1
|
Rincon Sabatino S, Rivero A, Sangaletti R, Dietrich WD, Hoffer ME, King CS, Rajguru SM. Targeted therapeutic hypothermia protects against noise induced hearing loss. Front Neurosci 2024; 17:1296458. [PMID: 38292902 PMCID: PMC10826421 DOI: 10.3389/fnins.2023.1296458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Exposure to occupational or recreational loud noise activates multiple biological regulatory circuits and damages the cochlea, causing permanent changes in hearing sensitivity. Currently, no effective clinical therapy is available for the treatment or mitigation of noise-induced hearing loss (NIHL). Here, we describe an application of localized and non-invasive therapeutic hypothermia and targeted temperature management of the inner ear to prevent NIHL. Methods We developed a custom-designed cooling neck collar to reduce the temperature of the inner ear by 3-4°C post-injury to deliver mild therapeutic hypothermia. Results This localized and non-invasive therapeutic hypothermia successfully mitigated NIHL in rats. Our results show that mild hypothermia can be applied quickly and safely to the inner ear following noise exposure. We show that localized hypothermia after NIHL preserves residual hearing and rescues noise-induced synaptopathy over a period of months. Discussion This study establishes a minimally-invasive therapeutic paradigm with a high potential for rapid translation to the clinic for long-term preservation of hearing health.
Collapse
Affiliation(s)
| | - Andrea Rivero
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Rachele Sangaletti
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | - W. Dalton Dietrich
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Michael E. Hoffer
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | | | - Suhrud M. Rajguru
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
- RestorEar Devices LLC, Bozeman, MT, United States
| |
Collapse
|
2
|
Zhang G, Deighan A, Raj A, Robinson L, Donato HJ, Garland G, Leland M, Martin-McNulty B, Kolumam GA, Riegler J, Freund A, Wright KM, Churchill GA. Intermittent fasting and caloric restriction interact with genetics to shape physiological health in mice. Genetics 2022; 220:iyab157. [PMID: 34791228 PMCID: PMC8733459 DOI: 10.1093/genetics/iyab157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022] Open
Abstract
Dietary interventions can dramatically affect physiological health and organismal lifespan. The degree to which organismal health is improved depends upon genotype and the severity of dietary intervention, but neither the effects of these factors, nor their interaction, have been quantified in an outbred population. Moreover, it is not well understood what physiological changes occur shortly after dietary change and how these may affect the health of an adult population. In this article, we investigated the effect of 6-month exposure of either caloric restriction (CR) or intermittent fasting (IF) on a broad range of physiological traits in 960 1-year old Diversity Outbred mice. We found CR and IF affected distinct aspects of physiology and neither the magnitude nor the direction (beneficial or detrimental) of effects were concordant with the severity of the intervention. In addition to the effects of diet, genetic variation significantly affected 31 of 36 traits (heritabilities ranged from 0.04 to 0.65). We observed significant covariation between many traits that was due to both diet and genetics and quantified these effects with phenotypic and genetic correlations. We genetically mapped 16 diet-independent and 2 diet-dependent significant quantitative trait loci, both of which were associated with cardiac physiology. Collectively, these results demonstrate the degree to which diet and genetics interact to shape the physiological health of adult mice following 6 months of dietary intervention.
Collapse
Affiliation(s)
- Guozhu Zhang
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | |
Collapse
|
3
|
Milon B, Shulman ED, So KS, Cederroth CR, Lipford EL, Sperber M, Sellon JB, Sarlus H, Pregernig G, Shuster B, Song Y, Mitra S, Orvis J, Margulies Z, Ogawa Y, Shults C, Depireux DA, Palermo AT, Canlon B, Burns J, Elkon R, Hertzano R. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep 2021; 36:109758. [PMID: 34592158 PMCID: PMC8709734 DOI: 10.1016/j.celrep.2021.109758] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 01/26/2023] Open
Abstract
Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.
Collapse
Affiliation(s)
- Beatrice Milon
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eldad D Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathy S So
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Erika L Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Heela Sarlus
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Applied Immunology & Immunotherapy, Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sunayana Mitra
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zachary Margulies
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yoko Ogawa
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher Shults
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Joe Burns
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Henton A, Tzounopoulos T. What's the buzz? The neuroscience and the treatment of tinnitus. Physiol Rev 2021; 101:1609-1632. [PMID: 33769102 DOI: 10.1152/physrev.00029.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tinnitus is a pervasive public health issue that affects ∼15% of the United States population. Similar estimates have also been shown on a global scale, with similar prevalence found in Europe, Asia, and Africa. The severity of tinnitus is heterogeneous, ranging from mildly bothersome to extremely disruptive. In the United States, ∼10-20% of individuals who experience tinnitus report symptoms that severely reduce their quality of life. Due to the huge personal and societal burden, in the last 20 yr a concerted effort on basic and clinical research has significantly advanced our understanding and treatment of this disorder. Yet, neither full understanding, nor cure exists. We know that tinnitus is the persistent involuntary phantom percept of internally generated nonverbal indistinct noises and tones, which in most cases is initiated by acquired hearing loss and maintained only when this loss is coupled with distinct neuronal changes in auditory and extra-auditory brain networks. Yet, the exact mechanisms and patterns of neural activity that are necessary and sufficient for the perceptual generation and maintenance of tinnitus remain incompletely understood. Combinations of animal model and human research will be essential in filling these gaps. Nevertheless, the existing progress in investigating the neurophysiological mechanisms has improved current treatment and highlighted novel targets for drug development and clinical trials. The aim of this review is to thoroughly discuss the current state of human and animal tinnitus research, outline current challenges, and highlight new and exciting research opportunities.
Collapse
Affiliation(s)
- A Henton
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - T Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Verdoodt D, Eens S, Van Dam D, De Deyn PP, Vanderveken OM, Szewczyk K, Saldien V, Ponsaerts P, Van Rompaey V. Effect of Oral Allylnitrile Administration on Cochlear Functioning in Mice Following Comparison of Different Anesthetics for Hearing Assessment. FRONTIERS IN TOXICOLOGY 2021; 3:641569. [PMID: 35295154 PMCID: PMC8915850 DOI: 10.3389/ftox.2021.641569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Allylnitrile is a compound found in cruciferous vegetables and has the same lethality and toxic effects as the other nitriles. In 2013, a viable allylnitrile ototoxicity mouse model was established. The toxicity of allylnitrile was limited through inhibition of CYP2E1 with trans-1,2-dichloroethylene (TDCE). The allylnitrile intoxication model has been extensively tested in the 129S1 mouse strain for vestibular function, which showed significant HC loss in the vestibular organ accompanied by severe behavioral abnormalities. However, the effect of allylnitrile on auditory function remains to be evaluated. Commonly used anesthetics to conduct hearing measurements are isoflurane and ketamine/xylazine anesthesia but the effect of these anesthetics on hearing assessment is still unknown. In this study we will evaluate the otovestibular effects of oral allylnitrile administration in mice. In addition, we will compare the influence of isoflurane and ketamine/xylazine anesthesia on hearing thresholds.Methods and Materials: Fourteen Coch+/– CBACa mice were randomly allocated into an allylnitrile (n = 8) and a control group (n = 6). Baseline measurements were done with isoflurane and 1 week later under ketamine/xylazine anesthesia. After baseline audiovestibular measurements, mice were co-administered with a single dose of allylnitrile and, to reduce systemic toxicity, three intraperitoneal injections of TDCE were given. Hearing loss was evaluated by recordings of auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE). Specific behavioral test batteries for vestibular function were used to assess alterations in vestibular function.Results: Hearing thresholds were significantly elevated when using isoflurane anesthesia compared to ketamine/xylazine anesthesia for all frequencies of the ABR and the mid-to-high frequencies in DPOAE. Allylnitrile-treated mice lacked detectable ABR thresholds at each frequency tested, while DPOAE thresholds were significantly elevated in the low-frequency region of the cochlea and completely lacking in the mid-to high frequency region. Vestibular function was not affected by allylnitrile administration.Conclusion: Isoflurane anesthesia has a negative confounding effect on the measurement of hearing thresholds in mice. A single oral dose of allylnitrile induced hearing loss but did not significantly alter vestibular function in mice. This is the first study to show that administration of allylnitrile can cause a complete loss of hearing function in mice.
Collapse
Affiliation(s)
- Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- *Correspondence: Dorien Verdoodt
| | - Sander Eens
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Olivier M. Vanderveken
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Krystyna Szewczyk
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vera Saldien
- Department of Anaesthesiology, Antwerp University Hospital, Edegem, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
6
|
Deng D, Wang W, Bao S. Diffusible Tumor Necrosis Factor-Alpha (TNF-α) Promotes Noise-Induced Parvalbumin-Positive (PV+) Neuron Loss and Auditory Processing Impairments. Front Neurosci 2020; 14:573047. [PMID: 33154715 PMCID: PMC7590827 DOI: 10.3389/fnins.2020.573047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has been implicated in noise-induced auditory processing disorder and tinnitus. Certain non-auditory neurological disorders can also increase the levels of proinflammatory cytokines in the brain. To investigate the impact of increased brain proinflammatory cytokine levels on the central auditory pathway, we infused recombinant TNF-α into the right lateral cerebral ventricle, and examined auditory processing and cytoarchitecture of the auditory cortex. Microglial deramification was observed in the auditory cortex of mice that had received both TNF-α infusion and exposure to an 86-dB noise, but not in mice that had received either TNF-α infusion or noise exposure alone. In addition, we observed reduced cortical PV+ neuron density and impaired performances in gap detection and prepulse inhibition (PPI) only in mice that received both TNF-α infusion and the noise exposure. These results suggest that disease-related increase in brain proinflammatory cytokine release could be a risk factor for noise-induced auditory processing disorder and tinnitus.
Collapse
Affiliation(s)
- Di Deng
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Weihua Wang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Shaowen Bao
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Carrasco A, Tamura A, Pommer S, Chouinard JA, Kurima K, Barzaghi P, Wickens JR. Multiparametric assessment of the impact of opsin expression and anesthesia on striatal cholinergic neurons and auditory brainstem activity. J Comp Neurol 2020; 528:787-804. [PMID: 31625606 DOI: 10.1002/cne.24795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 11/08/2022]
Abstract
Recent developments in genetic engineering have established murine models that permit the selective control of cholinergic neurons via optical stimulation. Despite copious benefits granted by these experimental advances, the sensory physiognomy of these organisms has remained poorly understood. Therefore, the present study evaluates sensory and neuronal response properties of animal models developed for the study of optically induced acetylcholine release regulation. Auditory brainstem responses, fluorescence imaging, and patch clamp recording techniques were used to assess the impact of viral infection, sex, age, and anesthetic agents across the ascending auditory pathway of ChAT-Cre and ChAT-ChR2(Ai32) mice. Data analyses revealed that neither genetic configuration nor adeno-associated viral infection alters the early stages of auditory processing or the cellular response properties of cholinergic neurons. However, anesthetic agent and dosage amount profoundly modulate the response properties of brainstem neurons. Last, analyses of age-related hearing loss in virally infected ChAT-Cre mice did not differ from those reported in wild type animals. This investigation demonstrates that ChAT-Cre and ChAT-ChR2(Ai32) mice are viable models for the study of cholinergic modulation in auditory processing, and it emphasizes the need for prudence in the selection of anesthetic procedures.
Collapse
Affiliation(s)
- Andres Carrasco
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Atsushi Tamura
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Stefan Pommer
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Julie A Chouinard
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kiyoto Kurima
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Paolo Barzaghi
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
8
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
9
|
Barry K, Robertson D, Mulders W. Changes in auditory thalamus neural firing patterns after acoustic trauma in rats. Hear Res 2019; 379:89-97. [DOI: 10.1016/j.heares.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
|
10
|
Sheppard AM, Zhao DL, Salvi R. Isoflurane anesthesia suppresses distortion product otoacoustic emissions in rats. J Otol 2018; 13:59-64. [PMID: 30559766 PMCID: PMC6291629 DOI: 10.1016/j.joto.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
A commonly used anesthetic, isoflurane, can impair auditory function in a dose-dependent manner. However, in rats, isoflurane-induced auditory impairments have only been assessed with auditory brainstem responses; a measure which is unable to distinguish if changes originate from the central or peripheral auditory system. Studies performed in other species, such as mice and guinea-pigs, suggests auditory impairment stems from disrupted OHC amplification. Despite the wide use of the rat in auditory research, these observations have yet to be replicated in the rat animal model. This study used distortion product otoacoustic emissions to assess outer hair cell function in rats that were anesthetized with either isoflurane or a ketamine/xylazine cocktail for approximately 45 min. Results indicate that isoflurane can significantly reduce DPOAE amplitudes compared to ketamine/xylazine, and that responses were more variable with isoflurane than ketamine/xylazine over the 45-min test period. Based on these observations, isoflurane should be used with caution when assessing peripheral auditory function to avoid potentially confounding effects.
Collapse
Affiliation(s)
- Adam M Sheppard
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Deng-Ling Zhao
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Providence, China
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
11
|
Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 2017; 353:213-223. [PMID: 28712672 PMCID: PMC5632522 DOI: 10.1016/j.heares.2017.07.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/02/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022]
Abstract
Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents.
Collapse
Affiliation(s)
- M D Valero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA.
| | - J A Burton
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - S N Hauser
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - T A Hackett
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - R Ramachandran
- Vanderbilt University Medical Center, Dept. of Hearing and Speech Sciences, Nashville, TN 37232, USA
| | - M C Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Ohlemiller KK, Jones SM, Johnson KR. Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 2016; 17:493-523. [PMID: 27752925 PMCID: PMC5112220 DOI: 10.1007/s10162-016-0589-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf, Fay and Carl Simons Center for Hearing and Deafness, Washington University School of Medicine, 660 S. Euclid, Saint Louis, MO, 63110, USA.
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | |
Collapse
|
13
|
Pace E, Luo H, Bobian M, Panekkad A, Zhang X, Zhang H, Zhang J. A Conditioned Behavioral Paradigm for Assessing Onset and Lasting Tinnitus in Rats. PLoS One 2016; 11:e0166346. [PMID: 27835697 PMCID: PMC5105995 DOI: 10.1371/journal.pone.0166346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023] Open
Abstract
Numerous behavioral paradigms have been developed to assess tinnitus-like behavior in animals. Nevertheless, they are often limited by prolonged training requirements, as well as an inability to simultaneously assess onset and lasting tinnitus behavior, tinnitus pitch or duration, or tinnitus presence without grouping data from multiple animals or testing sessions. To enhance behavioral testing of tinnitus, we developed a conditioned licking suppression paradigm to determine the pitch(s) of both onset and lasting tinnitus-like behavior within individual animals. Rats learned to lick water during broadband or narrowband noises, and to suppress licking to avoid footshocks during silence. After noise exposure, rats significantly increased licking during silent trials, suggesting onset tinnitus-like behavior. Lasting tinnitus-behavior, however, was exhibited in about half of noise-exposed rats through 7 weeks post-exposure tested. Licking activity during narrowband sound trials remained unchanged following noise exposure, while ABR hearing thresholds fully recovered and were comparable between tinnitus(+) and tinnitus(-) rats. To assess another tinnitus inducer, rats were injected with sodium salicylate. They demonstrated high pitch tinnitus-like behavior, but later recovered by 5 days post-injection. Further control studies showed that 1): sham noise-exposed rats tested with footshock did not exhibit tinnitus-like behavior, and 2): noise-exposed or sham rats tested without footshocks showed no fundamental changes in behavior compared to those tested with shocks. Together, these results demonstrate that this paradigm can efficiently test the development of noise- and salicylate-induced tinnitus behavior. The ability to assess tinnitus individually, over time, and without averaging data enables us to realistically address tinnitus in a clinically relevant way. Thus, we believe that this optimized behavioral paradigm will facilitate investigations into the mechanisms of tinnitus and development of effective treatments.
Collapse
Affiliation(s)
- Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Michael Bobian
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Ajay Panekkad
- Department of Electrical Engineering, Wayne State College of Engineering, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States of America
| | - Xueguo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts & Sciences, 60 Farnsworth St., Detroit, Michigan 48202, United States of America
- * E-mail:
| |
Collapse
|
14
|
Stewart C, Yu Y, Huang J, Maklad A, Tang X, Allison J, Mustain W, Zhou W, Zhu H. Effects of high intensity noise on the vestibular system in rats. Hear Res 2016; 335:118-127. [PMID: 26970474 DOI: 10.1016/j.heares.2016.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Some individuals with noise-induced hearing loss (NIHL) also report balance problems. These accompanying vestibular complaints are not well understood. The present study used a rat model to examine the effects of noise exposure on the vestibular system. Rats were exposed to continuous broadband white noise (0-24 kHz) at an intensity of 116 dB sound pressure level (SPL) via insert ear phones in one ear for three hours under isoflurane anesthesia. Seven days after the exposure, a significant increase in ABR threshold (43.3 ± 1.9 dB) was observed in the noise-exposed ears, indicating hearing loss. Effects of noise exposure on vestibular function were assessed by three approaches. First, fluorescein-conjugated phalloidin staining was used to assess vestibular stereocilia following noise exposure. This analysis revealed substantial sensory stereocilia bundle loss in the saccular and utricular maculae as well as in the anterior and horizontal semicircular canal cristae, but not in the posterior semicircular canal cristae. Second, single unit recording of vestibular afferent activity was performed under pentobarbital anesthesia. A total of 548 afferents were recorded from 10 noise-treated rats and 12 control rats. Noise exposure produced a moderate reduction in baseline firing rates of regular otolith afferents and anterior semicircular canal afferents. Also a moderate change was noted in the gain and phase of the horizontal and anterior semicircular canal afferent's response to sinusoidal head rotation (1 and 2 Hz, 45°/s peak velocity). Third, noise exposure did not result in significant changes in gain or phase of the horizontal rotational and translational vestibulo-ocular reflex (VOR). These results suggest that noise exposure not only causes hearing loss, but also causes substantial damage in the peripheral vestibular system in the absence of immediate clinically measurable vestibular signs. These peripheral deficits, however, may lead to vestibular disorders over time.
Collapse
Affiliation(s)
- Courtney Stewart
- PhD Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA; Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yue Yu
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jun Huang
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Adel Maklad
- Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xuehui Tang
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome Allison
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - William Mustain
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wu Zhou
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hong Zhu
- Department of Otolaryngology & Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
15
|
Macrophage Migration Inhibitory Factor Deficiency Causes Prolonged Hearing Loss After Acoustic Overstimulation. Otol Neurotol 2016; 36:1103-8. [PMID: 25853607 DOI: 10.1097/mao.0000000000000755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HYPOTHESIS Macrophage migration inhibitory factor plays an important role in noise-induced hearing loss. BACKGROUND Macrophage migration inhibitory factor is an essential factor in axis formation and neural development. Macrophage migration inhibitory factor is expressed in the inner ear, but its function remains to be elucidated. METHODS Macrophage migration inhibitory factor-deficient mice (MIF(-/-) mice) were used in this study. Wild-type and MIF(-/-) mice received noise exposure composed of octave band noise. Auditory brainstem response thresholds were examined before (control) and at 0, 12, and 24 hours and 2 weeks after the intense noise exposure. Morphological findings of cochlear hair cells were investigated using scanning electron microscopy. Histopathological examination with hematoxylin and eosin staining and TUNEL assay were also performed. RESULTS In both the wild-type and MIF(-/-) mice, acoustic overstimulation induced significant hearing loss compared with the control level. Two weeks after the intense noise exposure, the MIF(-/-) mice had an increased hearing threshold compared with the wild-type mice. Scanning electron microscopy demonstrated that the outer hair cells in the MIF(-/-) mice were affected 2 weeks after noise exposure compared with the wild-type mice. TUNEL-positive cells were identified in the organ of Corti of the MIF(-/-) mice. CONCLUSION The MIF(-/-) mice had prolonged hearing loss and significant loss of cochlear hair cells after intense noise exposure. Macrophage migration inhibitory factor may play an important role in recovery from acoustic trauma. Management of macrophage migration inhibitory factor may be a novel therapeutic option for noise-induced hearing loss.
Collapse
|
16
|
Wen J, Xiao Y, Bai YX, Xu M. Protective effect of dexmedetomidine on noise-induced hearing loss. Laryngoscope 2013; 124:E188-93. [PMID: 24114834 DOI: 10.1002/lary.24425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/04/2013] [Accepted: 09/03/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Wen
- Department of Anesthesiology (J.W., Y.X.); The First Affiliated Hospital of Medical College of Xi'an Jiaotong University; Xi'an China
| | - Ying Xiao
- Department of Anesthesiology (J.W., Y.X.); The First Affiliated Hospital of Medical College of Xi'an Jiaotong University; Xi'an China
| | - Yan-Xia Bai
- Department of Otolaryngology (Y-X.B.); The First Affiliated Hospital of Medical College of Xi'an Jiaotong University; Xi'an China
| | - Min Xu
- Department of Otolaryngology (M.X.); The Second Affiliated Hospital of Medical College of Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
17
|
Baker MA. Evaluation of MR safety of a set of canine ear defenders (MuttMuffs®) at 1 T. Radiography (Lond) 2013. [DOI: 10.1016/j.radi.2013.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Pace E, Zhang J. Noise-induced tinnitus using individualized gap detection analysis and its relationship with hyperacusis, anxiety, and spatial cognition. PLoS One 2013; 8:e75011. [PMID: 24069375 PMCID: PMC3771890 DOI: 10.1371/journal.pone.0075011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023] Open
Abstract
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
Collapse
Affiliation(s)
- Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts & Sciences, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Cederholm JME, Froud KE, Wong ACY, Ko M, Ryan AF, Housley GD. Differential actions of isoflurane and ketamine-based anaesthetics on cochlear function in the mouse. Hear Res 2012; 292:71-9. [PMID: 22960466 DOI: 10.1016/j.heares.2012.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/13/2012] [Accepted: 08/21/2012] [Indexed: 10/28/2022]
Abstract
Isoflurane is a volatile inhaled anaesthetic widely used in animal research, with particular utility for hearing research. Isoflurane has been shown to blunt hearing sensitivity compared with the awake state, but little is known about how isoflurane compares with other anaesthetics with regard to hair cell transduction and auditory neurotransmission. The current study was undertaken in C57Bl/6J and C129/SvEv strains of mice to determine whether isoflurane anaesthesia affects hearing function relative to ketamine-based anaesthesia. Cochlear function and central auditory transmission were assessed using auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE), comparing thresholds and input/output functions over time, for isoflurane vs. ketamine/xylazine/acepromazine anaesthesia. ABR thresholds at the most sensitive region of hearing (16 kHz) were initially higher under isoflurane anaesthesia. This reduced hearing sensitivity worsened over the 1 h study period, and also became evident with broadband click stimulus. Ketamine anaesthesia provided stable ABR thresholds. Although the growth functions were unchanged over time for both anaesthetics, the slopes under isoflurane anaesthesia were significantly less. Cubic (2f(1)-f(2)) DPOAE thresholds and growth functions were initially similar for both anaesthetics. After 60 min, DPOAE thresholds increased for both groups, but this effect was significantly greater with ketamine anaesthesia. The isoflurane-mediated increase in ABR thresholds over time is attributable to action on cochlear nerve activation, evident as a right-shift in the P1-N1 input/output function compared to K/X/A. The ketamine-based anaesthetic produced stable ABR thresholds and gain over time, despite a right-shift in the outer hair cell - mediated DPOAE input/output function.
Collapse
Affiliation(s)
- Jennie M E Cederholm
- Translational Neuroscience Facility, School of Medical Sciences, The University of New South Wales, UNSW Kensington Campus, Sydney, NSW Australia
| | | | | | | | | | | |
Collapse
|
20
|
Norman M, Tomscha K, Wehr M. Isoflurane blocks temporary tinnitus. Hear Res 2012; 290:64-71. [DOI: 10.1016/j.heares.2012.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/21/2012] [Accepted: 03/21/2012] [Indexed: 11/30/2022]
|
21
|
Ruebhausen MR, Brozoski TJ, Bauer CA. A comparison of the effects of isoflurane and ketamine anesthesia on auditory brainstem response (ABR) thresholds in rats. Hear Res 2012; 287:25-9. [PMID: 22543090 DOI: 10.1016/j.heares.2012.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/29/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022]
Abstract
The auditory brainstem response (ABR) is an acoustically evoked potential commonly used to determine hearing sensitivity in laboratory animals. Both isoflurane and ketamine/xylazine anesthesia are commonly used to immobilize animals during ABR procedures. Hearing threshold determination is often the primary interest. Although a number of studies have examined the effect of different anesthetics on evoked potential waveforms and growth functions, none have directly compared their effect on ABR hearing threshold estimates. The present study used a within-subject comparison and typical threshold criteria, to examine the effect of isoflurane and ketamine/xylazine on ABR thresholds for clicks and pure-tone stimuli extending from 8 to 32 kHz. At comparable physiological doses, hearing thresholds obtained with isoflurane (1.7% in O(2)) were on average elevated across a broad frequency range by greater than 27 dB compared to ketamine/xylazine (ketamine HCl, 50mg/kg; xylazine, 9 mg/kg). This highly significant threshold effect (F(1,6) = 158.3403, p = 3.51 × 10(-22)) demonstrates a substantial difference between general anesthetics on auditory brainstem sensitivity. Potential mechanisms and implications for ABR threshold determination under anesthesia are discussed.
Collapse
Affiliation(s)
- M R Ruebhausen
- Southern Illinois University School of Medicine, Division of Otolaryngology Head and Neck Surgery, 801 N Rutledge, Rm 3205, Springfield, IL 62702, United States.
| | | | | |
Collapse
|
22
|
Kim JU, Ahn YS, Suh JK, Chung JW. Effect of isoflurane on the hearing in mice. KOREAN JOURNAL OF AUDIOLOGY 2012; 16:14-7. [PMID: 24653864 PMCID: PMC3936527 DOI: 10.7874/kja.2012.16.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/20/2011] [Accepted: 01/03/2012] [Indexed: 11/30/2022]
Abstract
Background and Objectives The aim of this study was to investigate the relationship between inhalation anesthetics and hearing in mice. Materials and Methods As inhalation anesthetics, isoflurane was used. Auditory brainstem response and distortion product otoacoustic emission were used as measurement of hearing. Mice were divided into 2 groups. 'Isoflurane group' consisted of mice that were anesthetized with an inspired concentration of 2.0 vol% isoflurane with 2 L/min of oxygen (n=10). 'Control group' consisted of mice that were anesthetized with ketamine and xylazine (n=10). Results Auditory brainstem response thresholds in mice anesthetized with ketamine and xylazine was not different from those in mice anesthetized with isoflurane. Threshold of DPOAE was higher in mice with isolurane than with ketamine and xylazine. Changes of efferent control may be induced by isoflurane and consequently change the threshold of DPOAE in mice. Conclusions These results infer that, there was a change of central nervous system induced by inhalation anesthetics, this change also can be applied to the strategies for prevention of hearing loss.
Collapse
Affiliation(s)
- Joung Uk Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Suk Ahn
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Kyung Suh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Woo Chung
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Brozoski TJ, Wisner KW, Sybert LT, Bauer CA. Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model. J Assoc Res Otolaryngol 2011; 13:55-66. [PMID: 21969021 PMCID: PMC3254712 DOI: 10.1007/s10162-011-0290-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/26/2011] [Indexed: 11/04/2022] Open
Abstract
Animal experiments suggest that chronic tinnitus (“ringing in the ears”) may result from processes that overcompensate for lost afferent input. Abnormally elevated spontaneous neural activity has been found in the dorsal cochlear nucleus (DCN) of animals with psychophysical evidence of tinnitus. However, it has also been reported that DCN ablation fails to reduce established tinnitus. Since other auditory areas have been implicated in tinnitus, the role of the DCN is unresolved. The apparently conflicting electrophysiological and lesion data can be reconciled if the DCN serves as a necessary trigger zone rather than a chronic generator of tinnitus. The present experiment used lesion procedures identical to those that failed to decrease pre-existing tinnitus. The exception was that lesions were done prior to tinnitus induction. Young adult rats were trained and tested using a psychophysical procedure shown to detect tinnitus. Tinnitus was induced by a single unilateral high-level noise exposure. Consistent with the trigger hypothesis, bilateral dorsal DCN lesions made before high-level noise exposure prevented the development of tinnitus. A protective effect stemming from disruption of the afferent pathway could not explain the outcome because unilateral lesions ipsilateral to the noise exposure did not prevent tinnitus and unilateral lesions contralateral to the noise exposure actually exacerbated the tinnitus. The DCN trigger mechanism may involve plastic circuits that, through loss of inhibition, or upregulation of excitation, increase spontaneous neural output to rostral areas such as the inferior colliculus. The increased drive could produce persistent pathological changes in the rostral areas, such as high-frequency bursting and decreased interspike variance, that comprise the chronic tinnitus signal.
Collapse
Affiliation(s)
- Thomas Jeffrey Brozoski
- Division of Otolaryngology-Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | |
Collapse
|
24
|
Development of tinnitus in CBA/CaJ mice following sound exposure. J Assoc Res Otolaryngol 2011; 12:647-58. [PMID: 21667173 DOI: 10.1007/s10162-011-0276-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022] Open
Abstract
Tinnitus, the perception of a sound without an external acoustic source, is a complex perceptual phenomenon affecting the quality of life in 17% of the adult population. Despite its ubiquity and morbidity, the pathophysiology of tinnitus is a work in progress, and there is no generally accepted cure or treatment. Development of a reliable common animal model is crucial for tinnitus research and may advance this field. The goal of this study was to develop a tinnitus mouse model. Tinnitus was induced in an experimental group of mice by an exposure to a loud (116 dB sound pressure level (SPL)) narrow band noise (one octave, centered at 16 kHz) during 1 h under anesthesia. The tinnitus was then assessed behaviorally by measuring gap induced suppression of the acoustic startle reflex. We found that a vast majority of the sound-exposed mice (86%) developed behavioral signs of tinnitus. This was a complex, long lasting, and dynamic process. On the day following exposure, all mice demonstrated signs of acute tinnitus over the entire range of sound frequencies used for testing (10-31 kHz). However, 2-3 months later, a behavioral evidence of tinnitus was evident only at a narrow frequency range (20-31 kHz) representing a presumed chronic condition. Extracellular recordings confirmed a significantly higher rate of spontaneous activity in inferior colliculus neurons in sound-exposed compared to control mice. Surprisingly, unilateral sound exposure suppresses startle responses in mice and they remained suppressed even 3 months post-exposure, whereas auditory brainstem response thresholds were completely recovered during 2 months following exposure. In summary, behavioral evidence of tinnitus can be reliably developed in mice by sound exposure, and tinnitus induction can be assessed by quantifying prepulse inhibition of the acoustic startle reflex.
Collapse
|
25
|
Li Y, Ding D, Jiang H, Fu Y, Salvi R. Co-administration of cisplatin and furosemide causes rapid and massive loss of cochlear hair cells in mice. Neurotox Res 2011; 20:307-19. [PMID: 21455790 DOI: 10.1007/s12640-011-9244-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 12/24/2022]
Abstract
The expanding arsenal of transgenic mice has created a powerful tool for investigating the biological mechanisms involved in ototoxicity. However, cisplatin ototoxicity is difficult to investigate in mice because of their small size and vulnerability to death by nephrotoxicity. To overcome this problem, we developed a strategy for promoting cisplatin-induced ototoxicity by coadministration of furosemide a loop diuretic. A dose-response study identified 200 mg/kg of furosemide as the optimal dose for disrupting the stria vascularis and opening the blood-ear barrier. Our analysis of stria pathology indicated that the optimal period for administering cisplatin was 1 h after furosemide treatment. Combined treatment with 0.5 mg/kg of cisplatin and 200 mg/kg furosemide resulted in only moderate loss of outer hair cells in the basal 20% of the cochlea, only mild threshold shifts and minimal loss of distortion product otoacoustic emission (DPOAE). In contrast, 1 mg/kg of cisplatin plus 200 mg/kg of furosemide resulted in a permanent 40-50 dB elevation of auditory brainstem response thresholds, almost complete elimination of DPOAE, and nearly total loss of outer hair cells. The widespread outer hair cell lesions that develop in mice treated with cisplatin plus furosemide could serve as extremely useful murine model for investigating techniques for regenerating outer hair cells, studying the mechanisms of cisplatin and furosemide ototoxicity and assessing the perceptual and electrophysiological consequences of outer hair cell loss on central auditory plasticity.
Collapse
Affiliation(s)
- Yongqi Li
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
26
|
Brozoski TJ, Caspary DM, Bauer CA, Richardson BD. The effect of supplemental dietary taurine on tinnitus and auditory discrimination in an animal model. Hear Res 2010; 270:71-80. [PMID: 20868734 DOI: 10.1016/j.heares.2010.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Loss of central inhibition has been hypothesized to underpin tinnitus and impact auditory acuity. Taurine, a partial agonist at inhibitory glycine and γ-amino butyric acid receptors, was added to the daily diet of rats to examine its effects on chronic tinnitus and normal auditory discrimination. Eight rats were unilaterally exposed once to a loud sound to induce tinnitus. The rats were trained and tested in an operant task shown to be sensitive to tinnitus. An equivalent unexposed control group was run in parallel. Months after exposure, 6 of the exposed rats showed significant evidence of chronic tinnitus. Two concentrations of taurine in drinking water were given over several weeks (attaining average daily doses of 67 mg/kg and 294 mg/kg). Water consumption was unaffected. Three main effects were obtained: (1) The high taurine dose significantly attenuated tinnitus, which returned to near pre-treatment levels following washout. (2) Auditory discrimination was significantly improved in unexposed control rats at both doses. (3) As indicated by lever pressing, taurine at both doses had a significant group-equivalent stimulant effect. These results are consistent with the hypothesis that taurine attenuates tinnitus and improves auditory discrimination by increasing inhibitory tone and decreasing noise in the auditory pathway.
Collapse
Affiliation(s)
- Thomas J Brozoski
- Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | |
Collapse
|
27
|
Li Y, Ke C, Yang J, Xiong L, Yao S. The effect of nitrous oxide and isoflurane on the total RNA yield from the cochlea of the rats. ACTA ACUST UNITED AC 2007; 27:614-6. [PMID: 18060650 DOI: 10.1007/s11596-007-0536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Indexed: 11/26/2022]
Abstract
The possible mechanism of inhalation anesthetics on the internal auditory impairment of the rat was investigated by determining the effect of nitrous oxide (N(2)O) and isoflurane on the total RNA yield from the cochlea of the rats. Thirty healthy Wistar rats were randomly divided into 3 groups: group C (control group, n=10) with a 3-h unremitting inhalation of 50% O(2), group N (experiment group, n=10) with a continuous inhalation of 50% N(2)O+50% O(2) for 3 h, and group I (experiment group, n=10) with a 3-h sustained inhalation of 2.5% isoflurane. The TRIzol in combination with RNeasy was used to respectively extract the total RNA from cochlea of rats in the 3 groups. Spectrophotometry was used to detect total RNA yield and electrophoresis to detect the quality. The total RNA extracted from the cochlea of the rats in the groups C and N was 7.69 and 6.51 microg, respectively. There was a 15% decrease in the N group as compared with group C. The total RNA from the rats in the group I was 7.32 microg, and there was hardly any change in the group as compared with the group C. The value of A(260)/A(280) in groups C, N and I was 2.07, 2.04 and 2.04, respectively, showing a very high RNA purity. The result of gel electrophoresis suggested that there was no degradation in the total RNA. It was suggested that the interference of N(2)O on the cochlear RNA yield might be one of the reasons which cause an injury of the ear. The isoflurane shows no harm on the hearing.
Collapse
Affiliation(s)
- Yuantao Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | |
Collapse
|
28
|
Chung JW, Ahn JH, Kim JY, Lee HJ, Kang HH, Lee YK, Kim JU, Koo SW. The Effect of Isoflurane, Halothane and Pentobarbital on Noise-Induced Hearing Loss in Mice. Anesth Analg 2007; 104:1404-8, table of contents. [PMID: 17513632 DOI: 10.1213/01.ane.0000261508.24083.6c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ear surgery using mastoid drills can lead to noise-induced hearing loss (NIHL). We investigated whether inhaled anesthetics or pentobarbital could have protective effects on NIHL in mice. METHODS Mice were exposed to broad band white noise for 3 h per day for 3 consecutive days, with or without anesthesia, using halothane, isoflurane, or pentobarbital. The hearing level of each mouse was analyzed before exposure, and 1 day, 1, 2, and 3 Wk, and 1 mo after noise exposure by measuring auditory brainstem response thresholds. At 1 Wk after noise exposure, the organ of Corti was stained with a fluorescent isothiocyanate-conjugated phalloidin probe and a TUNEL kit. RESULTS In the unanesthetized control group, the hearing threshold increased to 77.5 +/- 8.0 dB hearing level (HL) after noise stimulation. In the pentobarbital, isoflurane, and halothane groups, hearing threshold increased to 62.5 +/- 6.3 dB HL, 45.5 +/- 9.8 dB HL, and 39.3 +/- 6.2 dB HL, respectively, with all anesthetized groups of mice showing significantly preserved hearing compared with the control group (P < 0.05). But, in mice anesthetized with pentobarbital, hearing loss was more severe than in those treated with the inhaled anesthetics (P < 0.05). Hair cell survival was reduced in unanesthetized control mice and somewhat reduced in pentobarbital-treated mice, but largely unaffected in mice treated with inhaled anesthetics. CONCLUSIONS These findings indicate that, while halothane, isoflurane and pentobarbital could protect mice against NIHL and hair cell damage, inhaled anesthetics were more effective.
Collapse
Affiliation(s)
- Jong Woo Chung
- Department of Otolaryngology, Asan Medical Center, College of Medicine, University of Ulsan, Songpa-Gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|