1
|
He L, Wang GP, Guo JY, Chen ZR, Liu K, Gong SS. Epithelial-Mesenchymal Transition Participates in the Formation of Vestibular Flat Epithelium. Front Mol Neurosci 2022; 14:809878. [PMID: 34975404 PMCID: PMC8719593 DOI: 10.3389/fnmol.2021.809878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
The vestibular sensory epithelium of humans and mice may degenerate into a layer of flat cells, known as flat epithelium (FE), after a severe lesion. However, the pathogenesis of vestibular FE remains unclear. To determine whether the epithelial–mesenchymal transition (EMT) participates in the formation of vestibular FE, we used a well-established mouse model in which FE was induced in the utricle by an injection of streptomycin into the inner ear. The mesenchymal and epithelial cell markers and cell proliferation were examined using immunofluorescence staining and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The function of the EMT was assessed through transcriptome microarray analysis. The results demonstrated that mesenchymal cell markers (α-SMA, S100A4, vimentin, and Fn1) were upregulated in vestibular FE compared with the normal utricle. Robust cell proliferation, which was absent in the normal status, was observed in the formation of FE. Microarray analysis identified 1,227 upregulated and 962 downregulated genes in vestibular FE. Gene Ontology (GO) analysis revealed that differentially expressed genes (DEGs) were highly associated with several EMT-related GO terms, such as cell adhesion, cell migration, and extracellular matrix. Pathway enrichment analysis revealed that DEGs were enriched in the EMT-related signaling pathways, including extracellular matrix (ECM)-receptor interaction, focal adhesion, PI3K/Akt signaling pathway and cell adhesion molecule. Protein–protein interaction networks screened 20 hub genes, which were Akt, Casp3, Col1a1, Col1a2, Fn1, Hgf, Igf1,Il1b, Irs1, Itga2, Itga5, Jun, Mapk1, Myc, Nras, Pdgfrb, Tgfb1, Thbs1, Trp53, and Col2a1. Most of these genes are reportedly involved in the EMT process in various tissues. The mRNA expression level of hub genes was validated using qRT-PCR. In conclusion, the present study indicates that EMT plays a significant role in the formation of vestibular FE and provides an overview of transcriptome characteristics in vestibular FE.
Collapse
Affiliation(s)
- Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-Rui Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
He L, Guo JY, Liu K, Wang GP, Gong SS. Research progress on flat epithelium of the inner ear. Physiol Res 2020; 69:775-785. [PMID: 32901490 DOI: 10.33549/physiolres.934447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome.
Collapse
Affiliation(s)
- L He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China. ,
| | | | | | | | | |
Collapse
|
3
|
He L, Guo JY, Qu TF, Wei W, Liu K, Peng Z, Wang GP, Gong SS. Cellular origin and response of flat epithelium in the vestibular end organs of mice to Atoh1 overexpression. Hear Res 2020; 391:107953. [DOI: 10.1016/j.heares.2020.107953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023]
|
4
|
Liebau A, Schilp S, Mugridge K, Schön I, Kather M, Kammerer B, Tillein J, Braun S, Plontke SK. Long-Term in vivo Release Profile of Dexamethasone-Loaded Silicone Rods Implanted Into the Cochlea of Guinea Pigs. Front Neurol 2020; 10:1377. [PMID: 32038458 PMCID: PMC6987378 DOI: 10.3389/fneur.2019.01377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Glucocorticoids are used intra-operatively in cochlear implant surgeries to reduce the inflammatory reaction caused by insertion trauma and the foreign body response against the electrode carrier after cochlear implantation. To prevent higher systemic concentrations of glucocorticoids that might cause undesirable systemic side effects, the drug should be applied locally. Since rapid clearance of glucocorticoids occurs in the inner ear fluid spaces, sustained application is supposedly more effective in suppressing foreign body and tissue reactions and in preserving neuronal structures. Embedding of the glucocorticoid dexamethasone into the cochlear implant electrode carrier and its continuous release may solve this problem. The aim of the present study was to examine how dexamethasone concentrations in the electrode carrier influence drug levels in the perilymph at different time points. Silicone rods were implanted through a cochleostomy into the basal turn of the scala tympani of guinea pigs. The silicone rods were loaded homogeneously with 0.1, 1, and 10% concentrations of dexamethasone. After implantation, dexamethasone concentrations in perilymph and cochlear tissue were measured at several time points over a period of up to 7 weeks. The kinetic was concentration-dependent and showed an initial burst release in the 10%- and the 1%-dexamethasone-loaded electrode carrier dummies. The 10%-loaded electrode carrier resulted in a more elevated and longer lasting burst release than the 1%-loaded carrier. Following this initial burst release phase, sustained dexamethasone levels of about 60 and 100 ng/ml were observed in the perilymph for the 1 and 10% loaded rods, respectively, during the remainder of the observation time. The 0.1% loaded carrier dummy achieved very low perilymph drug levels of about 0.5 ng/ml. The cochlear tissue drug concentration shows a similar dynamic to the perilymph drug concentration, but only reaches about 0.005–0.05% of the perilymph drug concentration. Dexamethasone can be released from silicone electrode carrier dummies in a controlled and sustained way over a period of several weeks, leading to constant drug concentrations in the scala tympani perilymph. No accumulation of dexamethasone was observed in the cochlear tissue. In consideration of experimental studies using similar drug depots and investigating physiological effects, an effective dose range between 50 and 100 ng/ml after burst release is suggested for the CI insertion trauma model.
Collapse
Affiliation(s)
- Arne Liebau
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | - Ilona Schön
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michel Kather
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | - Stefan K Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
deTorres A, Olszewski RT, Lopez IA, Ishiyama A, Linthicum F, Hoa M. Supporting cell survival after cochlear implant surgery. Laryngoscope 2019; 129:E36-E40. [PMID: 30325510 PMCID: PMC6320269 DOI: 10.1002/lary.27539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2018] [Indexed: 01/12/2023]
Abstract
Supporting cells (SCs) provide structure and maintain an environment that allows hair cells to receive and transmit signals in the auditory pathway. After insult to hair cells and ganglion cells, SCs respond by marking unsalvageable cells for death and maintain structural integrity. Although the histopathology after cochlear implantation has been described regarding hair cells and neural structures, surviving SCs in the implanted ear have not. We present a patient whose posthumous examination of an implanted cochlea demonstrated SC survival. This finding has implications for SC function in maintaining electrical hearing and candidacy for future hair cell regeneration therapies. Laryngoscope, 129:E36-E40, 2019.
Collapse
Affiliation(s)
- Alvin deTorres
- Georgetown University Medical Center, Department of Otolaryngology-Head & Neck Surgery, Washington, DC, USA
| | - Rafal T. Olszewski
- National Institute on Deafness and Other Communication Disorders, Auditory Development and Restoration Program, Bethesda, MD, USA
| | - Ivan A. Lopez
- UCLA School of Medicine, NIDCD National Temporal Bone Laboratory at UCLA, Los Angeles, CA, USA
- UCLA School of Medicine, Cellular and Molecular Biology of the Inner Ear Laboratory, Los Angeles, CA, USA
| | - Akira Ishiyama
- UCLA School of Medicine, NIDCD National Temporal Bone Laboratory at UCLA, Los Angeles, CA, USA
- UCLA School of Medicine, Cellular and Molecular Biology of the Inner Ear Laboratory, Los Angeles, CA, USA
| | - Fred Linthicum
- UCLA School of Medicine, NIDCD National Temporal Bone Laboratory at UCLA, Los Angeles, CA, USA
- UCLA School of Medicine, Cellular and Molecular Biology of the Inner Ear Laboratory, Los Angeles, CA, USA
| | - Michael Hoa
- Georgetown University Medical Center, Department of Otolaryngology-Head & Neck Surgery, Washington, DC, USA
- National Institute on Deafness and Other Communication Disorders, Division of Intramural Research, Bethesda, MD, USA
| |
Collapse
|
6
|
Kurioka T, Lee MY, Heeringa AN, Beyer LA, Swiderski DL, Kanicki AC, Kabara LL, Dolan DF, Shore SE, Raphael Y. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience 2016; 332:242-57. [PMID: 27403879 DOI: 10.1016/j.neuroscience.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Min Young Lee
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amarins N Heeringa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ariane C Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa L Kabara
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Robert ME, Linthicum FH. Empirical Derivation of Correction Factors for Human Spiral Ganglion Cell Nucleus and Nucleolus Count Units. Otolaryngol Head Neck Surg 2015; 154:157-63. [DOI: 10.1177/0194599815603964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/12/2014] [Indexed: 11/15/2022]
Abstract
Objective Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. Study Design We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. Setting The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Subjects and Methods Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. Results For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. Conclusion We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections.
Collapse
Affiliation(s)
| | - Fred H. Linthicum
- Neurotology and House Histological Temporal Bone Laboratory at University of California, Los Angeles, California, USA
| |
Collapse
|
8
|
Liu W, Edin F, Atturo F, Rieger G, Löwenheim H, Senn P, Blumer M, Schrott-Fischer A, Rask-Andersen H, Glueckert R. The pre- and post-somatic segments of the human type I spiral ganglion neurons--structural and functional considerations related to cochlear implantation. Neuroscience 2014; 284:470-482. [PMID: 25316409 PMCID: PMC4300406 DOI: 10.1016/j.neuroscience.2014.09.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022]
Abstract
Human auditory nerve afferents consist of two separate systems; one is represented by the large type I cells innervating the inner hair cells and the other one by the small type II cells innervating the outer hair cells. Type I spiral ganglion neurons (SGNs) constitute 96% of the afferent nerve population and, in contrast to other mammals, their soma and pre- and post-somatic segments are unmyelinated. Type II nerve soma and fibers are unmyelinated. Histopathology and clinical experience imply that human SGNs can persist electrically excitable without dendrites, thus lacking connection to the organ of Corti. The biological background to this phenomenon remains elusive. We analyzed the pre- and post-somatic segments of the type I human SGNs using immunohistochemistry and transmission electron microscopy (TEM) in normal and pathological conditions. These segments were found surrounded by non-myelinated Schwann cells (NMSCs) showing strong intracellular expression of laminin-β2/collagen IV. These cells also bordered the perikaryal entry zone and disclosed surface rugosities outlined by a folded basement membrane (BM) expressing laminin-β2 and collagen IV. It is presumed that human large SGNs are demarcated by three cell categories: (a) myelinated Schwann cells, (b) NMSCs and (c) satellite glial cells (SGCs). Their BMs express laminin-β2/collagen IV and reaches the BM of the sensory epithelium at the habenula perforata. We speculate that the NMSCs protect SGNs from further degeneration following dendrite loss. It may give further explanation why SGNs can persist as electrically excitable monopolar cells even after long-time deafness, a blessing for the deaf treated with cochlear implantation.
Collapse
Affiliation(s)
- W Liu
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | - F Edin
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | - F Atturo
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Neurology, Mental Health and Sensory Organs, Otorhinolaryngologic Unit, Medicine and Psychology, Sapienza, Rome, Italy.
| | - G Rieger
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - H Löwenheim
- Department of Otorhinolaryngology-Head & Neck Surgery, European Medical School, University of Oldenburg, Steinweg 13-17, 26122 Oldenburg, Germany.
| | - P Senn
- University Department of ORL, Head & Neck Surgery, Inselspital and Department of Clinical Research, University of Bern, Switzerland; University Department of ORL, Head & Neck Surgery, HUG, Geneva, Switzerland.
| | - M Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Müllerstrasse 59, 6020 Innsbruck, Austria.
| | - A Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - H Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Otolaryngology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.
| | - R Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Lundin K, Stillesjö F, Rask-Andersen H. Experiences and Results from Cochlear Implantation in Patients with Long Duration of Deafness. AUDIOLOGY AND NEUROTOLOGY EXTRA 2014. [DOI: 10.1159/000365274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Liu W, Rui G, Helge RA. Morphological Study of Surgically Obtained Human Cochlear Specimens - Technical Aspects. J Otol 2014. [DOI: 10.1016/s1672-2930(14)50010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications. Cell Tissue Res 2013; 355:267-78. [PMID: 24241398 PMCID: PMC3921454 DOI: 10.1007/s00441-013-1735-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
Abstract
Human spiral ganglion (SG) neurons show remarkable survival properties and maintain electric excitability for a long time after complete deafness and even separation from the organ of Corti, features essential for cochlear implantation. Here, we analyze and compare the localization and distribution of gap junction (GJ) intercellular channels and connexin 43 (Cx43) in cells surrounding SG cell bodies in man and guinea pig by using transmission electron microscopy and confocal immunohistochemistry. GJs and Cx43 expression has been recognized in satellite glial cells (SGCs) in non-myelinating sensory ganglia including the human SG. In man, SG neurons can survive as mono-polar or "amputated" cells with unbroken central projections following dendrite degeneration and consolidation of the dendrite pole. Cx43-mediated GJ signaling between SGCs is believed to play a key role in this "healing" process and could explain the unique preservation of human SG neurons and the persistence of cochlear implant function.
Collapse
|
12
|
Threshold levels of dual electrode stimulation in cochlear implants. J Assoc Res Otolaryngol 2013; 14:781-90. [PMID: 23695303 DOI: 10.1007/s10162-013-0395-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022] Open
Abstract
Simultaneous stimulation on two contacts (current steering) creates intermediate pitches between the physical contacts in cochlear implants. All recent studies on current steering have focused on Most Comfortable Loudness levels and not at low stimulation levels. This study investigates the efficacy of dual electrode stimulation at lower levels, thereby focusing on the requirements to correct for threshold variations. With a current steered signal, threshold levels were determined on 4 different electrode pairs for 7 different current steering coefficients (α). This was done psychophysically in twelve postlingually deafened cochlear implant (HiRes90K, HiFocus1J) users and, in a computer model, which made use of three different neural morphologies. The analysis on the psychophysical data taking all subjects into account showed that in all conditions there was no significant difference between the threshold level of the physical contacts and the intermediate created percepts, eliminating the need for current corrections at these very low levels. The model data showed unexpected drops in threshold in the middle of the two physical contacts (both contacts equal current). Results consistent with this prediction were obtained for a subset of 5 subjects for the apical pair with wider spacing (2.2 mm). Further analysis showed that this decrease was only observed in subjects with a long duration of deafness. For current steering on adjacent contacts, the results from the psychophysical experiments were in line with the results from computational modelling. However, the dip in the threshold profile could only be replicated in the computational model with surviving peripheral processes without an unmyelinated terminal. On the basis of this result, we put forward that the majority of the surviving spiral ganglion cells in the cochlea in humans with a long duration of deafness still retain peripheral processes, but have lost their unmyelinated terminals.
Collapse
|
13
|
Selective ablation of pillar and deiters' cells severely affects cochlear postnatal development and hearing in mice. J Neurosci 2013; 33:1564-76. [PMID: 23345230 DOI: 10.1523/jneurosci.3088-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mammalian auditory hair cells (HCs) are inserted into a well structured environment of supporting cells (SCs) and acellular matrices. It has been proposed that when HCs are irreversibly damaged by noise or ototoxic drugs, surrounding SCs seal the epithelial surface and likely extend the survival of auditory neurons. Because SCs are more resistant to damage than HCs, the effects of primary SC loss on HC survival and hearing have received little attention. We used the Cre/loxP system in mice to specifically ablate pillar cells (PCs) and Deiters' cells (DCs). In Prox1CreER(T2)+/-;Rosa26(DTA/+) (Prox1DTA) mice, Cre-estrogen receptor (CreER) expression is driven by the endogenous Prox1 promoter and, in presence of tamoxifen, removes a stop codon in the Rosa26(DTA/+) allele and induces diphtheria toxin fragment A (DTA) expression. DTA produces cell-autonomous apoptosis. Prox1DTA mice injected with tamoxifen at postnatal days 0 (P0) and P1 show significant DC and outer PC loss at P2-P4, that reaches ∼70% by 1 month. Outer HC loss follows at P14 and is almost complete at 1 month, while inner HCs remain intact. Neural innervation to the outer HCs is disrupted in Prox1DTA mice and auditory brainstem response thresholds in adults are 40-50 dB higher than in controls. The hearing deficit correlates with loss of cochlear amplification. Remarkably, in Prox1DTA mice, the auditory epithelium preserves the ability to seal the reticular lamina and spiral ganglion neuron counts are normal, a key requirement for cochlear implant success. In addition, our results show that cochlear SC pools should be appropriately replenished during HC regeneration strategies.
Collapse
|
14
|
Oesterle EC. Changes in the adult vertebrate auditory sensory epithelium after trauma. Hear Res 2013; 297:91-8. [PMID: 23178236 PMCID: PMC3637947 DOI: 10.1016/j.heares.2012.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, CHDD CD176, Box 357923, Univ. of Washington, Seattle, WA 98195-7923, USA.
| |
Collapse
|
15
|
Needham K, Minter RL, Shepherd RK, Nayagam BA. Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opin Biol Ther 2013; 13:85-101. [PMID: 23094991 PMCID: PMC3543850 DOI: 10.1517/14712598.2013.728583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In the auditory system, a specialized subset of sensory neurons are responsible for correctly relaying precise pitch and temporal cues to the brain. In individuals with severe-to-profound sensorineural hearing impairment these sensory auditory neurons can be directly stimulated by a cochlear implant, which restores sound input to the brainstem after the loss of hair cells. This neural prosthesis therefore depends on a residual population of functional neurons in order to function effectively. AREAS COVERED In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, the benefits derived from a cochlear implant may be minimal. One way in which to restore function to the auditory nerve is to replace these lost neurons using differentiated stem cells, thus re-establishing the neural circuit required for cochlear implant function. Such a therapy relies on producing an appropriate population of electrophysiologically functional neurons from stem cells, and on these cells integrating and reconnecting in an appropriate manner in the deaf cochlea. EXPERT OPINION Here we review progress in the field to date, including some of the key functional features that stem cell-derived neurons would need to possess and how these might be enhanced using electrical stimulation from a cochlear implant.
Collapse
Affiliation(s)
- Karina Needham
- University of Melbourne, Department of Otolaryngology, East Melbourne, Australia.
| | | | | | | |
Collapse
|
16
|
Gunewardene N, Dottori M, Nayagam BA. The convergence of cochlear implantation with induced pluripotent stem cell therapy. Stem Cell Rev Rep 2012; 8:741-54. [PMID: 21956409 DOI: 10.1007/s12015-011-9320-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
17
|
Budenz CL, Pfingst BE, Raphael Y. The use of neurotrophin therapy in the inner ear to augment cochlear implantation outcomes. Anat Rec (Hoboken) 2012; 295:1896-908. [PMID: 23044834 DOI: 10.1002/ar.22586] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
Severe to profound deafness is most often secondary to a loss of or injury to cochlear mechanosensory cells, and there is often an associated loss of the peripheral auditory neural structures, specifically the spiral ganglion neurons and peripheral auditory fibers. Cochlear implantation is currently our best hearing rehabilitation strategy for severe to profound deafness. These implants work by directly electrically stimulating the remnant auditory neural structures within the deafened cochlea. When administered to the deafened cochlea in animal models, neurotrophins, specifically brain derived neurotrophic factor and neurotrophin-3, have been shown to dramatically improve spiral ganglion neuron survival and stimulate peripheral auditory fiber regrowth. In animal models, neurotrophins administered in combination with cochlear implantation has resulted in significant improvements in the electrophysiological and psychophysical measures of outcome. While further research must be done before these therapies can be applied clinically, neurotrophin therapies for the inner ear show great promise in enhancing CI outcomes and the treatment of hearing loss.
Collapse
Affiliation(s)
- Cameron L Budenz
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
18
|
Okano T, Kelley MW. Stem cell therapy for the inner ear: recent advances and future directions. Trends Amplif 2012; 16:4-18. [PMID: 22514095 DOI: 10.1177/1084713812440336] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vertebrates, perception of sound, motion, and balance is mediated through mechanosensory hair cells located within the inner ear. In mammals, hair cells are only generated during a short period of embryonic development. As a result, loss of hair cells as a consequence of injury, disease, or genetic mutation, leads to permanent sensory deficits. At present, cochlear implantation is the only option for profound hearing loss. However, outcomes are still variable and even the best implant cannot provide the acuity of a biological ear. The recent emergence of stem cell technology has the potential to open new approaches for hair cell regeneration. The goal of this review is to summarize the current state of inner ear stem cell research from a viewpoint of its clinical application for inner ear disorders to illustrate how complementary studies have the potential to promote and refine stem cell therapies for inner ear diseases. The review initially discusses our current understanding of the genetic pathways that regulate hair cell formation from inner ear progenitors during normal development. Subsequent sections discuss the possible use of endogenous inner ear stem cells to induce repair as well as the initial studies aimed at transplanting stem cells into the ear.
Collapse
|
19
|
Cochlear implantation in patients with neurofibromatosis type 2 and patients with vestibular schwannoma in the only hearing ear. Int J Otolaryngol 2012; 2012:157497. [PMID: 22518152 PMCID: PMC3299335 DOI: 10.1155/2012/157497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/02/2011] [Indexed: 11/17/2022] Open
Abstract
Cochlear implants are a new surgical option in the hearing rehabilitation of patients with neurofibromatosis type 2 (NF2) and patients with vestibular schwannoma (VS) in the only hearing ear. Auditory brainstem implant (ABI) has been the standard surgical treatment for these patients. We performed a literature review of patients with NF2 and patients with VS in the only hearing ear. Cochlear implantation (CI) provided some auditory benefit in all patients. Preservation of cochlear nerve integrity is crucial after VS resection. Results ranged from environmental sound awareness to excellent benefit with telephone use. Promontory stimulation is recommended although not crucial. MRI can be performed safely in cochlear implanted patients.
Collapse
|
20
|
Abstract
OBJECTIVE To describe the relationship between implantation-associated trauma and postoperative speech perception scores among adult and pediatric patients undergoing cochlear implantation using conventional length electrodes and minimally traumatic surgical techniques. STUDY DESIGN Retrospective chart review (2002-2010). SETTING Tertiary academic referral center. PATIENTS All subjects with significant preoperative low-frequency hearing (≤70 dB HL at 250 Hz) who underwent cochlear implantation with a newer generation implant electrode (Nucleus Contour Advance, Advanced Bionics HR90K [1J and Helix], and Med El Sonata standard H array) were reviewed. INTERVENTION(S) Preimplant and postimplant audiometric thresholds and speech recognition scores were recorded using the electronic medical record. MAIN OUTCOME MEASURE(S) Postimplantation pure tone threshold shifts were used as a surrogate measure for extent of intracochlear injury and correlated with postoperative speech perception scores. RESULTS : Between 2002 and 2010, 703 cochlear implant (CI) operations were performed. Data from 126 implants were included in the analysis. The mean preoperative low-frequency pure-tone average was 55.4 dB HL. Hearing preservation was observed in 55% of patients. Patients with hearing preservation were found to have significantly higher postoperative speech perception performance in the CI-only condition than those who lost all residual hearing. CONCLUSION Conservation of acoustic hearing after conventional length cochlear implantation is unpredictable but remains a realistic goal. The combination of improved technology and refined surgical technique may allow for conservation of some residual hearing in more than 50% of patients. Germane to the conventional length CI recipient with substantial hearing loss, minimizing trauma allows for improved speech perception in the electric condition. These findings support the use of minimally traumatic techniques in all CI recipients, even those destined for electric-only stimulation.
Collapse
|
21
|
Chen I, Limb CJ, Ryugo DK. The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. J Assoc Res Otolaryngol 2010; 11:587-603. [PMID: 20821032 PMCID: PMC2975880 DOI: 10.1007/s10162-010-0234-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 08/13/2010] [Indexed: 10/19/2022] Open
Abstract
It has long been observed that loss of auditory receptor cells is associated with the progressive degeneration of spiral ganglion cells. Chronic electrical stimulation via cochlear implantation has been used in an attempt to slow the rate of degeneration in cats neonatally deafened by ototoxic agents but with mixed results. The present study examined this issue using white cats with a history of hereditary deafness as an alternative animal model. Nineteen cats provided new data for this study: four normal-hearing cats, seven congenitally deaf white cats, and eight congenitally deaf white cats with unilateral cochlear implants. Data from additional cats were collected from the literature. Electrical stimulation began at 3 to 4 or 6 to 7 months after birth, and cats received stimulation for approximately 7 h a day, 5 days a week for 12 weeks. Quantitative analysis of spiral ganglion cell counts, cell density, and cell body size showed no marked improvement between cochlear-implanted and congenitally deaf subjects. Average ganglion cell size from cochlear-implanted and congenitally deaf cats was statistically similar and smaller than that of normal-hearing cats. Cell density from cats with cochlear implants tended to decrease within the upper basal and middle cochlear turns in comparison to congenitally deaf cats but remained at congenitally deaf levels within the lower basal and apical cochlear turns. These results provide no evidence that chronic electrical stimulation enhances spiral ganglion cell survival, cell density, or cell size compared to that of unstimulated congenitally deaf cats. Regardless of ganglion neuron status, there is unambiguous restoration of auditory nerve synapses in the cochlear nucleus of these cats implanted at the earlier age.
Collapse
Affiliation(s)
- Iris Chen
- Department of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of Medicine, Traylor 510, 720 Rutland Ave, Baltimore, MD 21205 USA
| | - Charles J. Limb
- Department of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of Medicine, Traylor 510, 720 Rutland Ave, Baltimore, MD 21205 USA
| | - David K. Ryugo
- Department of Otolaryngology-HNS, Center for Hearing and Balance, Johns Hopkins University School of Medicine, Traylor 510, 720 Rutland Ave, Baltimore, MD 21205 USA
- Department of Neuroscience, Center for Hearing and Balance, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010 Australia
| |
Collapse
|
22
|
Accelerated neurite growth from spiral ganglion neurons exposed to the Rho kinase inhibitor H-1152. Neuroscience 2010; 169:855-62. [PMID: 20478368 DOI: 10.1016/j.neuroscience.2010.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 12/18/2022]
Abstract
Upon the death of their hair cell synaptic partners, bipolar cochlear spiral ganglion neurons either die or retract their peripheral nerve fibers. Efforts to induce the regrowth of the peripheral neurites have had to rely on limited knowledge of the mechanisms underlying spiral ganglion neurite regeneration and have been restricted by the impracticality of undertaking large numbers of manual analyses of neurite growth responses. Here we have used dissociated cultures of postnatal mouse spiral ganglia to assess the effects of the Rho kinase inhibitor H-1152 on neurite growth and to determine the utility of automated high content analysis for evaluating neurite length from spiral ganglion neurons in vitro. In cultures of postnatal mouse spiral ganglion, greater than 95% of the neurons develop bipolar, monopolar or neurite-free morphologies in ratios dependent on whether the initial medium composition contains leukemia inhibitory factor or bone morphogenetic protein 4. Cultures under both conditions were maintained for 24 h, then exposed for 18 h to H-1152. None of the cultures exposed to H-1152 showed decreased neuronal survival or alterations in the ratios of different neuronal morphologies. However, as measured manually, the population of neurite lengths was increased in the presence of H-1152 in both types of cultures. High content analysis using the Arrayscan VTi imager and Cellomics software confirmed the rank order differences in neurite lengths among culture conditions. These data suggest the presence of an inhibitory regulatory mechanism(s) in the signaling pathway of Rho kinase that slows the growth of spiral ganglion neurites. The automated analysis demonstrates the feasibility of using primary cultures of dissociated mouse spiral ganglion for large scale screens of chemicals, genes or other factors that regulate neurite growth.
Collapse
|
23
|
Abstract
Sensory hair cells of the inner ear are responsible for translating auditory or vestibular stimuli into electrical energy that can be perceived by the nervous system. Although hair cells are exquisitely mechanically sensitive, they can be easily damaged by excessive stimulation by ototoxic drugs and by the effects of aging. In mammals, auditory hair cells are never replaced, such that cumulative damage to the ear causes progressive and permanent deafness. In contrast, non-mammalian vertebrates are capable of replacing lost hair cells, which has led to efforts to understand the molecular and cellular basis of regenerative responses in different vertebrate species. In this review, we describe recent progress in understanding the limits to hair cell regeneration in mammals and discuss the obstacles that currently exist for therapeutic approaches to hair cell replacement.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, BCM 295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010; 223:464-72. [PMID: 20109446 DOI: 10.1016/j.expneurol.2010.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/26/2022]
Abstract
Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue.
Collapse
Affiliation(s)
- Seiji B Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, 1150 W. Med. Cntr. Dr., Ann Arbor, MI 48109-5648, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Rask-Andersen H, Liu W, Linthicum F. Ganglion cell and 'dendrite' populations in electric acoustic stimulation ears. Adv Otorhinolaryngol 2009; 67:14-27. [PMID: 19955718 PMCID: PMC2821077 DOI: 10.1159/000262593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS The electric acoustic stimulation (EAS) technique combines electric and acoustic stimulation in the same ear and utilizes both low-frequency acoustic hearing and electric stimulation of preserved neurons. We present data of ganglion cell and dendrite populations in ears from normal individuals and those suffering from adult-onset hereditary progressive hearing loss with various degrees of residual low-frequency hearing. Some of these were potential candidates for EAS surgery. The data may give us information about the neuroanatomic situation in EAS ears. METHODS Dendrites and ganglion cells were calculated and audiocytocochleograms constructed. The temporal bones were from the collection at the House Ear Institute in Los Angeles, Calif., USA. Normal human anatomy, based on surgical specimens, is presented. RESULTS Inner and outer hair cells, supporting cells, ganglion cells and dendrites were preserved in the apical region. In the mid-frequency region, around 1 kHz, the organ of Corti with inner and outer hair cells was often conserved while in the lower basal turn, representing frequencies above 3 kHz, the organ of Corti was atrophic and replaced by thin cells. Despite loss of hair cells and lamina fibers ganglion cells were present even after 28 years of deafness. CONCLUSIONS Conditions with profound sensorineural hearing loss and preserved low-frequency hearing may have several causes and the pathology may vary accordingly. In our patients with progressive adult-onset sensorineural hearing loss (amalgamated into 'presbyacusis'), neurons were conserved even after long duration of deafness. These spiral ganglion cells may be excellent targets for electric stimulation using the EAS technique.
Collapse
|
26
|
Oesterle EC, Campbell S. Supporting cell characteristics in long-deafened aged mouse ears. J Assoc Res Otolaryngol 2009; 10:525-44. [PMID: 19644644 DOI: 10.1007/s10162-009-0183-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 07/13/2009] [Indexed: 12/23/2022] Open
Abstract
Significant sensory hair cell loss leads to irreversible hearing and balance deficits in humans and other mammals. Future therapeutic strategies to repair damaged mammalian auditory epithelium may involve inserting stem cells into the damaged epithelium, inducing non-sensory cells remaining in the epithelium to transdifferentiate into replacement hair cells via gene therapy, or applying growth factors. Little is currently known regarding the status and characteristics of the non-sensory cells that remain in the deafened auditory epithelium, yet this information is integral to the development of therapeutic treatments. A single high-dose injection of the aminoglycoside kanamycin coupled with a single injection of the loop diuretic furosemide was used to kill hair cells in adult mice, and the mice were examined 1 year after the drug insult. Outer hair cells are lost throughout the entire length of the cochlea and less than a third of the inner hair cells remain in the apical turn. Over 20% and 55% of apical organ of Corti support cells and spiral ganglion cells are lost, respectively. We examined the expression of several known support cell markers to investigate for possible support cell dedifferentiation in the damaged ears. The support cell markers investigated included the microtubule protein acetylated tubulin, the transcription factor Sox2, and the Notch signaling ligand Jagged1. Non-sensory epithelial cells remaining in the organ of Corti retain acetylated tubulin, Sox2 and Jagged1 expression, even when the epithelium has a monolayer-like appearance. These results suggest a lack of marked SC dedifferentiation in these aged and badly damaged ears.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, 98195, USA.
| | | |
Collapse
|
27
|
Spiral ganglion cell loss is unrelated to segmental cochlear sensory system degeneration in humans. Otol Neurotol 2009; 30:418-422. [PMID: 19326501 DOI: 10.1097/mao.0b013e31819a8827] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To demonstrate that contrary to what occurs in animals, neuron loss in the human spiral ganglion is not in proportion to organ of Corti hair or supporting cell loss. STUDY DESIGN Histopathological review of archival temporal bone histological sections. SETTING Nonprofit research facility. METHODS Four temporal bones, from an archival collection of 1,448 temporal bones, were found that had a total loss of hair and supporting cells limited to the basal segment of the cochlea and a hearing loss of 3 or more years (range, 3-28 yr). Cochlear reconstructions were conducted to demonstrate the populations of hair and supporting cells, peripheral processes (dendrites), spiral ganglion cells, and the amount of surviving stria vascularis in different cochlear segments. RESULTS The total loss of hair and supporting cells of the organ of Corti in the base of the cochlea is not accompanied by a proportional loss of spiral ganglion cells in the modiolar base. CONCLUSION A long-term loss of hearing in frequencies greater than 2 kHz, and corresponding hair cell loss, does not result in a subsequent loss of spiral ganglion cells in humans, in contrast to what has been reported in association with animals. These findings suggest that the poor performance of cochlear implant in patients after prolonged deafness is not caused by ongoing degeneration of ganglion cells.
Collapse
|
28
|
Spontaneous association of glial cells with regrowing neurites in mixed cultures of dissociated spiral ganglia. Neuroscience 2009; 161:227-35. [PMID: 19324078 DOI: 10.1016/j.neuroscience.2009.03.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/23/2022]
Abstract
Evidence from developmental and regeneration studies of the cochlea and other tissues gives reason to hypothesize a role for nonneural cells in the growth and regeneration of cochlear spiral ganglion nerve fibers. We examined the spontaneous associations of regrowing neurites and nonneural cells in mixed cultures of dissociated newborn mouse spiral ganglia. After 7 days in vitro, nonneural cells formed a confluent layer in the culture well. Regrowing neurites grew atop this layer, forming non-uniform patterns that were similar to those formed by endogenously expressed laminin-1, entactin and integrin beta4, but not fibronectin or tenascin. In cultures grown for 42 h and maintained in three different growth media, all regrowing neurites were preferentially associated with spindle-shaped nonneural cells. The spindle-shaped cells incorporated bromodeoxyuridine in culture and were immunoreactive for the proteins S100, laminin-1, laminin-2, SRY-related high-mobility-group box 10 transcription factor (Sox10), neurotrophin receptor (P75) and connexin29 but negative for fibronectin and glial fibrillary acidic protein. These cells existed in the culture within a much larger, general population of fibronectin positive cells. Immunolabeling of fixed cochleas from neonatal mice localized Sox10, P75 and connexin29, to peripheral nerve bundles. The observed expressions of protein markers and the bipolar, spindle shape of the neurite-associated cells indicate that they are derived in vitro from the original Schwann or satellite cells in the ganglion or spiral lamina. The spontaneous and preferential association of neurites in culture with mitotic Schwann cells highlights the potential contribution neurite-Schwann cell interactions may have in promoting the growth and regrowth of damaged spiral ganglion neurons in the cochlea.
Collapse
|
29
|
Transmastoid labyrinthectomy versus translabyrinthine vestibular nerve section: does cutting the vestibular nerve make a difference in outcome? Otol Neurotol 2007; 28:801-8. [PMID: 17948358 DOI: 10.1097/mao.0b013e3180a726af] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Analyze differences in outcomes between labyrinthectomy with and without vestibular nerve section, including characteristics of symptoms and time course for improvement. STUDY DESIGN Patient survey. SETTING Tertiary referral neurotologic private practice. PATIENTS/INTERVENTION Twenty-five patients who underwent transmastoid labyrinthectomies and 17 who underwent translabyrinthine vestibular nerve section (TLVNS). Patients with a diagnosis of Meniere's disease comprised 64.0 and 64.7% of the two groups, respectively. MAIN OUTCOME MEASURES A mail questionnaire assessed frequency, severity, interference, and disability for both vertigo ("spinning dizziness") and dysequilibrium ("imbalance/unsteadiness") before and after surgery as well as the time course of improvements. RESULTS Approximately 24% of each group still has vertigo (spinning dizziness). On average, both groups indicated resolution of vertigo at 2 to 3 weeks on average (longer for imbalance). There were no significant differences between groups in vertigo characteristics, but TLVNS did show advantages in imbalance outcomes. American Academy of Otolaryngology-Head and Neck Surgery functional disability showed improvement in 73 and 52% of the TLVNS and labyrinthectomy groups, respectively. The TLVNS group was more likely to have improved imbalance (81.3 versus 45.8%, p <or= 0.047) and tended more frequently to rate it as currently not severe/none (76.5 versus 45.8%, p <or= 0.06). The labyrinthectomy group did not show significant improvement in any imbalance characteristics, whereas the TLVNS group improved in all characteristics. When limited to patients with Meniere's disease, results are similar, but differences between groups are smaller, and improvement in imbalance did also occur for the labyrinthectomy group. CONCLUSION Both transmastoid labyrinthectomy and TLVNS provide good control of vertigo (>85% Class A or B). However, patients undergoing TLVNS were more likely to show improvement in imbalance and functional disability. This difference was less pronounced in patients with Meniere's disease.
Collapse
|