1
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Fernando ME, Jayanivash J, Srinivasaprasad ND, Suren S, Thirumalvalavan K. Post-Renal Transplant Metabolic Acidosis: A Neglected Entity. Indian J Nephrol 2019; 29:116-121. [PMID: 30983752 PMCID: PMC6440336 DOI: 10.4103/ijn.ijn_93_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Metabolic acidosis is a prevalent yet overlooked entity among renal transplant recipients (RTRs) and incurs adverse effects on graft function. Although graft dysfunction and calcineurin inhibitor usage have been linked with renal tubular acidosis (RTA), there is no Indian data on prevalence or risk factors of post-transplant acidosis. A cross-sectional study was conducted on 106 adult RTRs, with a transplant duration of >6 months and an estimated glomerular filtration rate (GFR) >40 ml/min/1.73 m2. Acidosis was diagnosed on basis of plasma bicarbonate and arterial pH. Serum and urine electrolytes with anion gap were determined to diagnose and type RTA. Acidosis was diagnosed in 44 of 106 patients (41.5%) with 23 (52.27%) having severe acidosis. Type I RTA was the most common subtype (52.5%) followed by type IV (30.9%) and type II RTA (7.5%). The correlation between estimated glomerular filtration rate and acidosis was minimally linear (r = 0.1088), with multivariate analysis revealing previous acute rejection episodes, current serum tacrolimus levels, cotrimoxazole usage and intake of animal proteins to be independent risk factors. The serum albumin levels were low in the acidosis group and showed linear correlation with bicarbonate levels (r = 0.298). There is a high prevalence of metabolic acidosis in RTRs with type I RTA being most common subtype. Screening of RTRs on a regular basis is a feasible approach for early diagnosis and intervention. However, prospective studies are needed to demonstrate the effect of acidosis on graft survival and benefit of bicarbonate therapy in RTRs.
Collapse
Affiliation(s)
- M E Fernando
- Department of Nephrology, Government Stanley Hospital, The Tamilnadu DR MGR Medical University, Chennai, Tamil Nadu, India
| | - J Jayanivash
- Department of Nephrology, Government Stanley Hospital, The Tamilnadu DR MGR Medical University, Chennai, Tamil Nadu, India
| | - N D Srinivasaprasad
- Department of Nephrology, Government Stanley Hospital, The Tamilnadu DR MGR Medical University, Chennai, Tamil Nadu, India
| | - S Suren
- Department of Nephrology, Government Stanley Hospital, The Tamilnadu DR MGR Medical University, Chennai, Tamil Nadu, India
| | - K Thirumalvalavan
- Department of Nephrology, Government Stanley Hospital, The Tamilnadu DR MGR Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
4
|
Soleimani M. The multiple roles of pendrin in the kidney. Nephrol Dial Transplant 2014; 30:1257-66. [PMID: 25281699 DOI: 10.1093/ndt/gfu307] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/25/2014] [Indexed: 12/30/2022] Open
Abstract
The [Formula: see text] exchanger pendrin (SLC26A4, PDS) is located on the apical membrane of B-intercalated cells in the kidney cortical collecting duct and the connecting tubules and mediates the secretion of bicarbonate and the reabsorption of chloride. Given its dual function of bicarbonate secretion and chloride reabsorption in the distal tubules, it was thought that pendrin plays important roles in systemic acid-base balance and electrolyte and vascular volume homeostasis under basal conditions. Mice with the genetic deletion of pendrin or humans with inactivating mutations in PDS gene, however, do not display excessive salt and fluid wasting or altered blood pressure under baseline conditions. Very recent reports have unmasked the basis of incongruity between the mild phenotype in mutant mice and the role of pendrin as an important player in salt reabsorption in the distal tubule. These studies demonstrate that pendrin and the Na-Cl cotransporter (NCC; SLC12A3) cross compensate for the loss of each other, therefore masking the role that each transporter plays in salt reabsorption under baseline conditions. In addition, pendrin regulates calcium reabsorption in the distal tubules. Furthermore, combined deletion of pendrin and NCC not only causes severe volume depletion but also results in profound calcium wasting and luminal calcification in medullary collecting ducts. Based on studies in pathophysiological states and the examination of genetically engineered mouse models, the evolving picture points to important roles for pendrin (SLC26A4) in kidney physiology and in disease states. This review summarizes recent advances in the characterization of pendrin and the multiple roles it plays in the kidney, with emphasis on its essential roles in several diverse physiological processes, including chloride homeostasis, vascular volume and blood pressure regulation, calcium excretion and kidney stone formation.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, USA Research Services, Veterans Affairs Medical Center, Cincinnati, OH, USA Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Hwang PP, Chou MY. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 2013; 465:1233-47. [PMID: 23568368 PMCID: PMC3745619 DOI: 10.1007/s00424-013-1269-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/27/2023]
Abstract
Zebrafish (Danio rerio) possesses several advantages as an experimental organism, including the applicability of molecular tools, ease of in vivo cellular observation and functional analysis, and rapid embryonic development, making it an emerging model for the study of integrative and regulatory physiology and, in particular, the epithelial transport associated with body fluid ionic homeostasis. Zebrafish inhabits a hypotonic freshwater environment, and as such, the gills (or the skin, during embryonic stages) assume the role of the kidney in body fluid ionic homeostasis. Four types of ionocyte expressing distinct sets of transporters have been identified in these organs: H+-ATPase-rich, Na+-K+-ATPase-rich, Na+-Cl− cotransporter-expressing and K+-secreting cells; these ionocytes perform transepithelial H+ secretion/Na+ uptake/NH4+ excretion, Ca2+ uptake, Na+/Cl− uptake, and K+ secretion, respectively. Zebrafish ionocytes are analogous to various renal tubular cells, in terms of ion transporter expression and function. During embryonic development, ionocyte progenitors develop from epidermal stem cells and then differentiate into different types of ionocyte through a positive regulatory loop of Foxi3a/-3b and other transcription factors. Several hormones, including cortisol, vitamin D, stanniocalcin-1, calcitonin, and isotocin, were found to participate in the control pathways of ionic homeostasis by precisely studying the target ion transport pathways, ion transporters, or ionocytes of the hormonal actions. In conclusion, the zebrafish model not only enhances our understanding of body fluid ion homeostasis and hormonal control in fish but also informs studies on mammals and other animal species, thereby providing new insights into related fields.
Collapse
Affiliation(s)
- Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | | |
Collapse
|
6
|
Brown D, Bouley R, Păunescu TG, Breton S, Lu HAJ. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am J Physiol Cell Physiol 2012; 302:C1421-33. [PMID: 22460710 DOI: 10.1152/ajpcell.00085.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Schwartz JH, Alexander EA. Adaptation of intercalated cells along the collecting duct to systemic acid/base changes. Kidney Int 2011; 78:949-51. [PMID: 21030969 DOI: 10.1038/ki.2010.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collecting duct intercalated cells respond to short-term acid/base perturbations by rapidly shuttling H(+)-ATPase to and from the plasma membrane. Purkerson et al. provide information on the regulation of the anion transporters during chronic acidosis and acute recovery (alkalosis). They found that the major mechanism for both acute and chronic states is regulation of both the H(+)-ATPase and the anion exchangers plus changes in the overall expression level of these anion transporters in chronic adaptation.
Collapse
Affiliation(s)
- John H Schwartz
- Renal Section, Boston University Medical Center and Boston University School of Medicine, Boston, Massachusetts, USA.
| | | |
Collapse
|
9
|
Quigley IK, Stubbs JL, Kintner C. Specification of ion transport cells in the Xenopus larval skin. Development 2011; 138:705-14. [PMID: 21266406 DOI: 10.1242/dev.055699] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specialized epithelial cells in the amphibian skin play important roles in ion transport, but how they arise developmentally is largely unknown. Here we show that proton-secreting cells (PSCs) differentiate in the X. laevis larval skin soon after gastrulation, based on the expression of a `kidney-specific' form of the H(+)v-ATPase that localizes to the plasma membrane, orthologs of the Cl(-)/HCO(-)(3) antiporters ae1 and pendrin, and two isoforms of carbonic anhydrase. Like PSCs in other species, we show that the expression of these genes is likely to be driven by an ortholog of foxi1, which is also sufficient to promote the formation of PSC precursors. Strikingly, the PSCs form in the skin as two distinct subtypes that resemble the alpha- and beta-intercalated cells of the kidney. The alpha-subtype expresses ae1 and localizes H(+)v-ATPases to the apical plasma membrane, whereas the beta-subtype expresses pendrin and localizes the H(+)v-ATPase cytosolically or basolaterally. These two subtypes are specified during early PSC differentiation by a binary switch that can be regulated by Notch signaling and by the expression of ubp1, a transcription factor of the grainyhead family. These results have implications for how PSCs are specified in vertebrates and become functionally heterogeneous.
Collapse
Affiliation(s)
- Ian K Quigley
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
10
|
Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2010; 122:4253-66. [PMID: 19923269 DOI: 10.1242/jcs.032615] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.
Collapse
Affiliation(s)
- Ora A Weisz
- Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
11
|
Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. ACTA ACUST UNITED AC 2009; 212:1762-72. [PMID: 19448085 DOI: 10.1242/jeb.028803] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton-pumping V-ATPase is a complex, multi-subunit enzyme that is highly expressed in the plasma membranes of some epithelial cells in the kidney, including collecting duct intercalated cells. It is also located on the limiting membranes of intracellular organelles in the degradative and secretory pathways of all cells. Different isoforms of some V-ATPase subunits are involved in the targeting of the proton pump to its various intracellular locations, where it functions in transporting protons out of the cell across the plasma membrane or acidifying intracellular compartments. The former process plays a critical role in proton secretion by the kidney and regulates systemic acid-base status whereas the latter process is central to intracellular vesicle trafficking, membrane recycling and the degradative pathway in cells. We will focus our discussion on two cell types in the kidney: (1) intercalated cells, in which proton secretion is controlled by shuttling V-ATPase complexes back and forth between the plasma membrane and highly-specialized intracellular vesicles, and (2) proximal tubule cells, in which the endocytotic pathway that retrieves proteins from the glomerular ultrafiltrate requires V-ATPase-dependent acidification of post-endocytotic vesicles. The regulation of both of these activities depends upon the ability of cells to monitor the pH and/or bicarbonate content of their extracellular environment and intracellular compartments. Recent information about these pH-sensing mechanisms, which include the role of the V-ATPase itself as a pH sensor and the soluble adenylyl cyclase as a bicarbonate sensor, will be addressed in this review.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
12
|
Horng JL, Lin LY, Hwang PP. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 2009; 296:C682-92. [PMID: 19211913 DOI: 10.1152/ajpcell.00576.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is important to maintain internal pH homeostasis in biological systems. In our previous studies, H(+)-ATPase-rich (HR) cells were found to be responsible for proton secretion in the skin of zebrafish embryos during development. In this study, zebrafish embryos were exposed to acidic and basic waters to investigate the regulation of HR cell acid secretion during pH disturbances. Our results showed that the function of HR cells on the skin of zebrafish embryos can be upregulated in pH 4 water not only by increasing the cell number but also by enlarging the acid-secreting function of single cells. We also identified an "alveolar-type" apical opening under scanning electron microscopy observations of the apical membrane of HR cells, and the density and size of the alveolar type of apical openings were also increased in pH 4 water. p63 and PCNA immunostaining results also showed that additional HR cells in pH 4 water may be differentiated not only from ionocyte precursor cells but also newly proliferating epithelial stem cells.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
13
|
Chang WJ, Horng JL, Yan JJ, Hsiao CD, Hwang PP. The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2009; 296:R1192-201. [PMID: 19193938 DOI: 10.1152/ajpregu.90973.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
H(+)-ATPase-rich (HR) cells in zebrafish are known to be involved in acid secretion and Na(+) uptake mechanisms in zebrafish gills/skin; however, little is known about how HR cells are functionally regulated. In the present work, we studied the roles of Drosophila glial cell missing (gcm), a cell fate-related transcription factor, in the differentiation and functional regulation of zebrafish HR cells. Zebrafish gcm2 (zgcm2) was found to begin expression in zebrafish embryos at 10 h postfertilization (hpf), and to be extensively expressed in gills but only mildly so in eyes, heart, muscles, and testes. By whole mount in situ hybridization, zgcm2 mRNA signals were found in a group of cells on the zebrafish yolk sac surface initially in the tail bud stage (10 hpf); they had disappeared at 36 hpf and thereafter appeared again in the gill region from 48 hpf. Double fluorescence in situ hybridization further demonstrated specific colocalization of zgcm2 mRNA in HR cells in zebrafish embryos. Knockdown of zgcm2 with a specific morpholino oligonucleotide caused the complete disappearance of HR cells with a concomitant decrease in H(+) activity at the apical surface of HR cells, but it did not affect the occurrence of Na(+)-K(+)-ATPase-rich cells. A decrease in the H(+)-ATPase subunit A (zatp6v1a) expression and no change in zgcm2 expression in zebrafish gills were seen from 12 h to 3 days after transfer to acidic fresh water, but a compensatory stimulation in the expressions of both genes appeared 4 days post-transfer. In conclusion, functional regulation of HR cells is probably achieved by enhancing cell differentiation via zGCM2 activation.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Lee CH, Kim GH. Electrolyte and Acid-base disturbances induced by clacineurin inhibitors. Electrolyte Blood Press 2007; 5:126-30. [PMID: 24459511 PMCID: PMC3894512 DOI: 10.5049/ebp.2007.5.2.126] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 11/27/2007] [Indexed: 01/25/2023] Open
Abstract
Nephrotoxicity is the most common and clinically significant adverse effect of calcineurin inhibitors. Cyclosporine and tacrolimus nephrotoxicity is manifested by both acute azotemia and chronic progressive renal disease and tubular zdysfunction. An elevation in the plasma potassium concentration due to reduced efficiency of urinary potassium excretion is common in cyclosporine-treated patients; it may be severe and potentially life-threatening with concurrent administration of an angiotensin converting enzyme inhibitor, which diminishes aldosterone release. Tubular injury induced by cyclosporine can also impair acid excretion. This may be presented as a hyperchloremic metabolic acidosis associated with decreased aldosterone activity and suppression of ammonium excretion by hyperkalemia. Some patients treated with cyclosporine develop hypophosphatemia due to urinary phosphate wasting. Renal magnesium wasting is also common presumably due to drug effects on magnesium reabsorption. Hypomagnesemia has also been implicated as a contributor to the nephrotoxicity associated with cyclosporine. Both cyclosporine and tacrolimus are associated with hypercalciuria. Attention must be paid to drug dose, side effects, and drug interactions to minimize toxicity and maximize efficacy.
Collapse
Affiliation(s)
- Chang Hwa Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 2007; 293:C1187-208. [PMID: 17670895 DOI: 10.1152/ajpcell.00024.2007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of ion channels and transporters are expressed in both the inner ear and kidney. In the inner ear, K+cycling and endolymphatic K+, Na+, Ca2+, and pH homeostasis are critical for normal organ function. Ion channels and transporters involved in K+cycling include K+channels, Na+-2Cl−-K+cotransporter, Na+/K+-ATPase, Cl−channels, connexins, and K+/Cl−cotransporters. Furthermore, endolymphatic Na+and Ca2+homeostasis depends on Ca2+-ATPase, Ca2+channels, Na+channels, and a purinergic receptor channel. Endolymphatic pH homeostasis involves H+-ATPase and Cl−/HCO3−exchangers including pendrin. Defective connexins (GJB2 and GJB6), pendrin (SLC26A4), K+channels (KCNJ10, KCNQ1, KCNE1, and KCNMA1), Na+-2Cl−-K+cotransporter (SLC12A2), K+/Cl−cotransporters (KCC3 and KCC4), Cl−channels (BSND and CLCNKA + CLCNKB), and H+-ATPase (ATP6V1B1 and ATPV0A4) cause hearing loss. All these channels and transporters are also expressed in the kidney and support renal tubular transport or signaling. The hearing loss may thus be paralleled by various renal phenotypes including a subtle decrease of proximal Na+-coupled transport (KCNE1/KCNQ1), impaired K+secretion (KCNMA1), limited HCO3−elimination (SLC26A4), NaCl wasting (BSND and CLCNKB), renal tubular acidosis (ATP6V1B1, ATPV0A4, and KCC4), or impaired urinary concentration (CLCNKA). Thus, defects of channels and transporters expressed in the kidney and inner ear result in simultaneous dysfunctions of these seemingly unrelated organs.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | | | |
Collapse
|
16
|
Ambühl PM. Posttransplant metabolic acidosis: a neglected factor in renal transplantation? Curr Opin Nephrol Hypertens 2007; 16:379-87. [PMID: 17565282 DOI: 10.1097/mnh.0b013e3281bd8860] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The occurrence and pathogenesis of metabolic acidosis after renal transplantation is reviewed. Posttransplant acidosis is shown to be a key mechanism for major metabolic complications in mineral and muscle metabolism, and for anemia, discussed in the context of both acidosis and renal transplantation. RECENT FINDINGS Continuous improvement in kidney transplant survival has shifted attention to long-term outcomes, specifically to disorders linked to cardiovascular disease, physical capacity and quality of life. Metabolic acidosis is gaining growing acceptance as a clinical entity and has occasionally come into focus in the context of renal transplantation. The possible link to metabolic disturbances resulting in impairment of musculoskeletal disorders and physical limitations, however, has not been considered specifically. SUMMARY Available evidence suggests a high prevalence of (compensated) metabolic acidosis after renal transplantation, presenting as low serum bicarbonate and impaired renal acid excretion. This condition is associated with relevant disorders in mineral metabolism and muscle function. Current knowledge about the effects of acidosis on renal electrolyte handling, mineral metabolism and protein synthesis suggests that acid/base derangements contribute to the muscle and bone pathology, as well as anemia, encountered after kidney transplantation. Consequently, posttransplant acidosis may be a relevant factor in the causal pathway of impaired physical capacity observed in this patient group.
Collapse
Affiliation(s)
- Patrice M Ambühl
- Department of Nephrology, University Hospital, Zurich, Switzerland.
| |
Collapse
|
17
|
Neilson EG. Plasticity, nuclear diapause, and a requiem for the terminal differentiation of epithelia. J Am Soc Nephrol 2007; 18:1995-8. [PMID: 17568015 DOI: 10.1681/asn.2007040457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Eric G Neilson
- Department of Medicine, D-3100 Medical Center North, Vanderbilt University School of Medicine, Nashville, TN 37232-2358, USA.
| |
Collapse
|
18
|
Breton S, Brown D. New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 2006; 292:F1-10. [PMID: 17032935 DOI: 10.1152/ajprenal.00340.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a key player in several aspects of cellular function, including acidification of intracellular organelles and regulation of extracellular pH. In specialized cells of the kidney, male reproductive tract and osteoclasts, proton secretion via the V-ATPase represents a major process for the regulation of systemic acid/base status, sperm maturation and bone resorption, respectively. These processes are regulated via modulation of the plasma membrane expression and activity of the V-ATPase. The present review describes selected aspects of V-ATPase regulation, including recycling of V-ATPase-containing vesicles to and from the plasma membrane, assembly/disassembly of the two domains (V(0) and V(1)) of the holoenzyme, and the coupling ratio between ATP hydrolysis and proton pumping. Modulation of the V-ATPase-rich cell phenotype and the pathophysiology of the V-ATPase in humans and experimental animals are also discussed.
Collapse
Affiliation(s)
- Sylvie Breton
- Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114-2790, USA.
| | | |
Collapse
|
19
|
Abstract
The vacuolar H(+)-ATPase is a multisubunit protein consisting of a peripheral catalytic domain (V(1)) that binds and hydrolyzes adenosine triphosphate (ATP) and provides energy to pump H(+) through the transmembrane domain (V(0)) against a large gradient. This proton-translocating vacuolar H(+)-ATPase is present in both intracellular compartments and the plasma membrane of eukaryotic cells. Mutations in genes encoding kidney intercalated cell-specific V(0) a4 and V(1) B1 subunits of the vacuolar H(+)-ATPase cause the syndrome of distal tubular renal acidosis. This review focuses on the function, regulation, and the role of vacuolar H(+)-ATPases in renal physiology. The localization of vacuolar H(+)-ATPases in the kidney, and their role in intracellular pH (pHi) regulation, transepithelial proton transport, and acid-base homeostasis are discussed.
Collapse
Affiliation(s)
- Patricia Valles
- Area de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | |
Collapse
|