1
|
Tensaouti F, Courbière N, Cabarrou B, Pollidoro L, Roques M, Sévely A, Péran P, Baudou E, Laprie A. Metabolic Profile of Cerebellum in Posterior Fossa Tumor Survivors: Correlation With Memory Impairment. Clin Oncol (R Coll Radiol) 2024; 36:e439-e447. [PMID: 39107208 DOI: 10.1016/j.clon.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
AIMS The cerebellum is a key structure in working and procedural memory. The aim of the present prospective exploratory study was to investigate, the metabolic characteristics of the cerebellum in posterior fossa tumor (PFT) survivors using 3D proton magnetic resonance spectroscopy imaging (3D MRSI), to determine whether metabolites could be useful biomarkers of memory impairment. MATERIALS AND METHODS Sixty participants were included in the IMPALA study, divided into three groups: 22 irradiated PFT, 17 nonirradiated PFT, and 21 healthy controls matched with irradiated PFT for age, sex, and handedness. PFT survivors were treated at least 5 years ago, either by surgery or a combination of surgery, chemotherapy, and radiotherapy. All participants underwent working and procedural memory tests and multimodal MRI including a 3D MRSI sequence. N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and lactate (Lac) metabolite values were extracted from the cerebellum for comparisons between groups, correlations with neurocognitive test scores, and radiotherapy doses. RESULTS Median (range) age at neurocognitive tests was 18 (7-26) years. Median Cho, Cr, NAA, and Lac values, and the ratio of NAA to the sum of metabolites were significantly lower for PFT survivors than for healthy controls (p < 0.05). Scores on working and procedural memory tests were significantly lower for PFT survivors (p < 0.004) and correlated with median and maximum Cho and NAA values (0.28 CONCLUSION Results revealed changes in cerebellar metabolic values in PFT survivors that were closely correlated with memory deficits, suggesting that some metabolites could be used as markers of cognitive decline, but this will require validation on a larger sample size.
Collapse
Affiliation(s)
- F Tensaouti
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - N Courbière
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - B Cabarrou
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - L Pollidoro
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - M Roques
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - A Sévely
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - P Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - E Baudou
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - A Laprie
- Radiation Oncology Department, Oncopole Claudius Regaud- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
2
|
Lucas JT, Abramson ZR, Epstein K, Morin CE, Jaju A, Lee JW, Lee CL, Sitaram R, Voss SD, Hudson MM, Constine LS, Hua CH. Imaging Assessment of Radiation Therapy-Related Normal Tissue Injury in Children: A PENTEC Visionary Statement. Int J Radiat Oncol Biol Phys 2024; 119:669-680. [PMID: 38760116 DOI: 10.1016/j.ijrobp.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
The Pediatric Normal Tissue Effects in the Clinic (PENTEC) consortium has made significant contributions to understanding and mitigating the adverse effects of childhood cancer therapy. This review addresses the role of diagnostic imaging in detecting, screening, and comprehending radiation therapy-related late effects in children, drawing insights from individual organ-specific PENTEC reports. We further explore how the development of imaging biomarkers for key organ systems, alongside technical advancements and translational imaging approaches, may enhance the systematic application of imaging evaluations in childhood cancer survivors. Moreover, the review critically examines knowledge gaps and identifies technical and practical limitations of existing imaging modalities in the pediatric population. Addressing these challenges may expand access to, minimize the risk of, and optimize the real-world application of, new imaging techniques. The PENTEC team envisions this document as a roadmap for the future development of imaging strategies in childhood cancer survivors, with the overarching goal of improving long-term health outcomes and quality of life for this vulnerable population.
Collapse
Affiliation(s)
| | - Zachary R Abramson
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Katherine Epstein
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Cara E Morin
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Alok Jaju
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Chang-Lung Lee
- Department of Radiation Oncology and; Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Ranganatha Sitaram
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephan D Voss
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Louis S Constine
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
3
|
Aseel A, McCarthy P, Mohammed A. Brain magnetic resonance spectroscopy to differentiate recurrent neoplasm from radiation necrosis: A systematic review and meta-analysis. J Neuroimaging 2023; 33:189-201. [PMID: 36631883 DOI: 10.1111/jon.13080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Postradiation treatment necrosis is one of the most serious late sequelae and appears within 6 months. The magnetic resonance spectroscopy imaging (MRSI) has been used for the detection of brain tumors. The study aimed to determine the radiological accuracy and efficacy in distinguishing recurrent brain tumor from radiation-induced necrosis by identifying pseudoprogression. METHODS The research was performed in accordance with the preferred reporting items for systematic review and meta-analysis guidelines. International electronic databases including 15 English sources were investigated. A total of 4281 papers with 2159 citations from 15 databases from 2011 to 2021 met the search strategies of magnetic resonance (MR) spectroscopy in recurrent brain tumors and postradiation necrosis. RESULTS Nine studies were enrolled in the meta-analysis with a total of 354 patients (203 male and 151 female) whose average age ranged from 4 to 74 years. Anbarloui et al., Elias et al., Nemattalla et al., Smith et al., Zeng et al., and Weybright et al. showed strong evidence of heterogeneity regarding choline/N-acetylaspartate (Cho/NAA) ratio in the evaluation of the nine studies. Elias et al., Nemattalla et al., Bobek-Billewicz et al., and Smith et al. showed a high heterogeneity in Cho/creatine (Cr) ratio. Elias et al., Nemattalla et al., Smith et al., and Weybright et al. revealed high heterogeneity in NAA/Cr ratio estimates. CONCLUSION MR spectroscopy is effective in distinguishing recurrent brain tumors from necrosis. Our meta-analysis revealed that Cho/NAA, Cho/Cr, and NAA/Cr ratios were significantly better predictor of detected recurrent tumor. Therefore, the MRSI is an informative tool in the distinction of tumor recurrence versus necrosis.
Collapse
Affiliation(s)
- Almusaedi Aseel
- School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland
| | - Peter McCarthy
- School of Medicine, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
4
|
Jain V, de Godoy LL, Mohan S, Chawla S, Learned K, Jain G, Wehrli FW, Alonso-Basanta M. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain. J Neuroimaging 2022; 32:1027-1043. [PMID: 36156829 DOI: 10.1111/jon.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Technological advances in the delivery of radiation and other novel cancer therapies have significantly improved the 5-year survival rates over the last few decades. Although recent developments have helped to better manage the acute effects of radiation, the late effects such as impairment in cognition continue to remain of concern. Accruing data in the literature have implicated derangements in hemodynamic parameters and metabolic activity of the irradiated normal brain as predictive of cognitive impairment. Multiparametric imaging modalities have allowed us to precisely quantify functional and metabolic information, enhancing the anatomic and morphologic data provided by conventional MRI sequences, thereby contributing as noninvasive imaging-based biomarkers of radiation-induced brain injury. In this review, we have elaborated on the mechanisms of radiation-induced brain injury and discussed several novel imaging modalities, including MR spectroscopy, MR perfusion imaging, functional MR, SPECT, and PET that provide pathophysiological and functional insights into the postradiation brain, and its correlation with radiation dose as well as clinical neurocognitive outcomes. Additionally, we explored some innovative imaging modalities, such as quantitative blood oxygenation level-dependent imaging, susceptibility-based oxygenation measurement, and T2-based oxygenation measurement, that hold promise in delineating the potential mechanisms underlying deleterious neurocognitive changes seen in the postradiation setting. We aim that this comprehensive review of a range of imaging modalities will help elucidate the hemodynamic and metabolic injury mechanisms underlying cognitive impairment in the irradiated normal brain in order to optimize treatment regimens and improve the quality of life for these patients.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA, 19107, USA
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kim Learned
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Jain
- Department of Neurological Surgery, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Petr J, Hogeboom L, Nikulin P, Wiegers E, Schroyen G, Kallehauge J, Chmelík M, Clement P, Nechifor RE, Fodor LA, De Witt Hamer PC, Barkhof F, Pernet C, Lequin M, Deprez S, Jančálek R, Mutsaerts HJMM, Pizzini FB, Emblem KE, Keil VC. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue. MAGMA (NEW YORK, N.Y.) 2022; 35:163-186. [PMID: 34919195 PMCID: PMC8901489 DOI: 10.1007/s10334-021-00985-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.
Collapse
Affiliation(s)
- Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Louise Hogeboom
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Evita Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gwen Schroyen
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jesper Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Marek Chmelík
- Department of Technical Disciplines in Medicine, Faculty of Health Care, University of Prešov, Prešov, Slovakia
| | - Patricia Clement
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Ruben E Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviu-Andrei Fodor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Evidence Based Psychological Assessment and Interventions Doctoral School, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Cyril Pernet
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Maarten Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Radim Jančálek
- St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Francesca B Pizzini
- Radiology, Deptartment of Diagnostic and Public Health, Verona University, Verona, Italy
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers (Basel) 2021; 13:cancers13071573. [PMID: 33805542 PMCID: PMC8037886 DOI: 10.3390/cancers13071573] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Radiotherapy is one of the most important treatment options against cancer. Irradiation of cancerous tissue either directly destroys the cancer cells or damages them such that they cannot reproduce. One side-effect of radiotherapy is that tumor-surrounding normal tissue is inevitably also irradiated, albeit at a lower dose. The resulting long-term damage can significantly affect cognitive performance and quality of life. Many studies investigated the effect of irradiation on normal-appearing brain tissues and some of these correlated imaging findings with functional outcome. This article provides an overview of the examination of radiation-induced injuries using conventional and enhanced MRI methods and summarizes conclusions about the underlying tissue changes. Radiation-induced morphologic, microstructural, vascular, and metabolic tissue changes have been observed, in which the effect of irradiation was evident in terms of decreased perfusion and neuronal health as well as increased diffusion and atrophy. Abstract Radiotherapy is part of the standard treatment of most primary brain tumors. Large clinical target volumes and physical characteristics of photon beams inevitably lead to irradiation of surrounding normal brain tissue. This can cause radiation-induced brain injury. In particular, late brain injury, such as cognitive dysfunction, is often irreversible and progressive over time, resulting in a significant reduction in quality of life. Since 50% of patients have survival times greater than six months, radiation-induced side effects become more relevant and need to be balanced against radiation treatment given with curative intent. To develop adequate treatment and prevention strategies, the underlying cause of radiation-induced side-effects needs to be understood. This paper provides an overview of radiation-induced changes observed in normal-appearing brains measured with conventional and advanced MRI techniques and summarizes the current findings and conclusions. Brain atrophy was observed with anatomical MRI. Changes in tissue microstructure were seen on diffusion imaging. Vascular changes were examined with perfusion-weighted imaging and susceptibility-weighted imaging. MR spectroscopy revealed decreasing N-acetyl aspartate, indicating decreased neuronal health or neuronal loss. Based on these findings, multicenter prospective studies incorporating advanced MR techniques as well as neurocognitive function tests should be designed in order to gain more evidence on radiation-induced sequelae.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Correspondence:
| |
Collapse
|
7
|
Early Detection of Radiation-Induced Injury and Prediction of Cognitive Deficit by MRS Metabolites in Radiotherapy of Low-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6616992. [PMID: 34258272 PMCID: PMC8260313 DOI: 10.1155/2021/6616992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Purpose To compare the sensitivity of MRS metabolites and MoCA and ACE-R cognitive tests in the detection of radiation-induced injury in low grade glioma (LGG) patients in early and early delayed postradiation stages. Methods MRS metabolite ratios of NAA/Cr and Cho/Cr, ACE-R and MoCA cognitive tests, and dosimetric parameters in corpus callosum were analyzed during RT and up to 6-month post-RT for ten LGG patients. Results Compared to pre RT baseline, a significant decline in both NAA/Cr and Cho/Cr in the corpus callosum was seen at the 4th week of RT, 1, 3, and 6-month post-RT. These declines were detected at least 3 months before the detection of declines in cognitive functions by ACE-R and MoCA tools. Moreover, NAA/Cr alterations at 4th week of RT and 1-month post-RT were significantly negatively correlated with the mean dose received by the corpus callosum, as well as the corpus callosum 40 Gy dose volume, i.e., the volume of the corpus callosum receiving a dose greater than 40 Gy. Conclusion MRS-based biomarkers may be more sensitive than the state-of-the-art cognitive tests in the prediction of postradiation cognitive impairments. They would be utilized in treatment planning and dose sparing protocols, with a specific focus on the corpus callosum in the radiation therapy of LGG patients.
Collapse
|
8
|
Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Hajtmanová E, Adamkov M. Effect of fractionated whole-brain irradiation on brain and plasma in a rat model: Metabolic, volumetric and histopathological changes. Neurochem Int 2021; 145:104985. [PMID: 33582163 DOI: 10.1016/j.neuint.2021.104985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
In the present study, we investigated the correlation between histopathological, metabolic, and volumetric changes in the brain and plasma under experimental conditions. Adult male Wistar rats received fractionated whole-brain irradiation (fWBI) with a total dose of 32 Gy delivered in 4 fractions (dose 8 Gy per fraction) once a week on the same day for 4 consecutive weeks. Proton magnetic resonance spectroscopy (1H MRS) and imaging were used to detect metabolic and volumetric changes in the brain and plasma. Histopathological changes in the brain were determined by image analysis of immunofluorescent stained sections. Metabolic changes in the brain measured by 1H MRS before, 48 h, and 9 weeks after the end of fWBI showed a significant decrease in the ratio of total N-acetylaspartate to total creatine (tNAA/tCr) in the corpus striatum. We found a significant decrease in glutamine + glutamate/tCr (Glx/tCr) and, conversely, an increase in gamma-aminobutyric acid to tCr (GABA/tCr) in olfactory bulb (OB). The ratio of astrocyte marker myoinositol/tCr (mIns/tCr) significantly increased in almost all evaluated areas. Magnetic resonance imaging (MRI)-based brain volumetry showed a significant increase in volume, and a concomitant increase in the T2 relaxation time of the hippocampus. Proton nuclear magnetic resonance (1H NMR) plasma metabolomics displayed a significant decrease in the level of glucose and glycolytic intermediates and an increase in ketone bodies. The histomorphological analysis showed a decrease to elimination of neuroblasts, increased astrocyte proliferation, and a mild microglia response. The results of the study clearly reflect early subacute changes 9-11 weeks after fWBI with strong manifestations of brain edema, astrogliosis, and ongoing ketosis.
Collapse
Affiliation(s)
- Soňa Bálentová
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic.
| | - Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Dagmar Kalenská
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4D, 036 01, Martin, Slovak Republic
| | - Peter Muríň
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Eva Hajtmanová
- Department of Radiotherapy and Oncology, Martin University Hospital, Kollárova 2, 036 59, Martin, Slovak Republic
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic
| |
Collapse
|
9
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Neuroimaging Clin N Am 2021; 31:103-120. [PMID: 33220823 DOI: 10.1016/j.nic.2020.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
10
|
van der Weide HL, Kramer MCA, Scandurra D, Eekers DBP, Klaver YLB, Wiggenraad RGJ, Méndez Romero A, Coremans IEM, Boersma L, van Vulpen M, Langendijk JA. Proton therapy for selected low grade glioma patients in the Netherlands. Radiother Oncol 2020; 154:283-290. [PMID: 33197495 DOI: 10.1016/j.radonc.2020.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Proton therapy offers an attractive alternative to conventional photon-based radiotherapy in low grade glioma patients, delivering radiotherapy with equivalent efficacy to the tumour with less radiation exposure to the brain. In the Netherlands, patients with favourable prognosis based on tumour and patient characteristics can be offered proton therapy. Radiation-induced neurocognitive function decline is a major concern in these long surviving patients. Although level 1 evidence of superior clinical outcome with proton therapy is lacking, the Dutch National Health Care Institute concluded that there is scientific evidence to assume that proton therapy can have clinical benefit by reducing radiation-induced brain damage. Based on this decision, proton therapy is standard insured care for selected low grade glioma patients. Patients with other intracranial tumours can also qualify for proton therapy, based on the same criteria. In this paper, the evidence and considerations that led to this decision are summarised. Additionally, the eligibility criteria for proton therapy and the steps taken to obtain high-quality data on treatment outcome are discussed.
Collapse
Affiliation(s)
- Hiska L van der Weide
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands.
| | - Miranda C A Kramer
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | - Daniel Scandurra
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, the Netherlands
| | | | | | - Alejandra Méndez Romero
- Holland Proton Therapy Center, Delft, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Liesbeth Boersma
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, the Netherlands
| | - Marco van Vulpen
- Holland Proton Therapy Center, Delft, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, the Netherlands
| | | |
Collapse
|
11
|
Gupta K, Vuckovic I, Zhang S, Xiong Y, Carlson BL, Jacobs J, Olson I, Petterson XM, Macura SI, Sarkaria J, Burns TC. Radiation Induced Metabolic Alterations Associate With Tumor Aggressiveness and Poor Outcome in Glioblastoma. Front Oncol 2020; 10:535. [PMID: 32432031 PMCID: PMC7214818 DOI: 10.3389/fonc.2020.00535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is uniformly fatal with a 1-year median survival, despite best available treatment, including radiotherapy (RT). Impacts of prior RT on tumor recurrence are poorly understood but may increase tumor aggressiveness. Metabolic changes have been investigated in radiation-induced brain injury; however, the tumor-promoting effect following prior radiation is lacking. Since RT is vital to GBM management, we quantified tumor-promoting effects of prior RT on patient-derived intracranial GBM xenografts and characterized metabolic alterations associated with the protumorigenic microenvironment. Human xenografts (GBM143) were implanted into nude mice 24 hrs following 20 Gy cranial radiation vs. sham animals. Tumors in pre-radiated mice were more proliferative and more infiltrative, yielding faster mortality (p < 0.0001). Histologic evaluation of tumor associated macrophage/microglia (TAMs) revealed cells with a more fully activated ameboid morphology in pre-radiated animals. Microdialyzates from radiated brain at the margin of tumor infiltration contralateral to the site of implantation were analyzed by unsupervised liquid chromatography-mass spectrometry (LC-MS). In pre-radiated animals, metabolites known to be associated with tumor progression (i.e., modified nucleotides and polyols) were identified. Whole-tissue metabolomic analysis of pre-radiated brain microenvironment for metabolic alterations in a separate cohort of nude mice using 1H-NMR revealed a significant decrease in levels of antioxidants (glutathione (GSH) and ascorbate (ASC)), NAD+, Tricarboxylic acid cycle (TCA) intermediates, and rise in energy carriers (ATP, GTP). GSH and ASC showed highest Variable Importance on Projection prediction (VIPpred) (1.65) in Orthogonal Partial least square Discriminant Analysis (OPLS-DA); Ascorbate catabolism was identified by GC-MS. To assess longevity of radiation effects, we compared survival with implantation occurring 2 months vs. 24 hrs following radiation, finding worse survival in animals implanted at 2 months. These radiation-induced alterations are consistent with a chronic disease-like microenvironment characterized by reduced levels of antioxidants and NAD+, and elevated extracellular ATP and GTP serving as chemoattractants, promoting cell motility and vesicular secretion with decreased levels of GSH and ASC exacerbating oxidative stress. Taken together, these data suggest IR induces tumor-permissive changes in the microenvironment with metabolomic alterations that may facilitate tumor aggressiveness with important implications for recurrent glioblastoma. Harnessing these metabolomic insights may provide opportunities to attenuate RT-associated aggressiveness of recurrent GBM.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ivan Vuckovic
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Song Zhang
- Metabolomics Core Mayo Clinic, Rochester, MN, United States
| | - Yuning Xiong
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua Jacobs
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian Olson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Slobodan I Macura
- Metabolomics Core Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Park JA, Kang KJ, Ko IO, Lee KC, Choi BK, Katoch N, Kim JW, Kim HJ, Kwon OI, Woo EJ. In Vivo Measurement of Brain Tissue Response After Irradiation: Comparison of T2 Relaxation, Apparent Diffusion Coefficient, and Electrical Conductivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2779-2784. [PMID: 31034410 DOI: 10.1109/tmi.2019.2913766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiation therapy (RT) has been widely used as a powerful treatment tool to address cancerous tissues because of its ability to control cell growth. Its ionizing radiation damages the DNA of cancerous tissues, leading to cell death. Medical imaging, however, still has limitations regarding the reliability of its assessment of tissue response and in predicting the treatment effect because of its inability to provide contrast information on the gradual, minute tissue changes after RT. A recently developed magnetic resonance (MR)-based conductivity imaging method may provide direct, highly sensitive information on this tissue response because its contrast mechanism is based on the concentration and mobility of ions in intracellular and extracellular spaces. In this feasibility study, we applied T2-weighted, diffusion-weighted, and electrical conductivity imaging to mouse brain, thus, using the MR imaging to map the tissue response after radiation exposure. To evaluate the degree of response, we measured the T2 relaxation, apparent diffusion coefficient (ADC), and electrical conductivity of brain tissues before and after irradiation. The conductivity images, which showed significantly higher sensitivity than other MR imaging methods, indicated that the contrast is distinguishable in different ways at different areas of the brain. Future studies will focus on verifying these results and the long-term evaluation of conductivity changes using various irradiation methods for clinical applications.
Collapse
|
13
|
Viselner G, Farina L, Lucev F, Turpini E, Lungarotti L, Bacila A, Iannalfi A, D'Ippolito E, Vischioni B, Ronchi S, Marchioni E, Valvo F, Bastianello S, Preda L. Brain MR findings in patients treated with particle therapy for skull base tumors. Insights Imaging 2019; 10:94. [PMID: 31549243 PMCID: PMC6757093 DOI: 10.1186/s13244-019-0784-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Nowadays, hadrontherapy is increasingly used for the treatment of various tumors, in particular of those resistant to conventional radiotherapy. Proton and carbon ions are characterized by physical and biological features that allow a high radiation dose to tumors, minimizing irradiation to adjacent normal tissues. For this reason, radioresistant tumors and tumors located near highly radiosensitive critical organs, such as skull base tumors, represent the best target for this kind of therapy. However, also hadrontherapy can be associated with radiation adverse effects, generally referred as acute, early-delayed and late-delayed. Among late-delayed effects, the most severe form of injury is radiation necrosis. There are various underlying mechanisms involved in the development of radiation necrosis, as well as different clinical presentations requiring specific treatments. In most cases, radiation necrosis presents as a single focal lesion, but it can be multifocal and involve a single or multiple lobes simulating brain metastasis, or it can also involve both cerebral hemispheres. In every case, radiation necrosis results always related to the extension of radiation delivery field. Multiple MRI techniques, including diffusion, perfusion imaging, and spectroscopy, are important tools for the radiologist to formulate the correct diagnosis. The aim of this paper is to illustrate the possible different radiologic patterns of radiation necrosis that can be observed in different MRI techniques in patients treated with hadrontherapy for tumors involving the skull base. The images of exemplary cases of radiation necrosis are also presented.
Collapse
Affiliation(s)
- Gisela Viselner
- Diagnostic Imaging Unit, National Center of Oncological Hadrontherapy (CNAO), 27100, Pavia, Italy
| | - Lisa Farina
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Lucev
- Diagnostic Radiology Residency School, University of Pavia, Pavia, Italy
| | - Elena Turpini
- Diagnostic Radiology Residency School, University of Pavia, Pavia, Italy
| | - Luca Lungarotti
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ana Bacila
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Alberto Iannalfi
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Emma D'Ippolito
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Sara Ronchi
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | | | - Francesca Valvo
- Radiotherapy Unit, National Center of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefano Bastianello
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Preda
- Diagnostic Imaging Unit, National Center of Oncological Hadrontherapy (CNAO), 27100, Pavia, Italy.
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
14
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Radiol Clin North Am 2019; 57:1199-1216. [PMID: 31582045 DOI: 10.1016/j.rcl.2019.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
15
|
Bálentová S, Hnilicová P, Kalenská D, Baranovičová E, Muríň P, Bittšanský M, Hajtmanová E, Lehotský J, Adamkov M. Metabolic and histopathological changes in the brain and plasma of rats exposed to fractionated whole-brain irradiation. Brain Res 2019; 1708:146-159. [DOI: 10.1016/j.brainres.2018.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022]
|
16
|
Wilke C, Grosshans D, Duman J, Brown P, Li J. Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro Oncol 2019; 20:597-607. [PMID: 29045710 DOI: 10.1093/neuonc/nox195] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is ubiquitous in the treatment of patients with both primary brain tumors as well as disease which is metastatic to the brain. This therapy is not without cost, however, as cognitive decline is frequently associated with cranial radiation, particularly with whole brain radiotherapy (WBRT). The precise mechanisms responsible for radiation-induced morbidity remain incompletely understood and continue to be an active area of ongoing research. In this article, we review the hypothetical means by which cranial radiation induces cognitive decline as well as potential therapeutic approaches to prevent, minimize, or reverse treatment-induced cognitive deterioration. We additionally review advances in imaging modalities that can potentially be used to identify site-specific radiation-induced anatomic or functional changes in the brain and their correlation with clinical outcomes.
Collapse
Affiliation(s)
- Christopher Wilke
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - David Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - Joseph Duman
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - Paul Brown
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (C.W., D.G., J.L.); Department of Neuroscience, Baylor College of Medicine, Houston, Texas (J.D.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (P.B.)
| |
Collapse
|
17
|
Watve A, Gupta M, Khushu S, Rana P. Longitudinal changes in gray matter regions after cranial radiation and comparative analysis with whole body radiation: a DTI study. Int J Radiat Biol 2018; 94:532-541. [PMID: 29659316 DOI: 10.1080/09553002.2018.1466064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Radiation-induced white matter changes are well known and vastly studied. However, radiation-induced gray matter alterations are still a research question. In the present study, these changes were assessed in a longitudinal manner using Diffusion Tensor Imaging (DTI) and further compared for cranial and whole body radiation exposure. MATERIALS AND METHODS Male mice (C57BL/6) were irradiated with cranial or whole body radiation followed by DTI study at 7T animal MRI system during predose, subacute and early delayed phases of radiation sickness. Fractional anisotropy (FA) and mean diffusivity (MD) values were obtained from brain's gray matter regions. RESULTS Decreased FA with increased MD was observed prominently in animals exposed to cranial radiation showing most changes at 8 months post irradiation. However, whole body radiation induced FA changes were mostly observed at 1 month post irradiation as compared to controls. CONCLUSIONS The differential response after whole body and cranial irradiation observed in the study depicts that radiation exposure of 5 Gy could induce permanent alterations in gray matter regions prominently as observed in Caudoputamen region at all the time points. Thus, our study has bolstered the role of DTI to probe microstructural changes in gray matter regions of brain after radiation exposure.
Collapse
Affiliation(s)
- Apurva Watve
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Mamta Gupta
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Subash Khushu
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | - Poonam Rana
- a NMR Research Centre , Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| |
Collapse
|
18
|
Mullen KM, Huang RY. An Update on the Approach to the Imaging of Brain Tumors. Curr Neurol Neurosci Rep 2017; 17:53. [PMID: 28516376 DOI: 10.1007/s11910-017-0760-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging plays a critical role in diagnosis of brain tumors and in assessment of response to therapy. However, challenges remain, including accurately and reproducibly assessing response to therapy, defining endpoints for neuro-oncology trials, providing prognostic information, and differentiating progressive disease from post-therapeutic changes particularly in the setting of antiangiogenic and other novel therapies. RECENT FINDINGS Recent advances in the imaging of brain tumors include application of advanced MRI imaging techniques to assess tumor response to therapy and analysis of imaging features correlating to molecular markers, grade, and prognosis. This review aims to summarize recent advances in imaging as applied to current diagnostic and therapeutic neuro-oncologic challenges.
Collapse
Affiliation(s)
- Katherine M Mullen
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Khattab EM, Ahmed AF, Mohamed AEM, Ismail AM, Amer MM. Usefulness of apparent diffusion coefficient value and proton magnetic resonance spectroscopy as a noninvasive techniques in recurrent cerebral gliomas. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Mehta S, Shah A, Jung H. Diagnosis and treatment options for sequelae following radiation treatment of brain tumors. Clin Neurol Neurosurg 2017; 163:1-8. [DOI: 10.1016/j.clineuro.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
21
|
Chen H, Cheng YS, Zhou ZR. Long-term Brain Tissue Monitoring after Semi-brain Irradiation in Rats Using Proton Magnetic Resonance Spectroscopy: A Preliminary Study In vivo. Chin Med J (Engl) 2017; 130:957-963. [PMID: 28397726 PMCID: PMC5407043 DOI: 10.4103/0366-6999.204097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In head and neck neoplasm survivors treated with brain irradiation, metabolic alterations would occur in the radiation-induced injury area. The mechanism of these metabolic alterations has not been fully understood, while the alternations could be sensitively detected by proton (1H) nuclear magnetic resonance spectroscopy (MRS). In this study, we investigated the metabolic characteristics of radiation-induced brain injury through a long-term follow-up after radiation treatment using MRS in vivo. METHODS A total of 12 adult Sprague-Dawley rats received a single dose of 30 Gy radiation treatment to semi-brain (field size: 1.0 cm × 2.0 cm; anterior limit: binocular posterior inner canthus connection; posterior limit: external acoustic meatus connection; internal limit: sagittal suture). Conventional magnetic resonance imaging and single-voxel 1H-MRS were performed at different time points (in month 0 before irradiation as well as in the 1st, 3rd, 5th, 7th, and 9th months after irradiation) to investigate the alternations in irradiation field. N-acetylaspartate/choline (NAA/Cho), NAA/creatinine (Cr), and Cho/Cr ratios were measured in the bilateral hippocampus and quantitatively analyzed with a repeated-measures mixed-effects model and multiple comparison test. RESULTS Significant changes in the ratios of NAA/Cho (F = 57.37, P<sub>g < 0.001), NAA/Cr (F = 54.49, P<sub>g < 0.001), and Cho/Cr (F = 9.78, P<sub>g = 0.005) between the hippocampus region of the irradiated semi-brain and the contralateral semi-brain were observed. There were significant differences in NAA/Cho (F = 9.17, P<sub>t < 0.001) and NAA/Cr (F = 13.04, P<sub>t < 0.001) ratios over time. The tendency of NAA/Cr to change with time showed no significant difference between the irradiated and contralateral sides. Nevertheless, there were significant differences in the Cho/Cr ratio between these two sides. CONCLUSIONS MRS can sensitively detect metabolic alternations. Significant changes of metabolites ratio in the first few months after radiation treatment reflect the metabolic disturbance in the acute and early-delayed stages of radiation-induced brain injuries.
Collapse
Affiliation(s)
- Hong Chen
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Shu Cheng
- Department of Radiology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Zheng-Rong Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Cao Y, Tseng CL, Balter JM, Teng F, Parmar HA, Sahgal A. MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro Oncol 2017; 19:ii16-ii29. [PMID: 28380637 DOI: 10.1093/neuonc/nox006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review article describes advancement of magnetic resonance imaging technologies in radiation therapy planning, guidance, and adaptation of brain tumors. The potential for MR-guided radiation therapy to improve outcomes and the challenges in its adoption are discussed.
Collapse
Affiliation(s)
- Yue Cao
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James M Balter
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Feifei Teng
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, China
| | | | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives. J Immunol Res 2017; 2017:5813951. [PMID: 28512646 PMCID: PMC5415864 DOI: 10.1155/2017/5813951] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/14/2023] Open
Abstract
Pseudophenomena, that is, imaging alterations due to therapy rather than tumor evolution, have an important impact on the management of glioma patients and the results of clinical trials. RANO (response assessment in neurooncology) criteria, including conventional MRI (cMRI), addressed the issues of pseudoprogression after radiotherapy and concomitant chemotherapy and pseudoresponse during antiangiogenic therapy of glioblastomas (GBM) and other gliomas. The development of cancer immunotherapy forced the identification of further relevant response criteria, summarized by the iRANO working group in 2015. In spite of this, the unequivocal definition of glioma progression by cMRI remains difficult particularly in the setting of immunotherapy approaches provided by checkpoint inhibitors and dendritic cells. Advanced MRI (aMRI) may in principle address this unmet clinical need. Here, we discuss the potential contribution of different aMRI techniques and their indications and pitfalls in relation to biological and imaging features of glioma and immune system interactions.
Collapse
|
24
|
Singh K, Trivedi R, Haridas S, Manda K, Khushu S. Study of neurometabolic and behavioral alterations in rodent model of mild traumatic brain injury: a pilot study. NMR IN BIOMEDICINE 2016; 29:1748-1758. [PMID: 27779341 DOI: 10.1002/nbm.3627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Mild traumatic brain injury (mTBI) is the most common form of TBI (70-90%) with consequences of anxiety-like behavioral alterations in approximately 23% of mTBI cases. This study aimed to assess whether mTBI-induced anxiety-like behavior is a consequence of neurometabolic alterations. mTBI was induced using a weight drop model to simulate mild human brain injury in rodents. Based on injury induction and dosage of anesthesia, four animal groups were included in this study: (i) injury with anesthesia (IA); (ii) sham1 (injury only, IO); (iii) sham2 (only anesthesia, OA); and (iv) control rats. After mTBI, proton magnetic resonance spectroscopy (1 H-MRS) and neurobehavioral analysis were performed in these groups. At day 5, reduced taurine (Tau)/total creatine (tCr, creatine and phosphocreatine) levels in cortex were observed in the IA and IO groups relative to the control. These groups showed mTBI-induced anxiety-like behavior with normal cognition at day 5 post-injury. An anxiogenic effect of repeated dosage of anesthesia in OA rats was observed with normal Tau/tCr levels in rat cortex, which requires further examination. In conclusion, this mTBI model closely mimics human concussion injury with anxiety-like behavior and normal cognition. Reduced cortical Tau levels may provide a putative neurometabolic basis of anxiety-like behavior following mTBI.
Collapse
Affiliation(s)
- Kavita Singh
- NMR Research Center, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Richa Trivedi
- NMR Research Center, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Seenu Haridas
- Neurobehavior Laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Kailash Manda
- Neurobehavior Laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Subash Khushu
- NMR Research Center, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
25
|
Huang RY, Wen PY. Response Assessment in Neuro-Oncology Criteria and Clinical Endpoints. Magn Reson Imaging Clin N Am 2016; 24:705-718. [PMID: 27742111 DOI: 10.1016/j.mric.2016.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Response Assessment in Neuro-Oncology (RANO) Working Group is an international multidisciplinary group whose goal is to improve response criteria and define endpoints for neuro-oncology trials. The RANO criteria for high-grade gliomas attempt to address the issues of pseudoprogression, pseudoresponse, and nonenhancing tumor progression. Incorporation of advanced MR imaging may eventually help improve the ability of these criteria to define enhancing and nonenhancing disease better. The RANO group has also developed criteria for neurologic response and evaluation of patients receiving immunologic therapies. RANO criteria have been developed for brain metastases and are in progress for meningiomas, leptomeningeal disease, spinal tumors, and pediatric tumors.
Collapse
Affiliation(s)
- Raymond Y Huang
- Division of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Patrick Y Wen
- Division of Neuro-Oncology, Department of Neurology, Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
26
|
Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK. Differentiating Radiation-Induced Necrosis from Recurrent Brain Tumor Using MR Perfusion and Spectroscopy: A Meta-Analysis. PLoS One 2016; 11:e0141438. [PMID: 26741961 PMCID: PMC4712150 DOI: 10.1371/journal.pone.0141438] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/16/2015] [Indexed: 01/03/2023] Open
Abstract
Purpose This meta-analysis examined roles of several metabolites in differentiating recurrent tumor from necrosis in patients with brain tumors using MR perfusion and spectroscopy. Methods Medline, Cochrane, EMBASE, and Google Scholar were searched for studies using perfusion MRI and/or MR spectroscopy published up to March 4, 2015 which differentiated between recurrent tumor vs. necrosis in patients with primary brain tumors or brain metastasis. Only two-armed, prospective or retrospective studies were included. A meta-analysis was performed on the difference in relative cerebral blood volume (rCBV), ratios of choline/creatine (Cho/Cr) and/or choline/N-acetyl aspartate (Cho/NAA) between participants undergoing MRI evaluation. A χ2-based test of homogeneity was performed using Cochran’s Q statistic and I2. Results Of 397 patients in 13 studies who were analyzed, the majority had tumor recurrence. As there was evidence of heterogeneity among 10 of the studies which used rCBV for evaluation (Q statistic = 31.634, I2 = 97.11%, P < 0.0001) a random-effects analysis was applied. The pooled difference in means (2.18, 95%CI = 0.85 to 3.50) indicated that the average rCBV in a contrast-enhancing lesion was significantly higher in tumor recurrence compared with radiation injury (P = 0.001). Based on a fixed-effect model of analysis encompassing the six studies which used Cho/Cr ratios for evaluation (Q statistic = 8.388, I2 = 40.39%, P = 0.137), the pooled difference in means (0.77, 95%CI = 0.57 to 0.98) of the average Cho/Cr ratio was significantly higher in tumor recurrence than in tumor necrosis (P = 0.001). There was significant difference in ratios of Cho to NAA between recurrent tumor and necrosis (1.02, 95%CI = 0.03 to 2.00, P = 0.044). Conclusions MR spectroscopy and MR perfusion using Cho/NAA and Cho/Cr ratios and rCBV may increase the accuracy of differentiating necrosis from recurrent tumor in patients with primary brain tumors or metastases.
Collapse
Affiliation(s)
- Ming-Tsung Chuang
- Department of Diagnostic Radiology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Sheng Liu
- Department of Diagnostic Radiology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Shan Tsai
- Department of Diagnostic Radiology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ying-Chen Chen
- Department of Diagnostic Radiology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chien-Kuo Wang
- Department of Diagnostic Radiology, National Cheng Kung University Hospital, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Pospisil P, Kazda T, Bulik M, Dobiaskova M, Burkon P, Hynkova L, Slampa P, Jancalek R. Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences. Radiat Oncol 2015; 10:211. [PMID: 26474857 PMCID: PMC4609038 DOI: 10.1186/s13014-015-0518-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hippocampus is considered as the main radiosensitive brain structure responsible for postradiotherapy cognitive decline. We prospectively assessed correlation of memory change to hippocampal N-acetylaspartate (h-tNAA) concentration, a neuronal density and viability marker, by (1)H-MR spectroscopy focused on the hippocampus. METHODS Patients with brain metastases underwent whole brain radiotherapy (WBRT) to a dose of 30 Gy in ten fractions daily. Pre-radiotherapy (1)H-MR spectroscopy focused on the h-tNAA concentration and memory testing was performed. Memory was evaluated by Auditory Verbal Learning Test (AVLT) and Brief Visuospatial Memory Test-Revised (BVMT-R). Total recall, recognition and delayed recall were reported. The both investigation procedures were repeated 4 months after WBRT and the h-tNAA and memory changes were correlated. RESULTS Of the 20 patients, ten passed whole protocol. The h-tNAA concentration significantly decreased from pre-WBRT 8.9, 8.86 and 8.88 [mM] in the right, left and both hippocampi to 7.16, 7.65 and 7.4 after WBRT, respectively. In the memory tests a significant decrease was observed in AVLT total-recall, BVMT-R total-recall and BVMT-R delayed-recall. Weak to moderate correlations were observed between left h-tNAA and AVLT recognition and all BVMT-R subtests and between the right h-tNAA and AVLT total-recall. CONCLUSIONS A significant decrease in h-tNAA after WBRT was proven by (1)H-MR spectroscopy as a feasible method for the in vivo investigation of radiation injury. Continuing patient recruitment focusing on other cognitive tests and metabolites is needed.
Collapse
Affiliation(s)
- Petr Pospisil
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Tomas Kazda
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Martin Bulik
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic. .,Department of Diagnostic Imaging, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Diagnostic Imaging, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Marie Dobiaskova
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic. .,Department of Clinical Psychology, St. Anne's University Hospital Brno, Pekarska 53, Brno, Czech Republic.
| | - Petr Burkon
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ludmila Hynkova
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Pavel Slampa
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Radim Jancalek
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
28
|
Huang RY, Neagu MR, Reardon DA, Wen PY. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol 2015; 6:33. [PMID: 25755649 PMCID: PMC4337341 DOI: 10.3389/fneur.2015.00033] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma, the most common malignant primary brain tumor in adults is a devastating diagnosis with an average survival of 14–16 months using the current standard of care treatment. The determination of treatment response and clinical decision making is based on the accuracy of radiographic assessment. Notwithstanding, challenges exist in the neuroimaging evaluation of patients undergoing treatment for malignant glioma. Differentiating treatment response from tumor progression is problematic and currently combines long-term follow-up using standard magnetic resonance imaging (MRI), with clinical status and corticosteroid-dependency assessments. In the clinical trial setting, treatment with gene therapy, vaccines, immunotherapy, and targeted biologicals similarly produces MRI changes mimicking disease progression. A neuroimaging method to clearly distinguish between pseudoprogression and tumor progression has unfortunately not been found to date. With the incorporation of antiangiogenic therapies, a further pitfall in imaging interpretation is pseudoresponse. The Macdonald criteria that correlate tumor burden with contrast-enhanced imaging proved insufficient and misleading in the context of rapid blood–brain barrier normalization following antiangiogenic treatment that is not accompanied by expected survival benefit. Even improved criteria, such as the RANO criteria, which incorporate non-enhancing disease, clinical status, and need for corticosteroid use, fall short of definitively distinguishing tumor progression, pseudoresponse, and pseudoprogression. This review focuses on advanced imaging techniques including perfusion MRI, diffusion MRI, MR spectroscopy, and new positron emission tomography imaging tracers. The relevant image analysis algorithms and interpretation methods of these promising techniques are discussed in the context of determining response and progression during treatment of glioblastoma both in the standard of care and in clinical trial context.
Collapse
Affiliation(s)
- Raymond Y Huang
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| | - Martha R Neagu
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| | - David A Reardon
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| | - Patrick Y Wen
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| |
Collapse
|
29
|
Gupta M, Rana P, Trivedi R, Kumar BSH, Khan AR, Soni R, Rathore RKS, Khushu S. Comparative evaluation of brain neurometabolites and DTI indices following whole body and cranial irradiation: a magnetic resonance imaging and spectroscopy study. NMR IN BIOMEDICINE 2013; 26:1733-1741. [PMID: 24038203 DOI: 10.1002/nbm.3010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Understanding early differential response of brain during whole body radiation or cranial radiation exposure is of significant importance for better injury management during accidental or intentional exposure to ionizing radiation. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) following whole body and cranial radiation exposure of 8 Gy in mice using a 7.0 T animal MRI system and compared profiles with sham controls at days 1, 3, 5 and 10 post irradiation. A significant decrease in fractional anisotropy (FA) values was found in hippocampus, thalamic and hypothalamic regions (p < 0.05) in both whole body and cranial irradiated groups compared with controls, suggesting radiation induced reactive astrogliosis or neuroinflammatory response. In animals exposed to whole body radiation, FA was significantly decreased in some additional brain regions such as sensory motor cortex and corpus callosum in comparison with cranial irradiation groups and controls. Changes in FA were observed till day 10 post irradiation in both the groups. However, MRS study from hippocampus revealed changes only in the whole body radiation dose group. Significant reduction in the ratios of the metabolites myoinositol (mI, p = 0.02) and taurine (tau, p = 0.03) to total creatine were observed, and these metabolic alterations persisted till day 10 post irradiation. To the best of our knowledge this study has for the first time documented a comparative account of microstructural and metabolic aspects of whole body and cranial radiation induced early brain injury using in vivo MRI. Overall our findings suggest differential response at microstructure and metabolite levels following cranial or whole body radiation exposure.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chawla S, Wang S, Kim S, Sheriff S, Lee P, Rengan R, Lin A, Melhem E, Maudsley A, Poptani H. Radiation Injury to the Normal Brain Measured by 3D-Echo-Planar Spectroscopic Imaging and Diffusion Tensor Imaging: Initial Experience. J Neuroimaging 2013; 25:97-104. [DOI: 10.1111/jon.12070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/08/2013] [Accepted: 08/03/2013] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology; University of Pennsylvania; Philadelphia PA
| | - Sumei Wang
- Department of Radiology; University of Pennsylvania; Philadelphia PA
| | - Sungheon Kim
- Department of Radiology; New York University; New York NY
| | | | - Peter Lee
- Department of Radiology; University of Pennsylvania; Philadelphia PA
| | - Ramesh Rengan
- Department of Radiation Oncology; University of Pennsylvania; Philadelphia PA
| | - Alexander Lin
- Department of Radiation Oncology; University of Pennsylvania; Philadelphia PA
| | - Elias Melhem
- Department of Radiology; University of Pennsylvania; Philadelphia PA
| | | | - Harish Poptani
- Department of Radiology; University of Pennsylvania; Philadelphia PA
| |
Collapse
|
31
|
Ruzevick J, Kleinberg L, Rigamonti D. Imaging changes following stereotactic radiosurgery for metastatic intracranial tumors: differentiating pseudoprogression from tumor progression and its effect on clinical practice. Neurosurg Rev 2013; 37:193-201; discussion 201. [PMID: 24233257 DOI: 10.1007/s10143-013-0504-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/18/2013] [Accepted: 08/24/2013] [Indexed: 02/07/2023]
Abstract
Stereotactic radiosurgery has become standard adjuvant treatment for patients with metastatic intracranial lesions. There has been a growing appreciation for benign imaging changes following radiation that are difficult to distinguish from true tumor progression. These imaging changes, termed pseudoprogression, carry significant implications for patient management. In this review, we discuss the current understanding of pseudoprogression in metastatic brain lesions, research to differentiate pseudoprogression from true progression, and clinical implications of pseudoprogression on treatment decisions.
Collapse
Affiliation(s)
- Jacob Ruzevick
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Phipps Building, Room 126, 600 N. Wolfe Street, Baltimore, MD, 21287, USA,
| | | | | |
Collapse
|
32
|
Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 2013; 15:515-34. [PMID: 23325863 DOI: 10.1093/neuonc/nos307] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Differentiating treatment-induced necrosis from tumor recurrence is a central challenge in neuro-oncology. These 2 very different outcomes after brain tumor treatment often appear similarly on routine follow-up imaging studies. They may even manifest with similar clinical symptoms, further confounding an already difficult process for physicians attempting to characterize a new contrast-enhancing lesion appearing on a patient's follow-up imaging. Distinguishing treatment necrosis from tumor recurrence is crucial for diagnosis and treatment planning, and therefore, much effort has been put forth to develop noninvasive methods to differentiate between these disparate outcomes. In this article, we review the latest developments and key findings from research studies exploring the efficacy of structural and functional imaging modalities for differentiating treatment necrosis from tumor recurrence. We discuss the possibility of computational approaches to investigate the usefulness of fine-grained imaging characteristics that are difficult to observe through visual inspection of images. We also propose a flexible treatment-planning algorithm that incorporates advanced functional imaging techniques when indicated by the patient's routine follow-up images and clinical condition.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
33
|
Rana P, Khan AR, Modi S, Hemanth Kumar BS, Javed S, Tripathi RP, Khushu S. Altered brain metabolism after whole body irradiation in mice: a preliminary in vivo 1H MRS study. Int J Radiat Biol 2012; 89:212-8. [PMID: 23020784 DOI: 10.3109/09553002.2013.734944] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Abstract Purpose: In the classical description of acute radiation syndrome, the role of central nervous system (CNS) is underestimated. It is now well recognised that ionising radiation-induced oxidative stress may bring about functional changes in the brain. In this study, we prospectively evaluated metabolic changes in the brain after whole body irradiation in mice using in vivo proton ((1)H) nuclear magnetic resonance spectroscopy (MRS). MATERIAL AND METHODS Young adult mice were exposed to whole body irradiation of 8 Gy and controls were sham irradiated. In vivo (1)H MRS from cortex-hippocampus and hypothalamic-thalamic region of brain at different time points, i.e., as early as 6 hours, day 1, 2, 3, 5 and 10 post irradiation was carried out at 7 Tesla animal magnetic resonance imaging system. Brain metabolites were measured and quantitative analysis of detectable metabolites was performed by linear combination of model (LCModel). RESULTS Significant reduction in myoinositol (p = 0.03) and taurine (p = 0.02) ratios were observed in cortex-hippocampus region as early as day 2 post irradiation compared to controls. These metabolic alterations remained sustained over day 10 post irradiation. CONCLUSIONS The results of this preliminary study suggest that the alteration/reduction in the mI and Tau concentration may be associated with physiological perturbations in astrocytes or radiation induced neuro-inflammatory response triggered in microglial cell.
Collapse
Affiliation(s)
- Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi
| | | | | | | | | | | | | |
Collapse
|
34
|
An experimental study on acute brain radiation injury: Dynamic changes in proton magnetic resonance spectroscopy and the correlation with histopathology. Eur J Radiol 2012; 81:3496-503. [DOI: 10.1016/j.ejrad.2012.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/11/2012] [Indexed: 11/21/2022]
|
35
|
Xiong WF, Qiu SJ, Wang HZ, Lv XF. 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience. J Magn Reson Imaging 2012; 37:101-8. [PMID: 22972703 DOI: 10.1002/jmri.23788] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 07/25/2012] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To detect radiation-induced changes of temporal lobe normal-appearing white mater (NAWM) following radiation therapy (RT) for nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS Seventy-five H(1)-MR spectroscopy and diffusion-tensor imaging (DTI) examinations were performed in 55 patients before and after receiving fractionated radiation therapy (total dose; 66-75GY). We divided the dataset into six groups, a pre-RT control group and five other groups based on time after completion of RT. N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatine (Cr), Cho/Cr, mean diffusibility (MD), functional anisotropy (FA), radial diffusibility (λ(⊥)), and axial diffusibility (λ(||)) were calculated. RESULTS NAA/Cho and NAA/Cr decreased and λ(⊥) increased significantly within 1 year after RT compared with pre-RT. After 1 year, NAA/Cho, NAA/Cr, and λ(⊥) were not significantly different from pre-RT. In all post-RT groups, FA decreased significantly. λ(||) decreased within 9 months after RT compared with pre-RT, but was not significantly different from pre-RT more than 9 months after RT. CONCLUSION DTI and H(1)-MR spectroscopy can be used to detect early radiation-induced changes of temporal lobe NAWM following radiation therapy for NPC. Metabolic alterations and water diffusion characteristics of temporal lobe NAWM in patients with NPC after RT were dynamic and transient.
Collapse
Affiliation(s)
- Wei Feng Xiong
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | |
Collapse
|
36
|
Supratentorial Neurometabolic Alterations in Pediatric Survivors of Posterior Fossa Tumors. Int J Radiat Oncol Biol Phys 2012; 82:1135-41. [DOI: 10.1016/j.ijrobp.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022]
|
37
|
Wang HZ, Qiu SJ, Lv XF, Wang YY, Liang Y, Xiong WF, Ouyang ZB. Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy. Clin Radiol 2011; 67:340-5. [PMID: 22119296 DOI: 10.1016/j.crad.2011.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/17/2011] [Accepted: 09/27/2011] [Indexed: 11/20/2022]
Abstract
AIM To investigate the metabolic characteristics of the temporal lobes following radiation therapy for nasopharyngeal carcinoma using diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H-MRS). MATERIALS AND METHODS DTI and (1)H-MRS were performed in 48 patients after radiotherapy for nasopharyngeal carcinoma and in 24 healthy, age-matched controls. All patients and controls had normal findings on conventional MRI. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), three eigenvalues λ1, λ2, λ3, N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatinine (Cr), and Cho/Cr were measured in both temporal lobes. Patients were divided into three groups according to time after completion of radiotherapy: group 1, less than 6 months; group 2, 6-12 months; group 3, more than 12 months. Mean values for each parameter were compared using one-way analysis of variance (ANOVA). RESULTS Mean FA in group 1 was significantly lower compared to group 3 and the control group (p < 0.05). Group-wise comparisons of apparent diffusion coefficient (ADC) values among all the groups were not significantly different. Eigenvalue λ1 was significantly lower in groups 1 and 3 compared to the control group (p < 0.05). NAA/Cho and NAA/Cr were significantly lower in each group compared to the control group (p < 0.01 for both). The decrease in NAA/Cho was greatest in group 1. There were no significant between-group differences regarding Cho/Cr. CONCLUSION A combination of DTI and (1)H-MRS can be used to detect radiation-induced brain injury, in patients treated for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- H-Z Wang
- Department of Medical Imaging Center, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Elias AE, Carlos RC, Smith EA, Frechtling D, George B, Maly P, Sundgren PC. MR spectroscopy using normalized and non-normalized metabolite ratios for differentiating recurrent brain tumor from radiation injury. Acad Radiol 2011; 18:1101-8. [PMID: 21820634 DOI: 10.1016/j.acra.2011.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 05/27/2011] [Accepted: 05/30/2011] [Indexed: 12/26/2022]
Abstract
RATIONALE AND OBJECTIVES To compare the ability of normalized versus non-normalized metabolite ratios to differentiate recurrent brain tumor from radiation injury using magnetic resonance spectroscopy (MRS) in previously treated patients. MATERIALS AND METHODS Twenty-five patients with previous diagnosis of primary intracranial neoplasm confirmed with biopsy/resection, previously treated with radiation therapy (range, 54-70 Gy) with or without chemotherapy and new contrast enhancing lesion on a 1.5 T magnetic resonance imaging at the site of the primary neoplasm participated in this retrospective study. After MRS, clinical, radiological, and histopathology data were used to classify new contrast-enhancing lesions as either recurrent neoplasm or radiation injury. Volume of interest included both the lesion and normal-appearing brain on the contralateral side. Non-normalized metabolic ratios were calculated from choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) spectroscopic values obtained within the contrast-enhancing lesion: Cho/Cr, NAA/Cr, and Cho/NAA. Normalized ratios were calculated using the metabolic values from the contralateral normal side: Cho/normal creatinine (nCr), Cho/normal N-acetylaspartate (nNAA), Cho/normal choline, NAA/nNAA, NAA/nCr, and Cr/nCr. Results were correlated with the final diagnosis by Wilcoxon rank-sum analysis. RESULTS Two of three non-normalized ratios, Cho/NAA (sensitivity 86%, specificity 90%) and NAA/Cr (sensitivity 93%, specificity 70%) significantly associated with tumor recurrence even after correcting for multiple comparisons. Of the six normalized ratios, only Cho/nNAA significantly correlated with tumor recurrence (sensitivity 73%, specificity 40%), but did not remain significant after correcting for multiple comparisons. CONCLUSION Cho/NAA and NAA/Cr were the two ratios with the best discriminating ability and both had better discriminating ability than their corresponding normalized ratios (Area under the curve = 0.92 versus 0.77, AUC= 0.85 vs. 0.66), respectively.
Collapse
|
39
|
Jain R, Narang J, Sundgren PM, Hearshen D, Saksena S, Rock JP, Gutierrez J, Mikkelsen T. Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J Neurooncol 2010; 100:17-29. [DOI: 10.1007/s11060-010-0139-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/31/2010] [Indexed: 01/24/2023]
|
40
|
Sundgren PC, Cao Y. Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am 2010; 19:657-68. [PMID: 19959011 DOI: 10.1016/j.nic.2009.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Radiation therapy is a major treatment modality for malignant and benign brain tumors. Concerns of radiation effects on the brain tissue and neurocognitive function and quality of life increase as survival of patients treated for brain tumors improves. In this article, the clinical and neurobehavioral symptoms and signs of radiation-induced brain injury, possible histopathology, and the potential of functional, metabolic, and molecular imaging as a biomarker for assessment and prediction of neurotoxicity after brain irradiation and imaging findings in radiation necrosis are discussed.
Collapse
Affiliation(s)
- Pia C Sundgren
- Diagnostic Centre for Imaging and Functional Medicine, Malmö University Hospital, University of Lund, SE-205 02 Malmö, Sweden.
| | | |
Collapse
|
41
|
Schmidt AT, Martin RB, Ozturk A, Kates WR, Wharam MD, Mahone EM, Horská A. Neuroimaging and neuropsychological follow-up study in a pediatric brain tumor patient treated with surgery and radiation. Neurocase 2010; 16:74-90. [PMID: 20391187 PMCID: PMC2911148 DOI: 10.1080/13554790903329133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracranial tumors are the most common neoplasms of childhood, accounting for approximately 20% of all pediatric malignancies. Radiation therapy has led directly to significant increases in survival of children with certain types of intracranial tumors; however, given the aggressive nature of this therapy, children are at risk for exhibiting changes in brain structure, neuronal biochemistry, and neurocognitive functioning. In this case report, we present neuropsychological, magnetic resonance imaging, proton magnetic resonance spectroscopic imaging, and diffusion tensor imaging data for two adolescents (one patient with ependymal spinal cord tumor with intracranial metastases, and one healthy, typically developing control) from three time points as defined by the patient's radiation schedule (baseline before the patient's radiation therapy, 6 months following completion of the patient's radiation, and 27 months following the patient's radiation). In the patient, there were progressive decreases in gray and white matter volumes as well as early decreases in mean N-acetyl aspartate/choline (NAA/Cho) ratios and fractional anisotropy (FA) in regions with normal appearance on conventional MRI. At the last follow-up, NAA/Cho and FA tended to change in the direction to normal values in selected regions. At the same time, the patient had initial reduction in language and motor skills, followed by return to baseline, but later onset delay in visuospatial and visual perceptual skills. Results are discussed in terms of sensitivity of the four techniques to early and late effects of treatment, and avenues for future investigations.
Collapse
Affiliation(s)
- Adam T. Schmidt
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Rebecca B. Martin
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Arzu Ozturk
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wendy R. Kates
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavior Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Moody D. Wharam
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E. Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alena Horská
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Sundgren PC, Nagesh V, Elias A, Tsien C, Junck L, Gomez Hassan DM, Lawrence TS, Chenevert TL, Rogers L, McKeever P, Cao Y. Metabolic alterations: a biomarker for radiation-induced normal brain injury-an MR spectroscopy study. J Magn Reson Imaging 2009; 29:291-7. [PMID: 19161192 DOI: 10.1002/jmri.21657] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To assess if interval changes in metabolic status in normal cerebral tissue after radiation therapy (RT) can be detected by 2D CSI (chemical shift imaging) proton spectroscopy. MATERIALS AND METHODS Eleven patients with primary brain tumors undergoing cranial radiation therapy (RT) were included. 2D-CSI MRS was performed before, during, and after the course of RT with the following parameters: TE/TR 144/1500 ms, field of view (FOV) 24, thickness 10 mm, matrix 16 x 16. The metabolic ratios choline/creatine (Cho/Cr), N-acetylaspartate (NAA)/Cr, and NAA/Cho in normal brain tissue were calculated. RESULTS NAA/Cr and Cho/Cr were significantly decreased at week 3 during RT and at 1 month and 6 months after RT compared to values prior to RT (P < 0.01). The NAA/Cr ratio decreased by -0.19 +/- 0.05 (mean +/- standard error [SE]) at week 3 of RT, -0.14 +/- 0.06 at the last week of RT, -0.14 +/- 0.05 at 1 month after RT, and -0.30 +/- 0.08 at 6 months after RT compared to the pre-RT value of 1.43 +/- 0.04. The Cho/Cr ratio decreased by -0.27 +/- 0.05 at week 3 of RT, -0.11 +/- 0.05 at the last week of RT, -0.26 +/- 0.05 at 1 month after RT and -0.25 +/- 0.07 at 6 months after RT from the pre-RT value of 1.29 +/- 0.03. Changes in Cho/Cr were correlated with the interaction of the radiation dose and dose-volume at week 3 of RT, during the last week of RT (P < 0.005), and at 1 month after RT (P = 0.017). CONCLUSION The results of this study suggest that MRS can detect early metabolic changes in normal irradiated brain tissue.
Collapse
Affiliation(s)
- P C Sundgren
- Department of Radiology, University of Michigan University Health Systems, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Welzel T, Niethammer A, Mende U, Heiland S, Wenz F, Debus J, Krempien R. Diffusion tensor imaging screening of radiation-induced changes in the white matter after prophylactic cranial irradiation of patients with small cell lung cancer: first results of a prospective study. AJNR Am J Neuroradiol 2008; 29:379-83. [PMID: 17974610 DOI: 10.3174/ajnr.a0797] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) will show abnormal fractional anisotropy (FA) in the normal-appearing brain after prophylactic cranial irradiation (PCI). These abnormalities will be more accentuated in patients with underlying vascular risk factors. MATERIALS AND METHODS A prospective study by use of DTI and conventional T2-weighted MR images was performed with a 1.5T unit with 16 patients with small cell lung cancer and undergoing PCI. All of the T2-weighted images were evaluated with respect to abnormalities in signal intensity of white matter as markers of radiation damage. Measurements of FA were performed before, at the end of, and 6 weeks after radiation therapy. On the FA maps, the bifrontal white matter, the corona radiata, the cerebellum, and the brain stem were evaluated. FA values were compared with respect to age, demographic, and vascular risk factors. Statistical analyses (Friedman test, Wilcoxon test, and Mann-Whitney U test) were performed. RESULTS Fractional anisotropy decreased significantly in supratentorial and infratentorial normal-appearing white matter from the beginning to the end of PCI (P < .01). A further decline in FA occurred 6 weeks after irradiation (P < .05). A stronger reduction in FA was observed in patients with more than 1 vascular risk factor. There was an age-related reduction of white matter FA. Patients 65 years and older showed a trend toward a stronger reduction in FA. CONCLUSION During the acute phase, after PCI, patients with many vascular risk factors showed stronger damage in the white matter compared with patients with only 1 risk factor.
Collapse
Affiliation(s)
- T Welzel
- Department of Radiooncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Evans ES, Hahn CA, Kocak Z, Zhou SM, Marks LB. The Role of Functional Imaging in the Diagnosis and Management of Late Normal Tissue Injury. Semin Radiat Oncol 2007; 17:72-80. [PMID: 17395037 DOI: 10.1016/j.semradonc.2006.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Normal tissue injury after radiation therapy (RT) can be defined based on either clinical symptoms or laboratory/radiologic tests. In the research setting, functional imaging (eg, single-photon emission computed tomography [SPECT], positron-emission tomography [PET], and magnetic resonance imaging [MRI]) is useful because it provides objective quantitative data such as metabolic activity, perfusion, and soft-tissue contrast within tissues and organs. For RT-induced lung, heart, and parotid gland injury, pre- and post-RT SPECT images can be compared with the dose- and volume-dependent nature of regional injury. In the brain, SPECT can detect changes in perfusion and blood flow post-RT, and PET can detect metabolic changes, particularly to regions of the brain that have received doses above 40 to 50 Gy. On MRI, changes in contrast-enhanced images, T(1) and T(2) relaxation times, and pulmonary vascular resistance at different intervals pre- and post-RT show its ability to detect and distinguish different phases of radiation pneumonitis. Similarly, conventional and diffusion-weighted MRI can be used to differentiate between normal tissue edema, necrosis, and tumor in the irradiated brain, and magnetic resonance spectroscopy can measure changes in compounds, indicative of membrane and neuron disruption. The use of functional imaging is a powerful tool for early detection of RT-induced normal tissue injury, which may be related to long-term clinically significant injury.
Collapse
Affiliation(s)
- Elizabeth S Evans
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
45
|
Hattingen E, Franz K, Pilatus U, Weidauer S, Lanfermann H. Postictal spectroscopy and imaging findings mimicking brain tumor recurrence. J Magn Reson Imaging 2006; 24:226-30. [PMID: 16739121 DOI: 10.1002/jmri.20594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
(1)H magnetic resonance spectroscopic imaging (MRSI) was performed on a patient with an admission diagnosis of recurrent astrocytoma. The patient had undergone surgical resection and radiation therapy for a left occipital astrocytoma WHO grade III 12 years previously, and presented with aphasia, right-sided hemiparesis, and severe headache. Postcontrast T1-weighted images showed cortical enhancement of the left parietotemporal lobe near the post-resection cavity. MRSI revealed a marked increase of trimethylamines (TMA), elevated creatine/creatinephosphate (tCr), and reduced N-acetyl-aspartate (tNAA) in the same brain region. The spectroscopic data were consistent with tumor recurrence. However, the pattern of contrast enhancement on magnetic resonance imaging (MRI), evidence of an epileptic focus on electroencephalography (EEG), and spontaneous regression of the symptoms argued against tumor recurrence. In a 4-week follow-up, the contrast enhancement disappeared on MRI and the EEG abnormalities and neurological symptoms resolved. Follow-up spectroscopic data showed a decrease in TMA compared to normal values. The tCr signal remained elevated but returned to normal values after 5 months. In conclusion, postictal neurological deficits with a temporary increase in TMA and tCr were diagnosed. This is the first report of seizure-induced MRS abnormalities mimicking tumor recurrence.
Collapse
Affiliation(s)
- Elke Hattingen
- Institute of Neuroradiology, Johann Wolfgang Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|