termini target them for proteasomal degradation via the N-end rule degradation pathways. Remarkably, previous studies also showed that the proteolytically-generated anti-apoptotic Lyn kinase protein fragment is targeted for degradation by the UBR1/UBR2 E3 ubiquitin ligases of the N-end rule pathway in chronic myeloid leukemia cells. Crucially, the degradation of cleaved fragment of Lyn by the N-end rule counters imatinib resistance in these cells, implicating a possible linkage between the N-end rule degradation pathway and imatinib resistance. Herein, we highlight recent studies on the role of the N-end rule proteolytic pathways in regulating apoptosis in mammalian cells, and also discuss some possible future directions with respect to apoptotic proteolysis signaling.
Collapse
|
37
|
Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:34-41. [PMID: 29145027 DOI: 10.1016/j.cbd.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/21/2017] [Revised: 09/20/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023]
Abstract
Sea cucumber, Apostichopus japonicus is an important species for aquaculture, and its behavior and physiology can change in response to changing salinity conditions. For this reason, it is important to understand the molecular responses of A. japonicus when exposed to ambient changes in salinity. In this study, RNA-Seq provided a general overview of the gene expression profiles in the intestine of A. japonicus exposed to high salinity (SD40), normal salinity (SD30) and low salinity (SD20) environments. Screening for differentially expressed genes (DEGs) using the NOISeq method identified 109, 100, and 89 DEGs based on a fold change of ≥2 and divergence probability ≥0.8 according to the comparisons of SD20 vs. SD30, SD20 vs.SD40, and SD30 vs. SD40, respectively. Gene ontology analysis showed that the terms "metabolic process" and "catalytic activity" comprised the most enriched DEGs. These fell into the categories of "biological process" and "molecular function". While "cell" and "cell part" had the most enriched DEGs in the category of "cellular component". With these DEGs mapping to 2119, 159, and 160 pathways in the Kyoto Encyclopedia of Genes and Genomes database. Of these 51, 2, and 57 pathways were significantly enriched, respectively. The osmosis-specific DEGs identified in this study of A. japonicus will be important targets for further studies to understand the biochemical mechanisms involved with the adaption of sea cucumbers to changes in salinity.
Collapse
|
38
|
Suess PM, Watson J, Chen W, Gomer RH. Extracellular polyphosphate signals through Ras and Akt to prime Dictyostelium discoideum cells for development. J Cell Sci 2017; 130:2394-2404. [PMID: 28584190 DOI: 10.1242/jcs.203372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2017] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
Linear chains of five to hundreds of phosphates called polyphosphate are found in organisms ranging from bacteria to humans, but their function is poorly understood. In Dictyostelium discoideum, polyphosphate is used as a secreted signal that inhibits cytokinesis in an autocrine negative feedback loop. To elucidate how cells respond to this unusual signal, we undertook a proteomic analysis of cells treated with physiological levels of polyphosphate and observed that polyphosphate causes cells to decrease levels of actin cytoskeleton proteins, possibly explaining how polyphosphate inhibits cytokinesis. Polyphosphate also causes proteasome protein levels to decrease, and in both Dictyostelium and human leukemia cells, decreases proteasome activity and cell proliferation. Polyphosphate also induces Dictyostelium cells to begin development by increasing expression of the cell-cell adhesion molecule CsA (also known as CsaA) and causing aggregation, and this effect, as well as the inhibition of proteasome activity, is mediated by Ras and Akt proteins. Surprisingly, Ras and Akt do not affect the ability of polyphosphate to inhibit proliferation, suggesting that a branching pathway mediates the effects of polyphosphate, with one branch affecting proliferation, and the other branch affecting development.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jacob Watson
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Wensheng Chen
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
39
|
Sato A, Asano T, Okubo K, Isono M, Asano T. Ritonavir and ixazomib kill bladder cancer cells by causing ubiquitinated protein accumulation. Cancer Sci 2017; 108:1194-1202. [PMID: 28342223 PMCID: PMC5480085 DOI: 10.1111/cas.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
There is no curative treatment for advanced bladder cancer. Causing ubiquitinated protein accumulation and endoplasmic reticulum stress is a novel approach to cancer treatment. The HIV protease inhibitor ritonavir has been reported to suppress heat shock protein 90 and increase the amount of unfolded proteins in the cell. If the proteasome functions normally, however, they are rapidly degraded. We postulated that the novel proteasome inhibitor ixazomib combined with ritonavir would kill bladder cancer cells effectively by inhibiting degradation of these unfolded proteins and thereby causing ubiquitinated proteins to accumulate. The combination of ritonavir and ixazomib induced drastic apoptosis and inhibited the growth of bladder cancer cells synergistically. The combination decreased the expression of cyclin D1 and cyclin‐dependent kinase 4, and increased the sub‐G1 fraction significantly. Mechanistically, the combination caused ubiquitinated protein accumulation and endoplasmic reticulum stress. The combination‐induced apoptosis was markedly attenuated by the protein synthesis inhibitor cycloheximide, suggesting that the accumulation of ubiquitinated proteins played an important role in the combination's antineoplastic activity. Furthermore, the combination induced histone acetylation cooperatively and the decreased expression of histone deacetylases was thought to be one mechanism of this histone acetylation. The present study provides a theoretical basis for future development of novel ubiquitinated‐protein‐accumulation‐based therapies effective against bladder cancer.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
40
|
The sheep conceptus modulates proteome profiles in caruncular endometrium during early pregnancy. Anim Reprod Sci 2016; 175:48-56. [DOI: 10.1016/j.anireprosci.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2016] [Revised: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
|
41
|
Cohen-Kaplan V, Livneh I, Avni N, Fabre B, Ziv T, Kwon YT, Ciechanover A. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc Natl Acad Sci U S A 2016; 113:E7490-E7499. [PMID: 27791183 PMCID: PMC5127335 DOI: 10.1073/pnas.1615455113] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin-proteasome system and autophagy are the two main proteolytic systems involved in, among other functions, the maintenance of cell integrity by eliminating misfolded and damaged proteins and organelles. Both systems remove their targets after their conjugation with ubiquitin. An interesting, yet incompletely understood problem relates to the fate of the components of the two systems. Here we provide evidence that amino acid starvation enhances polyubiquitination on specific sites of the proteasome, a modification essential for its targeting to the autophagic machinery. The uptake of the ubiquitinated proteasome is mediated by its interaction with the ubiquitin-associated domain of p62/SQSTM1, a process that also requires interaction with LC3. Importantly, deletion of the PB1 domain of p62, which is important for the targeting of ubiquitinated substrates to the proteasome, has no effect on stress-induced autophagy of this proteolytic machinery, suggesting that the domain of p62 that binds to the proteasome determines the function of p62 in either targeting substrates to the proteasome or targeting the proteasome to autophagy.
Collapse
Affiliation(s)
- Victoria Cohen-Kaplan
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109602, Israel
| | - Ido Livneh
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109602, Israel
| | - Noa Avni
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109602, Israel
| | - Bertrand Fabre
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109602, Israel
| | - Tamar Ziv
- Smoler Proteomic Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Aaron Ciechanover
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109602, Israel;
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
42
|
Wu YX, Yang JH, Saitsu H. Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance. Oncotarget 2016; 7:77622-77634. [PMID: 27769058 PMCID: PMC5363609 DOI: 10.18632/oncotarget.12731] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
Bortezomib (BTZ), a proteasome inhibitor, is the first proteasome inhibitor to be used in clinical practice. Here we investigated the mechanisms underlying acquired bortezomib resistance in hepatocellular carcinoma (HCC) cells. Using stepwise selection, we established two acquired bortezomib-resistant HCC cell lines, a bortezomib-resistant HepG2 cell line (HepG2/BTZ) and bortezomib-resistant HuH7 cell line (HuH7/BTZ). The 50% inhibitory concentration values of HepG2/BTZ and HuH7/BTZ were respectively 15- and 39-fold higher than those of parental cell lines. Sequence analysis of the bortezomib-binding pocket in the β5-subunit showed no mutation. However, bortezomib-resistant HCC cells had increased expression of β1 and β5 proteasome subunits. These alterations of proteasome expression were accompanied by a weak degree of proteasome inhibition in bortezomib-resistant cells than that in wild-type cells after bortezomib exposure. Furthermore, bortezomib-resistant HCC cells acquired resistance to apoptosis. Bortezomib up-regulated pro-apoptotic proteins of the Bcl-2 protein family, Bax and Noxa in wild-type HCC cells. However, in bortezomib-resistant HCC cells, resistance to apoptosis was accompanied by loss of the ability to stabilize and accumulate these proteins. Thus, increased expression and increased activity of proteasomes constitute an adaptive and auto regulatory feedback mechanism to allow cells to survive exposure bortezomib.
Collapse
Affiliation(s)
- Yi-Xin Wu
- 1 Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jia-Hua Yang
- 2 Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hirotomo Saitsu
- 1 Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
43
|
Reeg S, Jung T, Castro JP, Davies KJA, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med 2016; 99:153-166. [PMID: 27498116 PMCID: PMC5201141 DOI: 10.1016/j.freeradbiomed.2016.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/28/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 01/23/2023]
Abstract
One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome.
Collapse
Affiliation(s)
- Sandra Reeg
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany
| | - Tobias Jung
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany
| | - José P Castro
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany
| | - Kelvin J A Davies
- University of Southern California, Leonard Davis School of Gerontology, and Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089-0191, USA
| | - Andrea Henze
- University Potsdam, Institute of Nutritional Science, Department of Physiology and Pathophysiology, 14588 Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany.
| |
Collapse
|
44
|
Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int J Biochem Cell Biol 2016; 79:403-418. [DOI: 10.1016/j.biocel.2016.07.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
|
45
|
Buraczynska M, Stec A, Filipczak A, Ksiazek A. Association between functional variant of inflammatory system gene (PSMA6) and end-stage kidney disease. Int Urol Nephrol 2016; 48:2083-2087. [PMID: 27671905 PMCID: PMC5099367 DOI: 10.1007/s11255-016-1420-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Background The proteasome system is involved in several disorders. The 5′ untranslated region of PSMA6 gene contains a single nucleotide polymorphism (SNP) −8 C/G, associated with diabetes, myocardial infarction and coronary artery disease. Methods We examined 584 patients with end-stage kidney disease (ESKD) and 430 controls. All were genotyped for −8 C/G SNP by polymerase chain reaction and restriction analysis. Results We observed lower frequency of CG + GG genotypes in patients than in controls (20 vs. 42 %, p = 0.0038). The odds ratio of 0.34 (95 % CI 0.26–0.45) suggests association of CG + GG with decreased risk of ESKD. We investigated the association between PSMA6 polymorphism and LVH present in 54 % of patients. There was a significant association of CG + GG genotype with LVH, with over 75 % of CG + GG in patients with LVH. This effect was independent from other common causes of LVH—age (OR 1.12, p = 0.643) and hypertension (OR 1.72, p = 0.422). Conclusion We demonstrated for the first time that PSMA6 polymorphism might be a protective factor for ESKD. On the other hand, CG + GG genotypes are independently related to LVH in ESKD patients.
Collapse
Affiliation(s)
- Monika Buraczynska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland.
| | - Anna Stec
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Aleksandra Filipczak
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| | - Andrzej Ksiazek
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-954, Lublin, Poland
| |
Collapse
|
46
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
47
|
Ghosh R, Hwang SM, Cui Z, Gilda JE, Gomes AV. Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells. J Mol Cell Cardiol 2016; 94:131-144. [PMID: 27049794 DOI: 10.1016/j.yjmcc.2016.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/08/2016] [Revised: 03/10/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) like meclofenamate sodium (MS), used to reduce pain, has been associated with an increased risk of cardiovascular disease (CVD). Naproxen (NAP), another NSAID, is not associated with increased risk of CVD. The molecular mechanism(s) by which NSAIDs induce CVD is unknown. We investigated the effects of MS and NAP on protein homeostasis and cardiotoxicity in rat cardiac H9c2 cells and murine neonatal cardiomyocytes. MS, but not NAP, significantly inhibited proteasome activity and reduced cardiac cell viability at pharmacological levels found in humans. Although proteasome subunit gene and protein expression were unaffected by NSAIDs, MS treated cell lysates showed higher 20S proteasome content, while purified proteasomes from MS treated cells had lower proteasome activity and higher levels of oxidized subunits than proteasomes from control cells. Addition of exogenous proteasome to MS treated cells improved cell viability. Both MS and NAP increased ROS production, but the rate of ROS production was greater in MS than in NAP treated cells. The ROS production is likely from mitochondria, as MS inhibited mitochondrial Complexes I and III, major sources of ROS, while NAP inhibited Complex I. MS also impaired mitochondrial membrane potential while NAP did not. Antioxidants were able to prevent the reduced cell viability caused by MS treatment. These results suggest that NSAIDs induce cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction and may explain why some NSAIDs should not be given to patients for long periods.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Soyun M Hwang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Ziyou Cui
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
48
|
Asano T, Sato A, Isono M, Okubo K, Ito K, Asano T. Bortezomib and belinostat inhibit renal cancer growth synergistically by causing ubiquitinated protein accumulation and endoplasmic reticulum stress. Biomed Rep 2015; 3:797-801. [PMID: 26623018 DOI: 10.3892/br.2015.523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023] Open
Abstract
There is no curative treatment for advanced renal cancer, and a novel treatment approach is urgently required. Inducing ubiquitinated protein accumulation and endoplasmic reticulum (ER) stress has recently emerged as a new approach in the treatment of malignancies. In the present study, we hypothesized that the histone deacetylase inhibitor belinostat would increase the amount of unfolded proteins in cells by inhibiting heat-shock protein (HSP) 90, and that the proteasome inhibitor bortezomib would inhibit their degradation by inhibiting the proteasome, thus causing ubiquitinated protein accumulation and ER stress synergistically. The combination of bortezomib and belinostat induced significant increases in apoptosis and inhibited renal cancer growth synergistically (combination indexes <1). The combination also suppressed colony formation significantly (P<0.05). As co-treatment with the pan-caspase inhibitor Z-VAD-FMK changed the number of Annexin V-positive cells, this combination-induced apoptosis was considered caspase dependent. Mechanistically, the combination synergistically caused ubiquitinated proteins to accumulate and induced ER stress, as evidenced by the increased expression of glucose-regulated protein 78 and HSP70. To the best of our knowledge, this is the first study demonstrating the beneficial combined effect of bortezomib and belinostat in renal cancer cells. The study provides a basis for clinical studies with the combination in patients with advanced renal cancer.
Collapse
Affiliation(s)
- Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Keiichi Ito
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
49
|
Abstract
SIGNIFICANCE A constant accumulation of oxidized proteins takes place during aging. Oxidation of proteins leads to a partial unfolding and, therefore, to aggregation. Protein aggregates impair the activity of cellular proteolytic systems (proteasomes, lysosomes), resulting in further accumulation of oxidized proteins. In addition, the accumulation of highly crosslinked protein aggregates leads to further oxidant formation, damage to macromolecules, and, finally, to apoptotic cell death. Furthermore, protein oxidation seems to play a role in the development of various age-related diseases, for example, neurodegenerative diseases. RECENT ADVANCES The highly oxidized lipofuscin accumulates during aging. Lipofuscin formation might cause impaired lysosomal and proteasomal degradation, metal ion accumulation, increased reactive oxygen species formation, and apoptosis. CRITICAL ISSUES It is still unclear to which extent protein oxidation is involved in the progression of aging and in the development of some age-related diseases. FUTURE DIRECTIONS An extensive knowledge of the effects of protein oxidation on the aging process and its contribution to the development of age-related diseases could enable further strategies to reduce age-related impairments. Strategies aimed at lowering aggregate formation might be a straightforward intervention to reduce age-related malfunctions of organs.
Collapse
Affiliation(s)
- Sandra Reeg
- German Institute of Human Nutrition , Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition , Nuthetal, Germany
| |
Collapse
|
50
|
Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution. PLoS One 2015; 10:e0132455. [PMID: 26186340 PMCID: PMC4506093 DOI: 10.1371/journal.pone.0132455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 01/13/2023] Open
Abstract
Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism.
Collapse
|