1
|
Kawabe T, Kita S, Ohmura I, Michino R, Watanabe H, Sun G, Inoue S. Non-invasive acquisition of vital data in anesthetized rats using laser and radar application. Lab Anim 2024; 58:591-601. [PMID: 39257345 DOI: 10.1177/00236772241265541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The aim of this study was to verify the possibility of obtaining vital sign information using a laser and radar sensor in a manner that is non-invasive and painless for test animals. A dataset was obtained from respiratory movement of anaesthetized male F344 rats, signals of laser and radar sensors were recorded simultaneously with vital data acquired with an integrated multiple-channel intraoperative monitor. In addition, respiratory movements were also video recorded, and used as reference data of respiration rate (RR; ref-RR). Reference data for heart rate (HR; ref-HR) were obtained from the R wave of electrocardiogram data for each epoch. Signals recorded from the radar sensor (I- and Q-signals) were input to a computer, and HR (radar-HR) and RR (radar-RR) were estimated using the frequency analysis method. Among the six positions where respiratory movements were measured by the laser sensor, the number of peak counts matched the visual counts of respiratory movements in the video records. The respiratory movements were significantly the greatest over the most caudal rib in the dorsal (p < 0.001). The average radar-RR and ref-RR values showed correspondence (ref-RR, 69 ± 6.2 breaths/min; radar-RR, 68 ± 5.7 breaths/min (p = 0.04-1.00); equivalence ratio, 86%). The radar-HR data showed slight variability; however, there was 80% homology compared with the ref-HR values (ref-HR, 336 ± 19.6 beats/min; radar-HR, 348 ± 34.1 (p = 0.10-0.95)). Although comparison of the data under noradrenaline administration failed to track drug-induced changes in some cases, the HR and RR data of anesthetized rats measured from the radar sensor system showed comparable accuracy to other conventional methods.
Collapse
Affiliation(s)
| | | | | | - Ryuji Michino
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | | | - Guanghao Sun
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | | |
Collapse
|
2
|
Kotsuka M, Okuyama T, Hashimoto Y, Kitade H, Nishizawa M, Yoshizawa K, Nakatake R. Olprinone, a Selective Phosphodiesterase III Inhibitor, Has Protective Effects in a Septic Rat Model after Partial Hepatectomy and Primary Rat Hepatocyte. Int J Mol Sci 2024; 25:7189. [PMID: 39000295 PMCID: PMC11241400 DOI: 10.3390/ijms25137189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Olprinone (OLP) is a selective inhibitor of phosphodiesterase III and is used clinically in patients with heart failure and those undergoing cardiac surgery; however, little is known about the effects of OLP on hepatoprotection. The purpose of this study aimed to determine whether OLP has protective effects in in vivo and in vitro rat models of endotoxin-induced liver injury after hepatectomy and to clarify the mechanisms of action of OLP. In the in vivo model, rats underwent 70% partial hepatectomy and lipopolysaccharide treatment (PH/LPS). OLP administration increased survival by 85.7% and decreased tumor necrosis factor-α, C-X-C motif chemokine ligand 1, and inducible nitric oxide synthase (iNOS) mRNA expression in the livers of rats treated with PH/LPS. OLP also suppressed nuclear translocation and/or DNA binding ability of nuclear factor kappa B (NF-κB). Pathological liver damage induced by PH/LPS was alleviated and neutrophil infiltration was reduced by OLP. Primary cultured rat hepatocytes treated with the pro-inflammatory cytokine interleukin-1β (IL-1β) were used as a model of in vitro liver injury. Co-treatment with OLP inhibited dose-dependently IL-1β-stimulated iNOS induction and NF-κB activation. Our results demonstrate that OLP may partially inhibit the induction of several inflammatory mediators through the suppression of NF-κB and thus prevent liver injury induced by endotoxin after liver resection.
Collapse
Affiliation(s)
- Masaya Kotsuka
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yuki Hashimoto
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Hiroaki Kitade
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Katsuhiko Yoshizawa
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya 663-8558, Japan
| | - Richi Nakatake
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
3
|
Dauchy RT, Sauer LA, Blask DE. Dietary Linoleic Acid: An Omega-6 Fatty Acid Essential for Liver Regeneration in Buffalo Rats. Comp Med 2023; 73:295-311. [PMID: 37652672 PMCID: PMC10702281 DOI: 10.30802/aalas-cm-23-000004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Rodents are currently the most common animals used for hepatic surgical resection studies that investigate liver regeneration, chronic liver disease, acute liver failure, hepatic metastasis, hepatic function, and hepatic cancer. Our previous work has shown that dietary consumption of linoleic acid (LA) stimulates the growth of rodent and human tumors in vivo. Here we compared 3 diets - a 5% corn oil diet (control), a diet deficient in essential fatty acids (EFAD), and an EFAD supplemented with LA in amounts equal to those in the control diet (EFAD+LA). We hypothesized that consumption of the LA provided in the EFAD+LA diet would elevate plasma levels of LA and stimulate regeneration in rats after a 70% hepatectomy (HPX), and that regeneration would not occur in the EFAD rats. Each diet group was comprised of 30 male and 30 female Buffalo rats (BUFF/CrCrl). Rats were fed one of the 3 diets and water ad libitum. After 8 wk on the assigned diet, rats were underwent a 70% HPX. On days 4 and 21 after HPX, 30 male and 30 female rats from each diet group were anesthetized for in vivo study and then were euthanized for tissue collection. For the in vivo study, arterial and venous blood samples were collected from the liver. LA-, glucose-, and O₂ -uptake, and lactate- and CO₂ -output were significantly higher in LA-replete rats as compared with LA-deficient rats. After a 70% HPX, the remaining liver mass in control and EFAD+LA groups had doubled at day 4, reaching 60% of the original total weight, and had regenerated completely at day 21. However, no regeneration occurred in the EFAD group. At day 4 the portions of livers removed from the control and EFAD+LA groups had significantly higher content of LA, protein, cAMP, and DNA as compared with their livers on day 21. [³ H]thymidine incorporation into liver DNA was significantly higher in the 2 LA-replete groups, with male values greater than female values, as compared with LA-deficient group. These data indicate that liver regeneration after HPX is dependent on dietary LA. Understanding the mechanisms of LA-dependent liver regeneration in rats supports our current efforts to enhance successful surgical resection therapies in humans.
Collapse
Key Words
- akt, serine-threonine protein kinase
- a-v, arterial-venous
- ce, cholesterol esters
- cl, caudate lobe
- cp, caudate process
- icl, inferior caudate lobe
- irll, inferior right lateral lobe
- ivc, inferior vena cava
- efad, essential fatty acid deficient
- egfr, epithelial growth factor receptor
- erk1/2, extracellular signal regulated kinase p44/46 (mapk, mitogen-activated protein kinase)
- fa, fatty acid
- ffar, free fatty acid receptor
- ffa, free fatty acids
- g protein, guanine nucleotide binding protein
- hpx, 70% partial hepatectomy
- la, linoleic acid
- lll, left lateral lobe
- lml, left median lobe
- ml, middle or median lobe
- rll, right lateral lobe
- rml, right median lobe
- scl, superior caudate lobe
- srll, superior right lateral lobe
- pi3k, phosphatidylinositol-3-kinase/akt
- pl, phospholipids
- tfa, total fatty acids
- tgl, triglycerides
- wnt/β-catenin, wingless and int-1/β catenin
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| | | | - David E Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| |
Collapse
|
4
|
Lund A, Andersen KJ, Meier M, Pedersen MI, Knudsen AR, Kirkegård J, Mortensen FV, Nyengaard JR. Biochemical and morphological responses to post-hepatectomy liver failure in rats. Sci Rep 2023; 13:13544. [PMID: 37598250 PMCID: PMC10439910 DOI: 10.1038/s41598-023-40736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The upper limit for partial hepatectomy (PH) in rats is 90%, which is associated with an increased risk of post-hepatectomy liver failure (PHLF), correlating with high mortality. Sixty-eight rats were randomized to 90% PH, sham operation, or no surgery. Further block randomization was performed to determine the time of euthanasia, whether 12, 24, or 48 h after surgery. A general distress score (GDS) was calculated to distinguish between rats with reversible (GDS < 10) and irreversible PHLF (GDS ≥ 10). At euthanasia, the liver remnant and blood were collected. Liver-specific biochemistry and regeneration ratio were measured. Hepatocyte proliferation and volume were estimated using stereological methods. All rats subjected to 90% experienced biochemical PHLF. The biochemical and morphological liver responses did not differ between the groups until 48 h after surgery. At 48 h, liver regeneration and function were significantly improved in survivors. The peak mean regeneration ratio was 15% for rats with irreversible PHLF compared to 26% for rats with reversible PHLF. The 90% PH rat model was associated with PHLF and high mortality. Irreversible PHLF was characterized by impaired liver regeneration capacity and an insufficient ability to metabolize ammonia.
Collapse
Affiliation(s)
- Andrea Lund
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Kasper Jarlhelt Andersen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michelle Meier
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Ingemann Pedersen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Riegels Knudsen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Kirkegård
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frank Viborg Mortensen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Lund A, Meier M, Andersen KJ, Pedersen MI, Knudsen AR, Kirkegård J, Mortensen FV. Validation of a surgical model for posthepatectomy liver failure in rats. Animal Model Exp Med 2023; 6:266-273. [PMID: 37183349 PMCID: PMC10272898 DOI: 10.1002/ame2.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND The upper limit for liver resections in rats is approximately 90%. In the early postoperative phase, mortality increases. The aim of the present study was to validate the rat model of 90% partial hepatectomy (PH) as a model of post-hepatectomy liver failure (PHLF). Further, we wanted to test a quantitative scoring system as a detector of lethal outcomes caused by PHLF in rats. METHODS Sixty-eight rats were randomized to 90% PH, sham operation, or no surgery. Further, block randomization was performed based on time of euthanization: 12, 24, or 48 h after surgery. A general distress score (GDS) ≥10 during the day or ≥6 at midnight prompted early euthanization and classification as nonsurvivor. Animals euthanized as planned were classified as survivors. During euthanization, blood and liver tissue were collected, and liver-specific biochemistry was evaluated. RESULTS Based on the biochemical results, all animals subjected to 90% PH experienced PHLF. Seventeen rats were euthanized due to irreversible PHLF. The GDS increased for nonsurvivors within 12-18 h after surgery. The mean time for euthanization was 27 h after surgery. CONCLUSION Based on the GDS and liver-specific biochemistry, we concluded that the model of 90% PH seems to be a proper model for investigating PHLF in rats. As a high GDS is associated with increased mortality, the GDS appears to be valuable in detecting lethal outcomes caused by PHLF in rats.
Collapse
Affiliation(s)
- Andrea Lund
- Aarhus University HospitalDepartment of Upper Gastrointestinal and Hepato‐Pancreato‐Biliary SurgeryAarhus NDenmark
| | - Michelle Meier
- Aarhus University HospitalDepartment of Upper Gastrointestinal and Hepato‐Pancreato‐Biliary SurgeryAarhus NDenmark
| | - Kasper Jarlhelt Andersen
- Aarhus University HospitalDepartment of Upper Gastrointestinal and Hepato‐Pancreato‐Biliary SurgeryAarhus NDenmark
| | - Marie Ingemann Pedersen
- Aarhus University HospitalDepartment of Upper Gastrointestinal and Hepato‐Pancreato‐Biliary SurgeryAarhus NDenmark
| | - Anders Riegels Knudsen
- Aarhus University HospitalDepartment of Upper Gastrointestinal and Hepato‐Pancreato‐Biliary SurgeryAarhus NDenmark
| | - Jakob Kirkegård
- Aarhus University HospitalDepartment of Upper Gastrointestinal and Hepato‐Pancreato‐Biliary SurgeryAarhus NDenmark
| | - Frank Viborg Mortensen
- Aarhus University HospitalDepartment of Upper Gastrointestinal and Hepato‐Pancreato‐Biliary SurgeryAarhus NDenmark
| |
Collapse
|
6
|
Nota T, Kageyama K, Yamamoto A, Kakehashi A, Yonezawa H, Jogo A, Sohgawa E, Murai K, Ogawa S, Miki Y. Safety and Feasibility of Contrast-Enhanced Computed Tomography with a Nanoparticle Contrast Agent for Evaluation of Diethylnitrosamine-Induced Liver Tumors in a Rat Model. Acad Radiol 2023; 30:30-39. [PMID: 35680546 DOI: 10.1016/j.acra.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES Safety and feasibility of contrast-enhanced computed tomography (CECT) with a nanoparticulate contrast agent, ExiTron nano 12000, was evaluated in a rat liver tumor model. MATERIALS AND METHODS This study employed eighteen 8-week-old male F344 rats. Six rats given tap water for 8 weeks further divided into two: Control group and Normal Liver with CECT group. Six rats each were given tap water containing diethylnitrosamine (DEN) at 100 ppm for 8 or 14 weeks; Adenoma group and Hepatocellular carcinoma (HCC) group, respectively. Biochemical marker values and adverse events were evaluated after CT imaging. ExiTron nano 12000 was evaluated for the hepatic contrast enhancement, and the detection and measurement of liver nodules by CECT after 8- and 14-weeks administration of DEN. Post-mortem liver specimens were evaluated by hematoxylin-eosin (HE) staining, and the number and size of liver nodules were measured. The HCC group was evaluated for diagnostic concordance between HE-stained and CECT-detected nodules. RESULTS The contrast agent enhanced liver and was tolerated after CECT in 15 rats. Biochemical parameter values did not differ significantly between the Control and Normal Liver groups. The numbers of CECT-detected nodules in the Adenoma and HCC groups were 14.8 ± 5.1, and 32.4 ± 8.1, respectively. The HCC group had 3.6 ± 2.7 of pathological HCCs, which were identified by CECT. The size of CECT-detected HCCs correlated significantly with that of pathological HCCs (r = 0.966, p < 0.0001). CONCLUSION CECT with ExiTron nano 12000 is a safe and feasible method to measure tumors in a rat liver tumor model.
Collapse
Affiliation(s)
- Takehito Nota
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Ken Kageyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan.
| | - Akira Yamamoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology (A.K.), Graduate School of Medicine, Osaka City University (currently Osaka Metropolitan University), Abenoku, Osaka, Japan
| | - Hiroki Yonezawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Atsushi Jogo
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Etsuji Sohgawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Kazuki Murai
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Satoyuki Ogawa
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine (T.N., K.K., A.Y., H.Y., A.J., E.S., K.M., S.O., Y.M.), Osaka City University (currently Osaka Metropolitan University), 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| |
Collapse
|
7
|
Sahakyants T, Lieberthal TJ, Comer CD, Hancock MJ, Spann AP, Neville CM, Vacanti JP. Rodent Model for Orthotopic Implantation of Engineered Liver Devices. Tissue Eng Part C Methods 2023; 29:20-29. [PMID: 36565022 DOI: 10.1089/ten.tec.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study presents a novel surgical model developed to provide hematological support for implanted cellularized devices augmenting or replacing liver tissue function. Advances in bioengineering provide tools and materials to create living tissue replacements designed to restore that lost to disease, trauma, or congenital deformity. Such substitutes are often assembled and matured in vitro and need an immediate blood supply upon implantation, necessitating the development of supporting protocols. Animal translational models are required for continued development of engineered structures before clinical implementation, with rodent models often playing an essential early role. Our long-term goal has been generation of living tissue to provide liver function, utilizing advances in additive manufacturing technology to create 3D structures with intrinsic micron to millimeter scale channels modeled on natural vasculature. The surgical protocol developed enables testing various design iterations in vivo by anastomosis to the host rat vasculature. Lobation of rodent liver facilitates partial hepatectomy and repurposing the remaining vasculature to support implanted engineered tissue. Removal of the left lateral lobe exposes the underlying hepatic vasculature and can create space for a device. A shunt is created from the left portal vein to the left hepatic vein by cannulating each with separate silicone tubing. The device is then integrated into the shunt by connecting its inflow and outflow ports to the tubing and reestablishing blood flow. Sustained anticoagulation is maintained with an implanted osmotic pump. In our studies, animals were freely mobile after implantation; devices remained patent while maintaining blood flow through their millifluidic channels. This vascular anastomosis model has been greatly refined during the process of performing over 200 implantation procedures. We anticipate that the model described herein will find utility in developing preclinical translational protocols for evaluation of engineered liver tissue. Impact statement Tissue and organ transplantation are often the best clinically effective treatments for a variety of human ailments. However, the availability of suitable donor organs remains a critical problem. Advances in biotechnology hold potential in alleviating shortages, yet further work is required to surgically integrate large engineered tissues to host vasculature. Improved animal models such as the one described are valuable tools to support continued development and evaluation of novel therapies.
Collapse
Affiliation(s)
- Tatevik Sahakyants
- 3D BioLabs, LLC, Chadds Ford, Pennsylvania, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | | | - Carly D Comer
- 3D BioLabs, LLC, Chadds Ford, Pennsylvania, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Craig M Neville
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph P Vacanti
- 3D BioLabs, LLC, Chadds Ford, Pennsylvania, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Hoehme S, Hammad S, Boettger J, Begher-Tibbe B, Bucur P, Vibert E, Gebhardt R, Hengstler JG, Drasdo D. Digital twin demonstrates significance of biomechanical growth control in liver regeneration after partial hepatectomy. iScience 2022; 26:105714. [PMID: 36691615 PMCID: PMC9860368 DOI: 10.1016/j.isci.2022.105714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Partial liver removal is an important therapy option for liver cancer. In most patients within a few weeks, the liver is able to fully regenerate. In some patients, however, regeneration fails with often severe consequences. To better understand the control mechanisms of liver regeneration, experiments in mice were performed, guiding the creation of a spatiotemporal 3D model of the regenerating liver. The model represents cells and blood vessels within an entire liver lobe, a macroscopic liver subunit. The model could reproduce the experimental data only if a biomechanical growth control (BGC)-mechanism, inhibiting cell cycle entrance at high compression, was taken into account and predicted that BGC may act as a short-range growth inhibitor minimizing the number of proliferating neighbor cells of a proliferating cell, generating a checkerboard-like proliferation pattern. Model-predicted cell proliferation patterns in pigs and mice were found experimentally. The results underpin the importance of biomechanical aspects in liver growth control.
Collapse
Affiliation(s)
- Stefan Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Institute of Computer Science, University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Saxonian Incubator for Clinical Research (SIKT), Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany
| | - Seddik Hammad
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Germany,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany,Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Jan Boettger
- Faculty of Medicine, Rudolf-Schoenheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| | - Petru Bucur
- Unité INSERM 1193, Centre Hépato-Biliaire, Villejuif, France,Service de Chirurgie Digestive, CHU Trousseau, Tours, France
| | - Eric Vibert
- Unité INSERM 1193, Centre Hépato-Biliaire, Villejuif, France
| | - Rolf Gebhardt
- Faculty of Medicine, Rudolf-Schoenheimer-Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| | - Dirk Drasdo
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany,Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany,Inria Paris & Sorbonne Université LJLL, 75012 Paris, France,Correspondence:
| |
Collapse
|
9
|
Richter B, Sänger C, Mussbach F, Scheuerlein H, Settmacher U, Dahmen U. Selective biliary occlusion in rodents: description of a new technique. Innov Surg Sci 2022; 7:13-22. [PMID: 35974775 PMCID: PMC9352182 DOI: 10.1515/iss-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Modern therapy concepts are of limited success in patients with cholestasis (e.g., biliary occluding malignancies). Therefore, we established a new animal model enabling simultaneous investigation of liver regeneration and hepato-biliary remodelling in biliary obstructed and biliary non-obstructed liver lobes.
Methods
Biliary occlusion of different extent was induced in 50 male rats: Ligation and transection of the common bile duct (100% of liver, tBDT, n=25); or of the left bile duct (70% of liver, sBDT, n=25). At postoperative days 1, 3, 7, 14 and 28 we assessed the hepatic histomorphological alterations, proliferative repair, progress of liver fibrosis (HE, BrdU, EvG) and signs of liver regeneration (liver lobe weight gain). In addition, we determined systemic markers of hepatocellular injury (ASAT, ALAT), cholestasis (Bilirubin) and synthetic liver function (INR). The animals were monitored daily (body weight gain, stress score, survival).
Results
All animals survived until the planned date of sacrifice. sBDT induced in the biliary occluded liver lobes similar histomorphological alterations, proliferative repair and progress of liver fibrosis like tBDT. In the biliary non-ligated liver lobes in sBDT animals we noticed a temporarily enhanced biliary proliferation and a persistent low grade liver fibrosis in the periportal area.
Conclusions
Our model of sBDT represents a safe and valid method to induce selective cholestasis. The model enables further comparative investigation of liver regeneration in different extents of occlusive cholestasis (e.g., mimicking biliary occluding malignancies).
Collapse
Affiliation(s)
- Beate Richter
- Department of General, Visceral and Vascular Surgery , Experimental Surgery Unit, University Hospital Jena , Jena , Germany
| | - Constanze Sänger
- Department of General, Visceral and Vascular Surgery , Experimental Surgery Unit, University Hospital Jena , Jena , Germany
| | - Franziska Mussbach
- Department of General, Visceral and Vascular Surgery , Experimental Surgery Unit, University Hospital Jena , Jena , Germany
| | - Hubert Scheuerlein
- Clinic for General, Visceral and Paediatric Surgery, St. Vincenz Hospital Paderborn, Teaching Hospital of the University of Göttingen , Paderborn , Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery , Experimental Surgery Unit, University Hospital Jena , Jena , Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery , Experimental Surgery Unit, University Hospital Jena , Jena , Germany
| |
Collapse
|
10
|
Richter B, Sänger C, Mussbach F, Scheuerlein H, Settmacher U, Dahmen U. The Interplay Between Biliary Occlusion and Liver Regeneration: Repeated Regeneration Stimuli Restore Biliary Drainage by Promoting Hepatobiliary Remodeling in a Rat Model. Front Surg 2022; 9:799669. [PMID: 35548189 PMCID: PMC9081651 DOI: 10.3389/fsurg.2022.799669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Aims Patients with malignant biliary obstruction do not seem to benefit from “two-stage hepatectomy” due to an impairment of liver regeneration. We designed a novel model of “repeated regeneration stimuli” in rats mimicking a “two-stage hepatectomy” with selective or complete biliary occlusion mimicking Klatskin tumors III° or IV°. Using this new model, we wanted to investigate (1) the impact of preexistent cholestasis of different extent on the time course of liver regeneration and (2) the dynamics of hepatobiliary remodeling under regeneration conditions. Materials and Methods Rats were subjected to a sequence of three operations: surgical induction of biliary occlusion, followed by “repeated regeneration stimuli” consisting of ligation of the left branch of the portal vein (supplying 70% of the liver volume, sPVL) as first stage and a 70%-hepatectomy (70%PHx) as second stage. Biliary occlusion (1st procedure) was induced by ligating and transection of either the common (100%, tBDT) or the left bile duct (70%, sBDT). A sham operation without ligating the bile duct was performed as control (0%, Sham). Two weeks later, on day 14 (POD14), the sPVL (2nd procedure) was performed. Another week later (POD 21), the 70%PHx (3rd procedure) took place and animals were observed for 1 week (POD 28). The first experiment (n = 45 rats) was dedicated to investigating liver regeneration (hypertrophy/atrophy), proliferative activity and hepatobiliary histomorphology (2D-histology: HE, BrdU) in the future liver remnant (FLR). The second experiment (n = 25 rats) was performed to study the dynamics of hepatobiliary remodeling in livers with different regenerative pressure (tBDT only POD21 vs. tBDT only POD 28 vs. tBDT + sPVL vs. tBDT + 70%PHx vs. tBDT + sPVL + 70%PHx) using μCT scans of explanted livers. Results Effect of biliary occlusion Total biliary occlusion (tBDT) led to a 2.4-fold increase in whole liver volume due to severe biliary proliferation within 14 days. In contrast, partial biliary occlusion (sBDT) caused only a volume gain of the obstructed liver lobes due to biliary proliferates, resulting in a minor increase of total liver volume (1.7-fold) without an increase in bilirubin levels. Liver regeneration and atrophy As expected, sPVL caused substantial volume gain (tBDT: 3-fold; sBDT: 2.8-fold; Sham 2.8-fold) of FLR and a substantial volume loss (tBDT: 0.9-fold; sBDT: 0.6-fold; Sham: 0.4-fold) of the portally deprived “future resected lobes” compared to the preoperative liver volume. The subsequent 70%PHx promoted a further volume gain of the FLR in all groups (tBDT: 4-fold; sBDT: 3-fold; Sham 3-fold compared to original volume) until POD 28. Hepatobiliary remodeling: After tBDT, we identified histologically three phases of hepatobiliary remodeling in the FLR. Following tBDT, biliary proliferates developed, replacing about 15% of the hepatocellular tissue. After sPVL we found incomplete restoration of the hepatocellular tissue with a visible reduction of the biliary proliferates. The 70%PHx led to an almost complete recovery of the hepatocellular tissue in the FLR with a nearly normal liver architecture. In contrast, after sBDT and Sham we observed a near normal liver morphology in the FLR at all time points. CT-scanning of the explanted livers and subsequent 3D reconstruction visualized the development of extrahepatic biliary collaterals. Collaterals were detected in 0/5 cases 1 week after sPVL (first regeneration stimulus), and in even more cases (3/5) 1 week after the 70%PHx (second regeneration stimulus). Histological workup identified the typical biliary cuboid epithelium as inner lining of the collaterals and peribiliary glands. Conclusion Liver volume of the FLR increased in cholestatic rats mainly due to biliary proliferates. Application of repeated regeneration stimuli in the style of a “two-stage hepatectomy” promoted almost full restoration of hepatocellular tissue and architecture in the FLR by reestablishing biliary drainage via formation of biliary collaterals. Further exploration of the dynamics in hepatobiliary modeling using this model might help to better understand the underlying mechanism.
Collapse
Affiliation(s)
- Beate Richter
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
- *Correspondence: Beate Richter
| | - Constanze Sänger
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Franziska Mussbach
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Hubert Scheuerlein
- Clinic for General, Visceral and Paediatric Surgery, St. Vincenz Hospital Paderborn, University of Göttingen, Paderborn, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| |
Collapse
|
11
|
Takagi S, Nishino A, Hanazono K, Hosoya K. Computed angiographic variations in hepatic venous vasculature in dogs. Vet Surg 2022; 51:631-637. [PMID: 35114020 DOI: 10.1111/vsu.13775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/16/2021] [Accepted: 01/15/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To identify the number of hepatic veins draining directly or indirectly into the caudal vena cava Thank you (CVC) using computed tomography angiography (CTA) in dogs. STUDY DESIGN Retrospective clinical study. ANIMALS Client-owned dogs (n = 77). METHODS Abdominal CTA images were analyzed. Retrospective convenience sampling was performed using archived clinical cases to determine the number of hepatic veins in each liver lobe. RESULTS A median of 2 vessels from the right lateral lobe (range: 1-4) and the caudate process of the caudate lobe (range: 1-5) drained directly into the CVC. In the quadrate lobe, most common patterns consisted of 1 vessel directly draining to the CVC or indirectly via the left hepatic vein (LHV), and a vessel from quadrate lobe and right medial lobe merging into 1 vessel draining into the CVC or the LHV. A median of 3 vessels in the left lateral lobe (range: 2-8) and a median of 1 vessel in the left medial lobe (range: 1-3) drained into the LHV. In the papillary process of the caudate lobe, a median of 1 (range: 1-2) vessel drained directly into the CVC or the LHV. CONCLUSION The draining pattern of hepatic veins varied widely in all liver lobes, especially the left lateral liver lobe. CLINICAL SIGNIFICANCE Veterinary surgeons should consider the potential presence of multiple hepatic veins and their draining pattern when performing hilar liver lobe resection. Attentive evaluation of a preoperative CTA is recommended for surgical planning.
Collapse
Affiliation(s)
- Satoshi Takagi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Ayano Nishino
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kiwamu Hanazono
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Budelmann D, Laue H, Weiss N, Dahmen U, D’Alessandro LA, Biermayer I, Klingmüller U, Ghallab A, Hassan R, Begher-Tibbe B, Hengstler JG, Schwen LO. Automated Detection of Portal Fields and Central Veins in Whole-Slide Images of Liver Tissue. J Pathol Inform 2022; 13:100001. [PMID: 35242441 PMCID: PMC8860737 DOI: 10.1016/j.jpi.2022.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Many physiological processes and pathological phenomena in the liver tissue are spatially heterogeneous. At a local scale, biomarkers can be quantified along the axis of the blood flow, from portal fields (PFs) to central veins (CVs), i.e., in zonated form. This requires detecting PFs and CVs. However, manually annotating these structures in multiple whole-slide images is a tedious task. We describe and evaluate a fully automated method, based on a convolutional neural network, for simultaneously detecting PFs and CVs in a single stained section. Trained on scans of hematoxylin and eosin-stained liver tissue, the detector performed well with an F1 score of 0.81 compared to annotation by a human expert. It does, however, not generalize well to previously unseen scans of steatotic liver tissue with an F1 score of 0.59. Automated PF and CV detection eliminates the bottleneck of manual annotation for subsequent automated analyses, as illustrated by two proof-of-concept applications: We computed lobulus sizes based on the detected PF and CV positions, where results agreed with published lobulus sizes. Moreover, we demonstrate the feasibility of zonated quantification of biomarkers detected in different stainings based on lobuli and zones obtained from the detected PF and CV positions. A negative control (hematoxylin and eosin) showed the expected homogeneity, a positive control (glutamine synthetase) was quantified to be strictly pericentral, and a plausible zonation for a heterogeneous F4/80 staining was obtained. Automated detection of PFs and CVs is one building block for automatically quantifying physiologically relevant heterogeneity of liver tissue biomarkers. Perspectively, a more robust and automated assessment of zonation from whole-slide images will be valuable for parameterizing spatially resolved models of liver metabolism and to provide diagnostic information.
Collapse
Affiliation(s)
| | | | | | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Lorenza A. D’Alessandro
- Deutsches Krebsforschungszentrum, Systems Biology of Signal Transduction, Heidelberg, Germany
| | - Ina Biermayer
- Deutsches Krebsforschungszentrum, Systems Biology of Signal Transduction, Heidelberg, Germany
| | - Ursula Klingmüller
- Deutsches Krebsforschungszentrum, Systems Biology of Signal Transduction, Heidelberg, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
| | | |
Collapse
|
13
|
Zhang WW, Xue R, Mi TY, Shen XM, Li JC, Li S, Zhang Y, Li Y, Wang LX, Yin XL, Wang HL, Zhang YZ. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation. Biochem Biophys Res Commun 2022; 586:121-128. [PMID: 34839190 DOI: 10.1016/j.bbrc.2021.11.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 11/02/2022]
Abstract
Postoperative fatigue (POF) is the most common and long-lasting complication after surgery, which brings heavy burden to individuals and society. Recently, hastening postoperative recovery receives increasing attention, but unfortunately, the mechanisms underlying POF remain unclear. Propofol is a wildly used general anesthetic in clinic, and inspired by the rapid antidepressant effects induced by ketamine at non-anesthetic dose, the present study was undertaken to investigate the anti-fatigue effects and underlying mechanisms of propofol at a non-anesthetic dose in 70% hepatectomy induced POF model in rats. We first showed here that single administration of propofol at 0.1 mg/kg ameliorated acute POF in hepatectomy induced POF rats. Based on metabonomics analysis, we hypothesized that propofol exerted anti-fatigue activity in POF rats by facilitating free fatty acid (FFA) oxidation and gluconeogenesis. We further confirmed that propofol restored the deficit in FFA oxidation and gluconeogenesis in POF rats, as evidenced by the elevated FFA utilization, acetyl coenzyme A content, pyruvic acid content, phosphoenolpyruvic acid content, hepatic glucose output and glycogen storage. Moreover, propofol stimulated glucagon secretion and up-regulated expression of cAMP-response element binding protein (CREB), phosphorylated CREB, peroxlsome prolifeator-activated receptor-γ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinade1 and carnitine palmitoltransferase 1A. In summary, our study suggests for the first time that propofol ameliorates acute POF by promoting glucagon-regulated gluconeogenesis via CREB/PGC-1α signaling and accelerating FFA beta-oxidation.
Collapse
Affiliation(s)
- W W Zhang
- Department of Anesthesiology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Hebei North University, Heibei, China
| | - R Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - T Y Mi
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, United States
| | - X M Shen
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - J C Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - S Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Y Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Y Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - L X Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - X L Yin
- Department of Anesthesiology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Hebei North University, Heibei, China
| | - H L Wang
- Department of Anesthesiology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China; Hebei North University, Heibei, China.
| | - Y Z Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
14
|
Hefler J, Marfil-Garza BA, Pawlick RL, Freed DH, Karvellas CJ, Bigam DL, Shapiro AMJ. Preclinical models of acute liver failure: a comprehensive review. PeerJ 2021; 9:e12579. [PMID: 34966588 PMCID: PMC8667744 DOI: 10.7717/peerj.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure is marked by the rapid deterioration of liver function in a previously well patient over period of days to weeks. Though relatively rare, it is associated with high morbidity and mortality. This makes it a challenging disease to study clinically, necessitating reliance on preclinical models as means to explore pathophysiology and novel therapies. Preclinical models of acute liver failure are artificial by nature, and generally fall into one of three categories: surgical, pharmacologic or immunogenic. This article reviews preclinical models of acute liver failure and considers their relevance in modeling clinical disease.
Collapse
Affiliation(s)
- Joshua Hefler
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,National Institutes of Medical Sciences & Nutrition Salvador Zubiran, Mexico City, Mexico.,CHRISTUS-LatAm Hub Excellence & Innovation Center, Monterrey, Mexico
| | - Rena L Pawlick
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Constantine J Karvellas
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David L Bigam
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Division of General Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
16
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Papakonstantinou D, Paspala A, Pikoulis E, Perrea DN, Machairas A, Agrogiannis G, Machairas N, Patapis P, Zavras NJ. The Modulating Effect of Ursodeoxycholic Acid on Liver Tissue Cyclooxygenase-2 Expression Following Extended Hepatectomy. Cureus 2021; 13:e15500. [PMID: 34268031 PMCID: PMC8262578 DOI: 10.7759/cureus.15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction: Hepatic regeneration is a complex process involving a multitude of well-timed molecular operations. Ursodeoxycholic acid (UDCA) is postulated to exert a protective effect against oxidative stress and enzymatic degradation of the extracellular matrix, in turn potentiating the regenerative response. The aim of the present animal study is to evaluate the impact of UDCA administration in liver tissue expression of cyclooxygenase-2 (COX-2) in a setting of acute liver failure achieved by 80% hepatectomy. Materials and methods: Twenty-four adult male Sprague-Dawley rats were randomly assigned to an experimental (UDCA) and a control group. Animals in the UDCA received oral pretreatment with UDCA for 14 days via feeding tube, while animals in the control group received saline. All animals underwent resection of approximately 80% of the liver parenchyma. Tissue and blood sample collection were performed 48 hours postoperatively. Results: The postoperative mitotic index and Ki-67 levels were found to be elevated in the UDCA group (43±11.4 and 13.7±24.7 versus 31±16.7 and 7.6±5.7), albeit without any statistical significance. Pretreatment with UDCA significantly decreased COX-2 expression levels (p=0.28) as well as serum tumor necrosis factor α (TNFα) levels (37.3±10.9 pg/mL versus 75.4±14.4 pg/mL, p=0.004). COX-2 expression score was observed to be weakly correlated to Ki-67 levels in both groups. Although COX-2 expression score was not correlated with serum TNFα levels in the control group, animals pretreated with UDCA exhibited moderate correlation (r=0.45). Conclusion: Preoperative administration of UDCA exerts a suppressive effect on tissue expression of COX-2 following 80% hepatectomy and enforces a positive correlation between COX-2 and serum TNFα levels, suggesting that UDCA preconditions liver tissue to display an enhanced regenerative response to circulating cytokines, most notably TNFα. The weak association of COX-2 with Ki-67 expression levels suggests that COX-2 may be of secondary importance during the early phases of liver regeneration.
Collapse
Affiliation(s)
- Dimitrios Papakonstantinou
- Third Department of Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Anna Paspala
- Third Department of Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Emmanouil Pikoulis
- Third Department of Surgery, "Attikon" University Hospital/National and Kapodistrian University of Athens, Athens, GRC.,Third Department of Surgery, National and Kapodistrian University of Athens, Athens, GRC.,Surgery, Attikon University Hospital, Athens, GRC
| | - Despoina N Perrea
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Anastasios Machairas
- Third Department of Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Georgios Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Nikolaos Machairas
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Paulos Patapis
- Third Department of Surgery, "Attikon" General University Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| | - Nikolaos J Zavras
- Department of Pediatric Surgery, "Attikon" University General Hospital/National and Kapodistrian University of Athens, School of Medicine, Athens, GRC
| |
Collapse
|
18
|
Lee GS, Jeong HY, Yang HG, Seo YR, Jung EG, Lee YS, Nam KW, Kim WJ. Astragaloside IV Suppresses Hepatic Proliferation in Regenerating Rat Liver after 70% Partial Hepatectomy via Down-Regulation of Cell Cycle Pathway and DNA Replication. Molecules 2021; 26:2895. [PMID: 34068164 PMCID: PMC8152973 DOI: 10.3390/molecules26102895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Astragaloside IV (AS-IV) is one of the major bio-active ingredients of huang qi which is the dried root of Astragalus membranaceus (a traditional Chinese medicinal plant). The pharmacological effects of AS-IV, including anti-oxidative, anti-cancer, and anti-diabetic effects have been actively studied, however, the effects of AS-IV on liver regeneration have not yet been fully described. Thus, the aim of this study was to explore the effects of AS-IV on regenerating liver after 70% partial hepatectomy (PHx) in rats. Differentially expressed mRNAs, proliferative marker and growth factors were analyzed. AS-IV (10 mg/kg) was administrated orally 2 h before surgery. We found 20 core genes showed effects of AS-IV, many of which were involved with functions related to DNA replication during cell division. AS-IV down-regulates MAPK signaling, PI3/Akt signaling, and cell cycle pathway. Hepatocyte growth factor (HGF) and cyclin D1 expression were also decreased by AS-IV administration. Transforming growth factor β1 (TGFβ1, growth regulation signal) was slightly increased. In short, AS-IV down-regulated proliferative signals and genes related to DNA replication. In conclusion, AS-IV showed anti-proliferative activity in regenerating liver tissue after 70% PHx.
Collapse
Affiliation(s)
- Gyeong-Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Hee-Yeon Jeong
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Hyeon-Gung Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Korea;
| | - Young-Ran Seo
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Eui-Gil Jung
- Seoul Center, Korea Basic Science Institute, Seoul 02855, Korea;
| | - Yong-Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Kung-Woo Nam
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Wan-Jong Kim
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| |
Collapse
|
19
|
Felgendreff P, Schindler C, Mussbach F, Xie C, Gremse F, Settmacher U, Dahmen U. Identification of tissue sections from decellularized liver scaffolds for repopulation experiments. Heliyon 2021; 7:e06129. [PMID: 33644446 PMCID: PMC7895725 DOI: 10.1016/j.heliyon.2021.e06129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biological organ engineering is a novel experimental approach to generate functional liver grafts by decellularization and repopulation. Currently, healthy organs of small or large animals and human organs with preexisting liver diseases are used to optimize decellularization and repopulation.However, the effects of morphological changes on allo- and xenogeneic cell-scaffold interactions during repopulation procedure, e.g., using scaffold-sections, are unknown. We present a sequential morphological workflow to identify murine liver scaffold-sections with well-preserved microarchitecture. METHODS Native livers (CONT, n = 9) and livers with experimentally induced pathologies (hepatics steatosis: STEA, n = 7; hepatic fibrosis induced by bile duct ligation: BDL, n = 9; nodular regenerative hyperplasia induced by 90% partial hepatectomy: PH, n = 8) were decellularized using SDS and Triton X-100 to generate cell-free scaffolds. Scaffold-sections were assessed using a sequential morphological workflow consisting of macroscopic, microscopic and morphological evaluation: (1) The scaffold was evaluated by a macroscopic decellularization score. (2) Regions without visible tissue remnants were localized for sampling and histological processing. Subsequent microscopical examination served to identify tissue samples without cell remnants. (3) Only cell-free tissue sections were subjected to detailed liver-specific morphological assessment using a histological and immunohistochemical decellularization score. RESULTS Decellularization was feasible in 33 livers, which were subjected to the sequential morphological workflow. In 11 of 33 scaffolds we achieved a good macroscopic decellularization result (CONT: 3 scaffolds; STEA: 3 scaffolds; BDL: 3 scaffolds; PH: 2 scaffolds). The microscopic assessment resulted in the selection of 88 cell-free tissue sections (CONT: 15 sections; STEA: 38 sections; BDL: 30 sections; PH: 5 sections). In 27 of those sections we obtained a good histological decellularization result (CONT: 3 sections; STEA: 6 sections; BDL: 17 sections; PH: 1 section). All experimental groups contained sections with a good immunohistochemical decellularization result (CONT: 6 sections; STEA: 5 sections; BDL: 4 sections; PH: 1 section). DISCUSSION Decellularization was possible in all experimental groups, irrespectively of the underlying morphological alteration. Furthermore, our proposed sequential morphological workflow was suitable to detect tissue sections with well-preserved hepatic microarchitecture, as needed for further repopulation experiments.
Collapse
Affiliation(s)
- Philipp Felgendreff
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
- Research Program “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, Jena, Germany
| | - Claudia Schindler
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Franziska Mussbach
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Chichi Xie
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| |
Collapse
|
20
|
Ho H, Dahmen U, Hunter P. An in silico rat liver atlas. Comput Methods Biomech Biomed Engin 2020; 23:597-600. [PMID: 32310673 DOI: 10.1080/10255842.2020.1754404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Numerous hepatic function, disease and pharmacological experiments are performed on rat livers. Many of these experiments rely on an accurate understanding of the rat liver anatomy. In this short paper, we present an in silico rat liver atlas which is constructed from the micro-CT images of explanted rat livers. The atlas consists of the parametric mesh for four liver lobes and a paracaval portion. 1D and 3D cubic Hermite mesh are used to represent the rat liver vessels and lobes, respectively. We discuss potential applications that can be performed from the in silico atlas.
Collapse
Affiliation(s)
- Harvey Ho
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University, Germany
| | - Peter Hunter
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| |
Collapse
|
21
|
Size of portally deprived liver lobe after portal vein ligation and additional partial hepatectomy: Result of balancing proliferation and apoptosis. Sci Rep 2020; 10:4893. [PMID: 32184404 PMCID: PMC7078252 DOI: 10.1038/s41598-020-60310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The liver has the ability to maintain its total size by adjusting the size of the individual liver lobes differently in response to regeneration- and atrophy-stimuli. Portal vein ligation (PVL) drives the ligated lobe to undergo atrophy whereas partial hepatectomy (PHx) drives the total remnant liver to regenerate. We hypothesize that the size of the PVL-lobe is dependent on the balance between the extent of PVL and the extent of PHx inducing a complex interplay between hepatocyte proliferation, apoptosis and autophagy. Lewis-rats were subjected to either 20%PVL + 70%PHx or 70%PVL + 20%PHx. Control groups consisted of 20%PVL and 70%PVL. Liver lobe weight, BrdU-proliferation-index, proliferating-cell-nuclear-antigen-mRNA-expression level, apoptotic density and autophagy-related-proteins were investigated. The PVL-liver lobe adjusted its weight differently, increasing by 40% after 20%PVL + 70%PHx, but decreasing by 25% after 70%PVL + 20%PHx. Additional resection induced a low, but substantial size-dependent hepatocyte proliferation rate (maximal 6.3% and 3.6% vs. 0.3% and significantly suppressed apoptotic density in the deportalized-liver-lobe (3 and 14 cells/mm2 comparing with above 26 cells/mm2, p < 0.01). Autophagy was more activated in PVL-liver lobe after simultaneous PHx than after PVL only. In summary, atrophy of the PVL-liver lobe after simultaneous PHx was counteracted by promoting hepatocyte proliferation, inducing autophagy and suppressing apoptosis in a PHx-extent-dependent manner.
Collapse
|
22
|
Haque O, Pendexter CA, Cronin SEJ, Raigani S, de Vries RJ, Yeh H, Markmann JF, Uygun K. Twenty-four hour ex-vivo normothermic machine perfusion in rat livers. TECHNOLOGY 2020; 8:27-36. [PMID: 34307768 PMCID: PMC8300916 DOI: 10.1142/s2339547820500028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ex-vivo liver perfusion (EVLP) is an ideal platform to study liver disease, therapeutic interventions, and pharmacokinetic properties of drugs without any patient risk. Rat livers are an ideal model for EVLP due to less organ quality variability, ease of hepatectomy, well-defined molecular pathways, and relatively low costs compared to large animal or human perfusions. However, the major limitation with rat liver normothermic machine perfusion (NMP) is maintaining physiologic liver function on an ex-vivo machine perfusion system. To address this need, our research demonstrates 24-hour EVLP in rats under normothermic conditions. Early (6 hour) perfusate transaminase levels and oxygen consumption of the liver graft are shown to be good markers of perfusion success and correlate with viable 24-hour post-perfusion histology. Finally, we address overcoming challenges in long-term rat liver perfusions such as rising intrahepatic pressures and contamination, and offer future directions necessary to build upon our work.
Collapse
Affiliation(s)
- Omar Haque
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Casie A Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Stephanie E J Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Reiner J de Vries
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
- Department of Surgery, Amsterdam University Medical Centers - AMC, Amsterdam, the Netherlands
| | - Heidi Yeh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| |
Collapse
|
23
|
Guazzelli PA, Cittolin-Santos GF, Meira-Martins LA, Grings M, Nonose Y, Lazzarotto GS, Nogara D, da Silva JS, Fontella FU, Wajner M, Leipnitz G, Souza DO, de Assis AM. Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Front Mol Neurosci 2020; 12:327. [PMID: 31998076 PMCID: PMC6968792 DOI: 10.3389/fnmol.2019.00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Acute liver failure (ALF) implies a severe and rapid liver dysfunction that leads to impaired liver metabolism and hepatic encephalopathy (HE). Recent studies have suggested that several brain alterations such as astrocytic dysfunction and energy metabolism impairment may synergistically interact, playing a role in the development of HE. The purpose of the present study is to investigate early alterations in redox status, energy metabolism and astrocytic reactivity of rats submitted to ALF. Adult male Wistar rats were submitted either to subtotal hepatectomy (92% of liver mass) or sham operation to induce ALF. Twenty-four hours after the surgery, animals with ALF presented higher plasmatic levels of ammonia, lactate, ALT and AST and lower levels of glucose than the animals in the sham group. Animals with ALF presented several astrocytic morphological alterations indicating astrocytic reactivity. The ALF group also presented higher mitochondrial oxygen consumption, higher enzymatic activity and higher ATP levels in the brain (frontoparietal cortex). Moreover, ALF induced an increase in glutamate oxidation concomitant with a decrease in glucose and lactate oxidation. The increase in brain energy metabolism caused by astrocytic reactivity resulted in augmented levels of reactive oxygen species (ROS) and Poly [ADP-ribose] polymerase 1 (PARP1) and a decreased activity of the enzymes superoxide dismutase and glutathione peroxidase (GSH-Px). These findings suggest that in the early stages of ALF the brain presents a hypermetabolic state, oxidative stress and astrocytic reactivity, which could be in part sustained by an increase in mitochondrial oxidation of glutamate.
Collapse
Affiliation(s)
- Pedro Arend Guazzelli
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Giordano Fabricio Cittolin-Santos
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Leo Anderson Meira-Martins
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Mateus Grings
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yasmine Nonose
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Gabriel S Lazzarotto
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Daniela Nogara
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Jussemara S da Silva
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Fernanda U Fontella
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Moacir Wajner
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Diogo O Souza
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Adriano Martimbianco de Assis
- Post-graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil.,Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas-UCPel, Pelotas, Brazil
| |
Collapse
|
24
|
Wang A, Kuriata O, Xu F, Nietzsche S, Gremse F, Dirsch O, Settmacher U, Dahmen U. A Survival Model of In Vivo Partial Liver Lobe Decellularization Towards In Vivo Liver Engineering. Tissue Eng Part C Methods 2019; 26:402-417. [PMID: 31668131 DOI: 10.1089/ten.tec.2019.0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In vivo liver decellularization has become a promising strategy to study in vivo liver engineering. However, long-term survival after in vivo liver decellularization has not yet been achieved due to anatomical and technical challenges. This study aimed at establishing a survival model of in vivo partial liver lobe perfusion-decellularization in rats. We compared three decellularization protocols (1% Triton X100 followed by 1% sodium dodecyl sulfate [SDS], 1% SDS vs. 1% Triton X100, n = 6/group). Using the optimal one as judged by macroscopy, histology and DNA content, we characterized the structural integrity and matrix proteins by using histology, scanning electron microscopy, computed tomography scanning, and immunohistochemistry (IHC). We prevented contamination of the abdominal cavity with the corrosive detergents by using polyvinylidene chloride (PVDC) film + dry gauze in comparison to PVDC film + dry gauze + aspiration tube (n = 6/group). Physiological reperfusion was assessed by histology. Survival rate was determined after a 7-day observation period. Only perfusion with 1% SDS resulted in an acellular scaffold (fully translucent without histologically detectable tissue remnants, DNA concentration is <2% of that in native lobe) with remarkable structural and ultrastructural integrity as well as preservation of main matrix proteins (IHC positive for collagen IV, laminin, and elastin). Contamination of abdominal organs with the potentially toxic SDS solution was achieved by placing a suction tube in addition to the PVDC film + dry gauze and allowed a 7-day survival of all animals without severe postoperative complications. On reperfusion, the liver turned red within seconds without any leakage from the surface of the liver. About 12 h after reperfusion, not only blood cells but also some clots were visible in the portal vein, sinusoidal matrix network, and central vein, suggesting physiological perfusion. In conclusion, our results of this study show the first available data on generation of a survival model of in vivo parenchymal organ decellularization, creating a critical step toward in vivo organ engineering. Impact Statement Recently, in vivo liver decellularization has been considered a promising approach to study in vivo liver repopulation of a scaffold compared with ex vivo liver repopulation. However, long-term survival of in vivo liver decellularization has not yet been achieved. Here, despite anatomical and technical challenges, we successfully created a survival model of in vivo selected liver lobe decellularization in rats, providing a major step toward in vivo organ engineering.
Collapse
Affiliation(s)
- An Wang
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Olha Kuriata
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Fengming Xu
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Felix Gremse
- Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
25
|
Zhao X, Zhang X, Li M, Sun S, Yao L, Cao D, Huang X, Guo H, Liu X, Yu F. Repeated exposure to the irrigative wastewater in Shijiazhuang induced precancerous lesion associated with cytochrome P450. CHEMOSPHERE 2019; 237:124467. [PMID: 31549677 DOI: 10.1016/j.chemosphere.2019.124467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the carcinogenic effects of the wastewater sample collected from the Dongming Canal in Shijiazhuang city were first detected by the rat medium-term liver bioassay. The experiment contained five groups: a negative control group, a DEN-alone group, 25% wastewater, 50% wastewater, and 100% wastewater. The body weight of rats decreased significantly as the dose increased. Morphologically, we also found that the damage of the hepatic lobule was more serious and the proliferation of liver cells was more obvious as the dose increased. In addition, we observed a significantly increased liver organ coefficient in rat. With the increase in dose, the damage of the hepatocytes was more serious, which was manifested in significantly elevated of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gammaglutamyl transfer peptide enzyme (γ-GT). And, the irrigative wastewater significantly increased GST-p in the liver of rats at both the transcriptional and translational levels dose-dependently, eventually causing precancerous lesions in the liver tissues. CYP1A1 and CYP1B1 expressions in the rat liver cells at the level of transcription and translation were also significantly increased dose-dependently. Our data clearly demonstrated that the irrigative wastewater had a carcinogenetic effect that was associated with CYP1A1 and CYP1B1. The risk of carcinogenic potential to human health might be due to joint action and accumulative effects over a long period of exposure. We can also concluded that the medium-term liver bioassay could be used as an effective method for evaluating the carcinogenicity of complex water mixtures such as irrigative wastewater.
Collapse
Affiliation(s)
- Xiujun Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Hebei Medical University, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Xiaolin Zhang
- Department of Epidemiology and Hygienic Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Man Li
- Department of Epidemiology and Hygienic Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Suju Sun
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Liya Yao
- Foreign Language Teaching Department of Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Dandan Cao
- Department of Epidemiology and Hygienic Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Xinli Huang
- Department of Pathophysiology, School of Basic Medical Science, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China
| | - Xuehui Liu
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang, 050017, Hebei, PR China.
| | - Fengxue Yu
- Department of Science and Technology, The Central Laboratory, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, 050000 Hebei, PR China.
| |
Collapse
|
26
|
Dili A, Bertrand C, Lebrun V, Pirlot B, Leclercq IA. Hypoxia protects the liver from Small For Size Syndrome: A lesson learned from the associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure in rats. Am J Transplant 2019; 19:2979-2990. [PMID: 31062475 DOI: 10.1111/ajt.15420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Portal hyperperfusion and "dearterialization" of the liver remnant are the main pathogenic mechanisms for Small For Size syndrome (SFSS). Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) induces rapid remnant hypertrophy. We hypothesized a similar increase in portal pressure/flow into the future liver remnant in ALPPS and SFSS-setting hepatectomies. In a rodent model, ALPPS was compared to SFSS-setting hepatectomy. We assessed mortality, remnant hypertrophy, hepatocyte proliferation, portal and hepatic artery flow, hypoxia-induced response, and liver sinusoidal morphology. SFSS-hepatectomy rats were subjected to local (hepatic artery ligation) or systemic (Dimethyloxalylglycine) hypoxia. ALLPS prevented mortality in SFSS-setting hepatectomies. Portal hyperperfusion per liver mass was similar in ALLPS and SFSS. Compared to SFSS, efficient arterial perfusion of the remnant was significantly lower in ALPPS causing pronounced hypoxia confirmed by pimonidazole immunostaining, activation of hypoxia sensors and upregulation of neo-angiogenic genes. Liver sinusoids, larger in ALPPS, collapsed in SFSS. Induction of hypoxia in SFSS reduced mortality. Hypoxia had no impact on hepatocyte proliferation but contributed to the integrity of sinusoidal morphology. ALPPS hemodynamically differ from SFSS by a much lower arterial flow in ALPPS's FLR. We show that the ensuing hypoxic response is essential for the function of the regenerating liver by preserving sinusoidal morphology.
Collapse
Affiliation(s)
- Alexandra Dili
- Institut de Recherche Expérimentale et Clinique, Laboratory of Hepato-Gastroenterology, Université Catholique de Louvain, Brussels, Belgium.,Department of Surgery, Centre Hospitalier Universitaire UCLouvain-Namur, Yvoir, Belgium
| | - Claude Bertrand
- Department of Surgery, Centre Hospitalier Universitaire UCLouvain-Namur, Yvoir, Belgium
| | - Valérie Lebrun
- Institut de Recherche Expérimentale et Clinique, Laboratory of Hepato-Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Boris Pirlot
- Institut de Recherche Expérimentale et Clinique, Laboratory of Hepato-Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Isabelle A Leclercq
- Institut de Recherche Expérimentale et Clinique, Laboratory of Hepato-Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
27
|
Meier M, Knudsen AR, Andersen KJ, Ludvigsen M, Eriksen PL, Pedersen AKN, Honoré B, Mortensen FV. Perturbations of urea cycle enzymes during posthepatectomy rat liver failure. Am J Physiol Gastrointest Liver Physiol 2019; 317:G429-G440. [PMID: 31373508 DOI: 10.1152/ajpgi.00293.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posthepatectomy liver failure (PHLF) may occur after extended partial hepatectomy (PH). If malignancy is widespread in the liver, the size of PH and hence the size of the future liver remnant (FLR) may limit curability. We aimed to characterize differences in protein expression between different sizes of FLRs and identify proteins specific to the regenerative process of minimal-size FLR (MSFLR), with special focus on postoperative day (POD) 1 when PHLF is present. A total of 104 male Wistar rats were subjected to 30, 70, or 90% PH (MSFLR in rats), sham operation, or no operation. Blood and liver tissue were harvested at POD1, 3, and 5 (n = 8 per group). Protein expression was assessed by proteomic profiling by unsupervised two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by supervised selected reaction monitoring (SRM)-MS/MS. In all, 1,035 protein spots were detected, 54 of which were significantly differentially expressed between groups and identifiable. During PHLF after PH(90%) at POD1, urea cycle and related proteins showed significant perturbations, including the urea cycle flux-regulating enzyme of carbamoyl phosphate synthase-1, ornithine transcarbamylase, and arginase-1, as well as the ornithine aminotransferase and propionyl-CoA carboxylase alpha chain. Plasma-ammonia increased significantly at POD1 after PH(90%), followed by a prompt decrease. At the protein level, we found perturbations of urea cycle and related enzymes in the MSFLR during PHLF. Our results suggest that these perturbations may augment urea cycle function, which may be pivotal for increased ammonia elimination after extensive PHs and potential PHLF.NEW & NOTEWORTHY Posthepatectomy liver failure (PHLF) is associated with high mortality. In a rat model of 90% hepatectomy, PHLF is present. Our results on liver tissue proteomics suggest that the ability of the liver remnant to sufficiently eliminate ammonia may be brought about by perturbation related to urea cycle proteins and that enhancing the urea cycle capacity may play a key role in surviving PHLF.
Collapse
Affiliation(s)
- Michelle Meier
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Riegels Knudsen
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Jarlhelt Andersen
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Maja Ludvigsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Frank Viborg Mortensen
- Department of Surgery, Section for Upper Gastrointestinal and Hepatico-Pancreatico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Li H, Ge X, Pan K, Sui M, Cai H, Cui C, Li C, Lu S. The Predictive Role of Tenascin-C and Cellular Communication Network Factor 3 (CCN3) in Post Hepatectomy Liver Failure in a Rat Model and 50 Patients Following Partial Hepatectomy. Med Sci Monit 2019; 25:6755-6766. [PMID: 31494663 PMCID: PMC6752097 DOI: 10.12659/msm.917331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Matricellular proteins of the extracellular matrix (ECM) include tenascin-C (TNC) and cellular communication network factor 3 (CCN3). This study aimed to investigate the role of TNC and CCN3 as prognostic factors for post hepatectomy liver failure (PHLF) in a rat model of partial hepatectomy and 50 patients following partial hepatectomy. Material/Methods Sprague-Dawley rats underwent 85% (n=53) or 90% hepatectomy (n=53) in the partial hepatectomy (PHx) model. TNC and CCN3 mRNA expression in residual liver tissue was evaluated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and enzyme-linked immunoassay (ELISA) determined the serum levels of TNC and CCN3. In 50 patients who underwent partial hepatectomy, TNC and CCN3 serum levels were measured on postoperative day 1 and day 3. Results In the rat partial hepatectomy model, mRNA and serum levels of TNC and CCN3 were significantly increased within the first 24 h, and were higher in the 90% PHx group compared with the 85% PHx group. Fifty patients who underwent partial hepatectomy, included patients with PHLF (n=12) and patients without PHLF (n=38). Multivariate analysis confirmed that serum levels on postoperative day 3 TNChigh+CCN3high was a significant predictor of PHLF, which was associated with more than twice the risk of severe morbidity when compared with the low-risk patients (80% vs. 30%) and a significantly longer hospital stay (17 days vs. 8 days). Conclusions Further studies are needed to evaluate the potential role of the matricellular proteins, TNC and CCN3 as early clinical predictors for PHLF.
Collapse
Affiliation(s)
- Hao Li
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Xinlan Ge
- Institute of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Ke Pan
- Institute of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Minghao Sui
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Huayong Cai
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Chao Cui
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Chonghui Li
- Institute of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| | - Shichun Lu
- Department of Hepatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical School, Beijing, China (mainland)
| |
Collapse
|
29
|
Nishiofuku H, Cortes AC, Ensor JE, Minhaj AA, Polak U, Lopez MS, Kiefer R, Hunt SJ, Kichikawa K, Hicks ME, Gade TP, Avritscher R. Factors impacting technical success rate of image-guided intra-arterial therapy in rat orthotopic liver tumor model. Am J Transl Res 2019; 11:3761-3770. [PMID: 31312386 PMCID: PMC6614632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Transcatheter hepatic arterial chemoembolization (TACE) is the current standard of care for intermediate stage hepatocellular carcinoma (HCC) patients. To study the effects of TACE in the tumor immune microenvironment, an immunocompetent rat model is required. The purpose of this study was to determine factors influencing technical success during hepatic arterial catheterization in immunocompetent orthotopic rat liver models. To this end, 91 Sprague-Dawley and eighty-three F344 rats underwent transcatheter hepatic arterial embolization using a transcarotid approach and were divided into a non-tumor-bearing (n = 41) and tumor-bearing (n = 133) groups. Vascular diameters of the hepatic arterial branches were evaluated from angiographic images. Catheterization of the proper hepatic artery (PHA) was achieved in 92% of the tumor-bearing and 68.3% of the non-tumor-bearing rats. We found a strong positive association between the diameter of the PHA and animals' body weight in both groups (P < 0.005), independently of the rat's strain. Results of the logistic regression model predicting a successful catheter placement into the PHA according to the animal's weight indicate that successful PHA catheterization is likely to be achieved in tumor-bearing animals weighing ≥ 250 g and > 308 g in non-tumor-bearing rats, with a sensitivity and specificity of 91.3% and 100.0% and 96.4% and 92.3%, respectively. In conclusion, animal's body weight at the time of catheterization is the principal determinant of technical success for transcatheter arterial embolization. Familiarity with these technical factors during animal selection will improve TACE technical success rates.
Collapse
Affiliation(s)
- Hideyuki Nishiofuku
- Department of Radiology, Nara Medical University840 Shijo-cho, Kashihara 634-8522, Japan
| | - Andrea C Cortes
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Joe E Ensor
- Houston Methodist Cancer Center, Houston Methodist Research InstituteHouston 77030, Texas, USA
| | - Adeeb A Minhaj
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Urszula Polak
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Mirtha S Lopez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Ryan Kiefer
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, Pennsylvania, USA
| | - Stephen J Hunt
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, Pennsylvania, USA
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University840 Shijo-cho, Kashihara 634-8522, Japan
| | - Marshall E Hicks
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Terence P Gade
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, Pennsylvania, USA
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| |
Collapse
|
30
|
Dili A, Lebrun V, Bertrand C, Leclercq IA. Associating liver partition and portal vein ligation for staged hepatectomy: establishment of an animal model with insufficient liver remnant. J Transl Med 2019; 99:698-707. [PMID: 30666050 DOI: 10.1038/s41374-018-0155-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) allows extended hepatectomy in patients with an extremely small future liver remnant (FLR). Current rodent models of ALPPS do not include resection resulting in insufficient-for-survival FLR, or they do incorporate liver mass reduction prior to ALPPS. Differences in FLR volume and surgical procedures could bias our understanding of physiological and hemodynamic mechanisms. We aimed to establish a rat ALPPS model with minimal FLR without prior parenchymal resection. In rodents, the left median lobe (LML) represents 10% of total liver. Partial hepatectomy (PHx) sparing LML and pericaval parenchyma represents our reference 87% resection. The first step in the procedure is either portal vein ligation (PVL) corresponding to ligation of all but the LML portal branches, or PVL with transection between the left and right median lobe segments (PVLT), and is defined as ALPPS stage-1. Second, ligated lobes were removed: PVL-PHx represents a conventional 2-stage hepatectomy, while PVLT followed by PHx is a strict reproduction of human ALPPS. In Group A, liver hypertrophy was analyzed after PVL (n = 38), PVLT (n = 47), T (n = 10), and sham (n = 10); In group B, mortality and FLR hypertrophy was assessed after PHx (n = 42), Sham-PHx (n = 6), PVL-PHx (n = 37), and PVLT-PHx (n = 45). In group A, PVLT induced rapid FLR hypertrophy compared to PVL (p < 0,05). Hepatocyte proliferation was higher in PVLT remnants (p < 0,05). In group B, PHx had a 5-day mortality rate of 84%. Sham operation prior to PHx did not improve survival (p = 0.23). In both groups, major fatalities occurred within 48 h after resection. PVL or PVLT prior to PHx reduced mortality to 33.3% (p = 0,007) or 25% (p = 0.0002) respectively, with no difference between the 2 two-stage procedures (p = 0.6). 7-day FLR hypertrophy was higher after the PVLT-PHx compared to PVL-PHx and PHx (p = 0.024). Our model reproduces human ALPPS with FLR that is insufficient for survival without liver resection prior to the stage-1 procedure. It offers an appropriate model for analyzing the mechanisms driving survival rescue and increased hypertrophy.
Collapse
Affiliation(s)
- Alexandra Dili
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique,Université catholique de Louvain, Brussels, Belgium.,Department of Surgery, Centre Hospitalier Universitaire UCLouvain, Brussels, Belgium
| | - Valérie Lebrun
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique,Université catholique de Louvain, Brussels, Belgium
| | - Claude Bertrand
- Department of Surgery, Centre Hospitalier Universitaire UCLouvain, Brussels, Belgium
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique,Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
31
|
Cittolin-Santos G, Guazzelli P, Nonose Y, Almeida R, Fontella F, Pasquetti M, Ferreira-Lima F, Lazzaroto G, Berlezi R, Osvaldt A, Calcagnotto M, de Assis A, Souza D. Behavioral, Neurochemical and Brain Oscillation Abnormalities in an Experimental Model of Acute Liver Failure. Neuroscience 2019; 401:117-129. [DOI: 10.1016/j.neuroscience.2018.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
|
32
|
Karadeniz E, Ozbilgin M, Egeli T, Agalar C, Cevlik AD, Aysal A, Ellidokuz H, Unek T, Astarcioglu I. Assessment of Effect of Intraperitoneal Tacrolimus on Liver Regeneration in Major (70%) Hepatectomy Model After Experimental Pringle Maneuver in Rats. Transplant Proc 2019; 51:1172-1179. [PMID: 31101194 DOI: 10.1016/j.transproceed.2019.01.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
AIM Small-for-size grafts have become more important, especially in living donor liver transplants. The Pringle maneuver, used to reduce blood loss, and the immunosuppressive medications used to prevent graft rejection in liver transplants have different side effects on liver regeneration. We researched the effect of situations where tacrolimus and the Pringle maneuver were applied or not on liver regeneration in rats with partial hepatectomy. MATERIAL AND METHODS This study was completed with 35 Wistar Albino rats. The subjects were randomly divided into 5 groups: Group 1 had the abdomen opened and no other procedure was performed; Group 2 underwent a 70% hepatectomy; Group 3 underwent a 15-minute Pringle maneuver + 70% hepatectomy; Group 4 underwent a 70% hepatectomy + 5 days of 1 mg/kg/day intraperitoneal tacrolimus; and Group 5 underwent a 150 minute Pringle maneuver + 0% hepatectomy + 5 days of 1 mg/kg/day intraperitoneal tacrolimus. All rats were sacrificed on the seventh postoperative day, remaining liver tissue was weighed, and weight indices created. The remaining liver tissue was stained with phosphohistone H3 and the mitotic index calculated. RESULTS The groups that underwent the Pringle maneuver, 70% hepatectomy, and tacrolimus administration were compared with the control group in terms of mitotic index and weight index, but no statistically significant differences were identified. CONCLUSION Suppression of regeneration forms a risk after liver transplantation with small-volume grafts. As a result, research on the effect of tacrolimus combined with the Pringle maneuver is important, especially for transplantations using segmented liver grafts. In our study, we showed that the use of tacrolimus had no negative effect on liver regeneration.
Collapse
Affiliation(s)
- E Karadeniz
- Department of General Surgery, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - M Ozbilgin
- Department of General Surgery, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.
| | - T Egeli
- Department of General Surgery, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - C Agalar
- Department of General Surgery, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - A D Cevlik
- Department of General Surgery, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - A Aysal
- Department of Pathology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - H Ellidokuz
- Department of Preventive Oncology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - T Unek
- Department of General Surgery, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - I Astarcioglu
- Department of General Surgery, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
33
|
Kresakova L, Danko J, Andrejcakova Z, Petrovova E, Vdoviakova K, Cizkova D, Maloveska M, Toth T, Tomco M, Vrzgula A, Teleky J, Supuka P. 3D Reconstruction and Evaluation of Accessory Hepatic Veins in Right Hemilivers in Laboratory Animals by Metrotomography: Implications for Surgery. Med Sci Monit 2019; 25:920-927. [PMID: 30707686 PMCID: PMC6367890 DOI: 10.12659/msm.911726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The current study investigated the detection of accessory hepatic veins and their vascular territories in the right hemiliver in rats, guinea pigs, and rabbits, which has become a prerequisite for newly developed clinical procedures. We compared the anatomical continuity of accessory hepatic veins with accessory hepatic veins existing in human livers. Material/Methods The analysis of accessory hepatic veins was performed using a corrosion cast method in combination with computer tomography (CT). Results In normal livers, accessory hepatic veins were regularly found. The length of these veins was 0.88±0.29 (cm ±SD) in rats, 1.10±0.39 in guinea pigs, and 1.28±0.48 in rabbits. Accessory hepatic veins became a part of the draining vessel draining into segment VI and VII; represented by interpolating and following Chouinard’s segmental concept. Conclusions The importance of detecting accessory hepatic veins lies in the identification of structures requiring special attention during surgery, in reduction of surgical complications, and in choosing the best approach to maintain the vitality of a drainage segment. The vascular reconstruction should be done during surgical interventions.
Collapse
Affiliation(s)
- Lenka Kresakova
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Jan Danko
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Zuzana Andrejcakova
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Eva Petrovova
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarina Vdoviakova
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Dasa Cizkova
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marcela Maloveska
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Teodor Toth
- Department of Biomedical Engineering and Measurement, Technical University of Kosice, Kosice, Slovakia
| | - Marek Tomco
- Railway Hospital in Kosice, Kosice, Slovakia
| | - Andrej Vrzgula
- Department of Surgery, Faculty of Medicine, P.J. Safarik University in Kosice, Hospital Kosice-Saca, Kosice-Saca, Slovakia
| | - Jana Teleky
- Department of Anatomy, Histology, and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Peter Supuka
- Institute of Nutrition, Dietetics and Feed Production, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| |
Collapse
|
34
|
Verma BK, Subramaniam P, Vadigepalli R. Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection. BMC SYSTEMS BIOLOGY 2019; 13:9. [PMID: 30651095 PMCID: PMC6335689 DOI: 10.1186/s12918-019-0678-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Liver has the unique ability to regenerate following injury, with a wide range of variability of the regenerative response across individuals. Existing computational models of the liver regeneration are largely tuned based on rodent data and hence it is not clear how well these models capture the dynamics of human liver regeneration. Recent availability of human liver volumetry time series data has enabled new opportunities to tune the computational models for human-relevant time scales, and to predict factors that can significantly alter the dynamics of liver regeneration following a resection. METHODS We utilized a mathematical model that integrates signaling mechanisms and cellular functional state transitions. We tuned the model parameters to match the time scale of human liver regeneration using an elastic net based regularization approach for identifying optimal parameter values. We initially examined the effect of each parameter individually on the response mode (normal, suppressed, failure) and extent of recovery to identify critical parameters. We employed phase plane analysis to compute the threshold of resection. We mapped the distribution of the response modes and threshold of resection in a virtual patient cohort generated in silico via simultaneous variations in two most critical parameters. RESULTS Analysis of the responses to resection with individual parameter variations showed that the response mode and extent of recovery following resection were most sensitive to variations in two perioperative factors, metabolic load and cell death post partial hepatectomy. Phase plane analysis identified two steady states corresponding to recovery and failure, with a threshold of resection separating the two basins of attraction. The size of the basin of attraction for the recovery mode varied as a function of metabolic load and cell death sensitivity, leading to a change in the multiplicity of the system in response to changes in these two parameters. CONCLUSIONS Our results suggest that the response mode and threshold of failure are critically dependent on the metabolic load and cell death sensitivity parameters that are likely to be patient-specific. Interventions that modulate these critical perioperative factors may be helpful to drive the liver regenerative response process towards a complete recovery mode.
Collapse
Affiliation(s)
- Babita K Verma
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai, India
| | | | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Wang A, Jank I, Wei W, Schindler C, Dahmen U. A Novel Surgical Technique As a Foundation for In Vivo Partial Liver Engineering in Rat. J Vis Exp 2018. [PMID: 30346385 DOI: 10.3791/57991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Organ engineering is a novel strategy to generate liver organ substitutes that can potentially be used in transplantation. Recently, in vivo liver engineering, including in vivo organ decellularization followed by repopulation, has emerged as a promising approach over ex vivo liver engineering. However, postoperative survival was not achieved. The aim of this study is to develop a novel surgical technique of in vivo selective liver lobe perfusion in rats as a prerequisite for in vivo liver engineering. We generate a circuit bypass only through the left lateral lobe. Then, the left lateral lobe is perfused with heparinized saline. The experiment is performed with 4 groups (n = 3 rats per group) based on different perfusion times of 20 min, 2 h, 3 h, and 4 h. Survival, as well as the macroscopically visible change of color and the histologically determined absence of blood cells in the portal triad and the sinusoids, is taken as an indicator for a successful model establishment. After selective perfusion of the left lateral lobe, we observe that the left lateral lobe, indeed, turned from red to faint yellow. In a histological assessment, no blood cells are visible in the branch of the portal vein, the central vein, and the sinusoids. The left lateral lobe turns red after reopening the blocked vessels. 12/12 rats survived the procedure for more than one week. We are the first to report a surgical model for in vivo single liver lobe perfusion with a long survival period of more than one week. In contrast to the previously published report, the most important advantage of the technique presented here is that perfusion of 70% of the liver is maintained throughout the whole procedure. The establishment of this technique provides a foundation for in vivo partial liver engineering in rats, including decellularization and recellularization.
Collapse
Affiliation(s)
- An Wang
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena
| | - Isabel Jank
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena
| | - Weiwei Wei
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena
| | - Claudia Schindler
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena;
| |
Collapse
|
36
|
Meier M, Andersen KJ, Knudsen AR, Nyengaard JR, Hamilton-Dutoit S, Mortensen FV. Adaptive growth changes in the liver remnant are affected by the size of hepatectomy in rats. Int J Exp Pathol 2018; 99:150-157. [PMID: 30198172 DOI: 10.1111/iep.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/24/2018] [Accepted: 07/07/2018] [Indexed: 12/29/2022] Open
Abstract
In this study we investigated the dynamics of hepatocyte hyperplasia and hypertrophy in rats subjected to increasing sizes of partial hepatectomy (PH). A total of 104 rats were randomized according to the size of PH. On postoperative days (PODs) 1, 3 and 5, blood was drawn and the remnant liver removed for stereological analysis. Liver parameters and regeneration rate were significantly affected by size of PH. On POD 1, hepatocyte volumes had increased significantly in all PH groups. On POD 3, all groups showed hepatocyte volumes approximating baseline. On POD 5, hepatocyte volumes were significantly lower in PH (90) than in baseline, sham and PH (30) rats. Increasing hepatocyte proliferation was not observed following PH (30). Following PH (70), cell proliferation was significantly elevated on PODs 1 and 3, and following PH (90) on PODs 3 and 5. In conclusion, general hypertrophy of hepatocytes after different size of PH was followed by hepatocyte proliferation only in the liver remnant of PH (70) and PH (90).
Collapse
Affiliation(s)
- Michelle Meier
- Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Jarlhelt Andersen
- Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Riegels Knudsen
- Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Molecular Morphology, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | | | - Frank Viborg Mortensen
- Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
37
|
Assessment of Liver Function Using Pharmacokinetic Parameters of Gd-EOB-DTPA: Experimental Study in Rat Hepatectomy Model. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:6321316. [PMID: 29713251 PMCID: PMC5866904 DOI: 10.1155/2018/6321316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
Objectives To determine whether the pharmacokinetic parameters of Gd-EOB-DTPA can identify the difference in liver function in a rat hepatectomy model. Methods A total of 56 eight-week-old male Sprague-Dawley rats were divided into the following groups: control group without hepatectomy (n = 16), 70% hepatectomy group (n = 14), and 90% hepatectomy group (n = 26). On postoperative day 2, Gd-EOB-DTPA (0.1 mmol/kg) was injected intravenously and serial blood samples were obtained. Pharmacokinetic analysis was performed using a noncompartmental method. Statistical analysis was performed using one-way analysis of variance and post hoc pairwise group comparisons. Results After excluding 6 rats that died unexpectedly, blood samples were obtained from 16, 14, and 20 rats in the control group, 70% hepatectomy group, and 90% hepatectomy group. There was a significant increase in area under the concentration-time curve from time zero to the time of the last measurable concentration between the 70% and 90% hepatectomy group (P < 0.001). The volume of distribution at steady state was significantly decreased between the control and 70% hepatectomy group (P < 0.001). The clearance was significantly different in all pairwise group comparisons (P < 0.001). Conclusions The vascular clearance of Gd-EOB-DTPA can identify the difference in liver function in a rat hepatectomy model.
Collapse
|
38
|
Chen X, Yu R, Xu Z, Zhang Y, Liu C, Chen B, Jin H. Re-Arterialized Rat Partial Liver Transplantation with an in vivo Vessel-Oriented 70% Hepatectomy. J Vis Exp 2018. [PMID: 29683437 DOI: 10.3791/56392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Split liver transplantation and living liver donor liver transplantation were developed in the clinic to utilize liver organs in a more efficient manner. To better understand the mechanism behind these surgical procedures, a rat partial liver transplantation (PLTx) model was established for relevant surgical studies. Because of the complexity of the rat PLTx model, a protocol with detailed descriptions is required. An article published previously reported a protocol in which ex vivo hepatectomy was used to achieve 50% rat PLTx. In contrast to this protocol, we introduced a re-arterialized PLTx with an in vivo 70% hepatectomy. An updated vessel-oriented hepatectomy was incorporated into the rat PLTx to refine the microsurgical procedure. The portal veins and hepatic arteries of the left lateral lobe and the median lobe were individually dissected and ligated before removal of the liver parenchyma, thereby decreasing the probability of bleeding in the remnant liver stump. Furthermore, an end-to-side vessel anastomosis between the common hepatic artery and the enlarged proper hepatic artery was introduced to re-arterialize the hepatic artery. By using this end-to-side vessel anastomosis technique, the diameter of the anastomosis was enlarged, thereby decreasing the difficulty of hand suture and maintaining a high rate of anastomotic patency. Moreover, the cuff anastomosis of the infrahepatic vena cava was slightly modified. A section of circumferential liver parenchyma around the vena cava of a recipient was preserved during cuff anastomosis to maintain the three-dimensional shape of the vascular lumen. This section of liver parenchyma was removed after completing the anastomosis. With this modification, the step involving placement of stay sutures was omitted, thereby further shortening the cuff anastomosis time. By using this protocol of rat PLTx, a low liver enzyme level, an intact liver lobular architecture and a high survival rate were achieved after microsurgery.
Collapse
Affiliation(s)
- Xuehai Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Rong Yu
- Reproductive Center, The First Affiliated Hospital of Wenzhou Medical University
| | - Ziqiang Xu
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University
| | - Yan Zhang
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Hao Jin
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University;
| |
Collapse
|
39
|
Kim DS, Ji WB, Han JH, Choi YY, Park HJ, Yu YD, Kim JY. Effects of splanchnic vasoconstrictors on liver regeneration and survival after 90% rat hepatectomy. Ann Surg Treat Res 2018. [PMID: 29520345 PMCID: PMC5842083 DOI: 10.4174/astr.2018.94.3.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Posthepatectomy liver failure is a serious complication and considered to be caused by increased portal pressure and flow. Splanchnic vasoactive agents and propranolol are known to decrease portal pressure. The aim of this study was to identify optimal candidates with potential for clinical use among somatostatin, terlipressin, and propranolol using rats with 90% hepatectomy. Methods Rats were divided into 5 groups: sham operation (n = 6), control (n = 20), propranolol (n = 20), somatostatin (n = 20), and terlipressin group (n = 20). Seven-day survival rates and portal pressure change were measured, and biochemical, histologic, and molecular analyses were performed. Results Portal pressure was significantly decreased in all 3 treatment groups compared to control. All treatment groups showed a tendency of decreased liver injury markers, and somatostatin showed the most prominent effect at 24 hours postoperatively. Histologic liver injury at 24 hours was significantly decreased in propranolol and terlipressin groups (P = 0.016, respectively) and somatostatin group showed borderline significance (P = 0.056). Hepatocyte proliferation was significantly increased after 24 hours in all treatment groups. Median survival was significantly increased in terlipressin group compared to control group (P < 0.01). Conclusion Terlipressin is considered as the best candidate, while somatostatin has good potential for clinical use, considering their effects on portal pressure and subsequent decrease in liver injury and increase in liver regeneration.
Collapse
Affiliation(s)
- Dong-Sik Kim
- Department of Surgery, Korea University College of Medicine, Seoul, Korea
| | - Woong Bae Ji
- Department of Surgery, Korea University College of Medicine, Seoul, Korea
| | - Jae Hyun Han
- Department of Surgery, Korea University College of Medicine, Seoul, Korea
| | - Yoon Young Choi
- Department of Biomedical Science, Korea University College of Medicine Graduate School, Seoul, Korea
| | - Hyun-Jin Park
- Department of Biomedical Science, Korea University College of Medicine Graduate School, Seoul, Korea
| | - Young-Dong Yu
- Department of Surgery, Korea University College of Medicine, Seoul, Korea
| | - Ju Young Kim
- Department of Pathology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Liu A, Guo E, Yang J, Yang Y, Liu S, Jiang X, Hu Q, Dirsch O, Dahmen U, Zhang C, Gewirtz DA, Fang H. Young plasma reverses age-dependent alterations in hepatic function through the restoration of autophagy. Aging Cell 2018; 17. [PMID: 29210183 PMCID: PMC5770779 DOI: 10.1111/acel.12708] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies showing the therapeutic effect of young blood on aging‐associated deterioration of organs point to young blood as the solution for clinical problems related to old age. Given that defective autophagy has been implicated in aging and aging‐associated organ injuries, this study was designed to determine the effect of young blood on aging‐induced alterations in hepatic function and underlying mechanisms, with a focus on autophagy. Aged rats (22 months) were treated with pooled plasma (1 ml, intravenously) collected from young (3 months) or aged rats three times per week for 4 weeks, and 3‐methyladenine or wortmannin was used to inhibit young blood‐induced autophagy. Aging was associated with elevated levels of alanine transaminase and aspartate aminotransferase, lipofuscin accumulation, steatosis, fibrosis, and defective liver regeneration after partial hepatectomy, which were significantly attenuated by young plasma injections. Young plasma could also restore aging‐impaired autophagy activity. Inhibition of the young plasma‐restored autophagic activity abrogated the beneficial effect of young plasma against hepatic injury with aging. In vitro, young serum could protect old hepatocytes from senescence, and the antisenescence effect of young serum was abrogated by 3‐methyladenine, wortmannin, or small interfering RNA to autophagy‐related protein 7. Collectively, our data indicate that young plasma could ameliorate age‐dependent alterations in hepatic function partially via the restoration of autophagy.
Collapse
Affiliation(s)
- Anding Liu
- Experimental Medicine Center; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Enshuang Guo
- Department of Infectious Diseases; Wuhan General Hospital; Wuhan China
| | - Jiankun Yang
- Experimental Medicine Center; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Yan Yang
- Experimental Medicine Center; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Shenpei Liu
- Experimental Medicine Center; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaojing Jiang
- Department of Infectious Diseases; Wuhan General Hospital; Wuhan China
| | - Qi Hu
- Department of Geriatrics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Olaf Dirsch
- Experimental Transplantation Surgery; Department of General, Visceral and Vascular Surgery; Friedrich-Schiller-University Jena; Jena Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery; Department of General, Visceral and Vascular Surgery; Friedrich-Schiller-University Jena; Jena Germany
| | - Cuntai Zhang
- Department of Geriatrics; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - David A Gewirtz
- Department of Pharmacology and Toxicology; Massey Cancer Center; Virginia Commonwealth University; Richmond VA USA
| | - Haoshu Fang
- Department of Pathophysiology; Anhui Medical University; Hefei China
| |
Collapse
|
41
|
Meier M, Knudsen AR, Andersen KJ, Bjerregaard NC, Jensen UB, Mortensen FV. Gene Expression in the Liver Remnant Is Significantly Affected by the Size of Partial Hepatectomy: An Experimental Rat Study. Gene Expr 2017; 17:289-299. [PMID: 28488569 PMCID: PMC5885150 DOI: 10.3727/105221617x695825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Extended hepatectomies may result in posthepatectomy liver failure, a condition with a high mortality. The main purpose of the present study was to investigate and compare the gene expression profiles in rats subjected to increasing size of partial hepatectomy (PH). Thirty Wistar rats were subjected to 30%, 70%, or 90% PH, sham operation, or no operation. Twenty-four hours following resection, liver tissue was harvested and genome-wide expression analysis was performed. Cluster analysis revealed two main groupings, one containing the PH(90%) and one containing the remaining groups [baseline, sham, PH(30%), and PH(70%)]. Categorization of specific affected molecular pathways in the PH(90%) group revealed a downregulation of cellular homeostatic function degradation and biosynthesis, whereas proliferation, cell growth, and cellular stress and injury were upregulated in the PH(90%) group. After PH(90%), the main upregulated pathways were mTOR and ILK. The main activated upstream regulators were hepatocyte growth factor and transforming growth factor. With decreasing size of the future liver remnant, the liver tended to prioritize expression of genes involved in cell proliferation and differentiation at the expense of genes involved in metabolism and body homeostasis. This prioritizing may be an essential molecular explanation for posthepatectomy liver failure.
Collapse
Affiliation(s)
- Michelle Meier
- *Department of Surgical Gastroenterology, Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Riegels Knudsen
- *Department of Surgical Gastroenterology, Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Jarlhelt Andersen
- *Department of Surgical Gastroenterology, Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Christian Bjerregaard
- *Department of Surgical Gastroenterology, Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Uffe Birk Jensen
- †Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
- ‡Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frank Viborg Mortensen
- *Department of Surgical Gastroenterology, Section for Upper Gastrointestinal and Hepato-Pancretico-Biliary Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
42
|
Benefit of an implanted solid barrier for the feasibility of a sequence of three different hepato-biliary operations in a small animal model. J Visc Surg 2017; 154:321-328. [PMID: 28395956 DOI: 10.1016/j.jviscsurg.2017.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Current liver surgery includes complex multi-stage procedures such as portal vein ligation (PVL) followed by extended liver resection, especially in patients with Klatskin tumours. The risk for severe adhesions increases with every procedure. Finally, this complex sequence could fail because of malignant adhesions. Therefore, we proved the hypothesis of reducing malignant adhesions and increasing feasibility of a sequence with three hepato-biliary operations by implantation of a solid barrier. MATERIALS AND METHODS We operated in male rats (n=40). Our sequence included as 1st operation bile duct ligation mimicking Klatskin III° or IV°, the 2nd operation was a selective portal vein ligation (sPVL) and 3rd procedure was a 70% liver resection. The mechanical barrier (part of a sterile glove) was implanted at the end of the first operation between the upper (median lobe+left lateral lobe [ML+LLL]) and lower (right lobe+caudate lobe [RL+CL]) rat liver lobes. We assessed the degree of adhesions and the feasibility of the 2nd and 3rd operation by using an established adhesion score (Zühlke) and a feasibility score. The severity of the adhesions and the pro-inflammatory cellular response were further evaluated by morphometry of thickness (HE) of the adhesion layer and quantification of infiltrating neutrophils (ASDCL) in the adhesion layer on the liver surface. RESULTS The planned liver resection as the third procedure was only feasible when a mechanical barrier was placed. Extent of cholestasis or time interval between the operations had no significant impact on adhesions score or feasibility of the whole sequence. CONCLUSION A sequence of three hepato-biliary operations in a small animal model (rat) is feasible. It should be considered to implant a mechanical barrier in a sequence of more than two surgical interventions in an experimental model in order to assure the feasibility of the final operation.
Collapse
|
43
|
Vdoviaková K, Petrovová E, Krešáková L, Maloveská M, Teleky J, Jenčová J, Živčák J, Jenča A. Importance Rat Liver Morphology and Vasculature in Surgical Research. Med Sci Monit 2016; 22:4716-4728. [PMID: 27911356 PMCID: PMC5153322 DOI: 10.12659/msm.899129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The laboratory rat is one of the most popular experimental models for the experimental surgery of the liver. The objective of this study was to investigate the morphometric parameters, physiological data, differences in configuration of liver lobes, biliary system, and vasculature (arteries, veins, and lymphatic vessels) of the liver in laboratory rats. In addition, this study supports the anatomic literature and identified similarities and differences with human and other mammals. MATERIAL AND METHODS Forty laboratory rats were dissected to prepare corrosion casts of vascular system specimens (n=20), determine the lymph vessels and lymph nodes (n=10), and for macroscopic anatomical dissection (n=10) of the rat liver. The results are listed in percentages. The anatomical nomenclature of the liver morphology, its arteries, veins, lymph nodes, and lymphatic vessels are in accordance with Nomina Anatomica Veterinaria. RESULTS We found many variations in origin, direction, and division of the arterial, venous, and lymphatic systems in rat livers, and found differences in morphometric parameters compared to results reported by other authors. The portal vein was formed by 4 tributaries in 23%, by 3 branches in 64%, and by 2 tributaries in 13%. The liver lymph was drained to the 2 different lymph nodes. The nomenclature and morphological characteristics of the rat liver vary among authors. CONCLUSIONS Our results may be useful for the planing of experimental surgery and for cooperation with other investigation methods to help fight liver diseases in human populations.
Collapse
Affiliation(s)
- Katarína Vdoviaková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Eva Petrovová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Lenka Krešáková
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marcela Maloveská
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Jana Teleky
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Janka Jenčová
- Department of Stomatology and Maxillofacial Surgery, Pavol Jozef Šafárik University, Faculty of Medicine, Kosice, Slovakia
| | - Jozef Živčák
- Faculty of Mechanical Engineering, Technical University in Kosice, Kosice, Slovakia
| | - Andrej Jenča
- Department of Stomatology and Maxillofacial Surgery, Pavol Jozef Šafárik University, Faculty of Medicine, Kosice, Slovakia
| |
Collapse
|
44
|
Hamaguchi Y, Mori A, Fujimoto Y, Ito T, Iida T, Yagi S, Okajima H, Kaido T, Uemoto S. Longer warm ischemia can accelerate tumor growth through the induction of HIF-1α and the IL-6-JAK-STAT3 signaling pathway in a rat hepatocellular carcinoma model. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:771-779. [PMID: 27734596 DOI: 10.1002/jhbp.406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The present study aimed to investigate the impact of the duration of hepatic pedicle clamping (HPC) on tumor growth after major hepatectomy in a rat model. METHODS Rats were divided into four groups according to the length of HPC during 70% partial hepatectomy followed by N1S1 tumor cell implantation: group 1, without HPC; group 2, with 5-min HPC; group 3, 10-min HPC; and group 4, 15-min HPC. At three weeks after tumor cell implantation, liver tumor growth and its possible mechanisms were investigated. RESULTS The number and largest diameter of liver tumor were significantly greater in group 4. At 6 h after reperfusion, serum levels of inflammatory cytokines including interleukin (IL)-6 were significantly higher in group 4 compared with the other groups. In the tumor tissues, the expression of hypoxia inducible factor (HIF)-1α (P < 0.001 versus group 2, P < 0.001 versus group 3) and that of phospho-signal transducer and activator of transcription 3 (STAT3) (P < 0.001 versus group 2, P = 0.026 versus group 3) were significantly upregulated in group 4. CONCLUSIONS Longer HPC followed by reperfusion accelerated hepatocellular carcinoma growth through the induction of HIF-1α and the activation of the IL-6-JAK-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuhei Hamaguchi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Mori
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiro Fujimoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Ito
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taku Iida
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shintaro Yagi
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hideaki Okajima
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshimi Kaido
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
45
|
Schnitzler S, Kopitz J, Plaschke K. Increased hippocampal CD38 and systemic inflammation after partial hepatectomy does not induce impairment of spatial cognition. Neurol Res 2016; 38:973-980. [DOI: 10.1080/01616412.2016.1242452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Quantification of Hepatic Vascular and Parenchymal Regeneration in Mice. PLoS One 2016; 11:e0160581. [PMID: 27494255 PMCID: PMC4975469 DOI: 10.1371/journal.pone.0160581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Liver regeneration consists of cellular proliferation leading to parenchymal and vascular growth. This study complements previous studies on cellular proliferation and weight recovery by (1) quantitatively describing parenchymal and vascular regeneration, and (2) determining their relationship. Both together are needed to (3) characterize the underlying growth pattern. METHODS Specimens were created by injecting a polymerizing contrast agent in either portal or hepatic vein in normal or regenerating livers after 70% partial hepatectomy. 3D image data were obtained through micro-CT scanning. Parenchymal growth was assessed by determining weight and volume of the regenerating liver. Vascular growth was described by manually determined circumscribed parameters (maximal vessel length and radius of right inferior portal/hepatic vein), automatically determined cumulative parameters (total edge length and total vascular volume), and parameters describing vascular density (total edge length/volume, vascular volume fraction). The growth pattern was explored by comparing the relative increase of these parameters to the increase expected in case of isotropic expansion. RESULTS Liver volume recovery paralleled weight recovery and reached 90% of the original liver volume within 7 days. Comparing radius-related vascular parameters immediately after surgical resection and after virtual resection in-silico revealed a slight increase, possibly reflecting the effect of resection-induced portal hyperperfusion. Comparing length-related parameters between post-operative day 7 and after virtual resection showed similar vascular growth in both vascular systems investigated. In contrast, radius-related parameters increased slightly more in the portal vein. Despite the seemingly homogeneous 3D growth, the observed vascular parameters were not compatible with the hypothesis of isotropic expansion of liver parenchyma and vascular structures. CONCLUSION We present an approach for the quantitative analysis of the vascular systems of regenerating mouse livers. We applied this technique for assessing the hepatic growth pattern. Prospectively, this approach can be used to investigate hepatic vascular regeneration under different conditions.
Collapse
|
47
|
Wei W, Zhang T, Fang H, Dirsch O, Schenk A, Homeyer A, Gremse F, Zafarnia S, Settmacher U, Dahmen U. Intrahepatic Size Regulation in a Surgical Model: Liver Resection-Induced Liver Regeneration Counteracts the Local Atrophy following Simultaneous Portal Vein Ligation. Eur Surg Res 2016; 57:125-37. [PMID: 27308828 DOI: 10.1159/000446875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Liver size regulation is based on the balance between hepatic regeneration and atrophy. To achieve a better understanding of intrahepatic size regulation, we explored the size regulation of a portally deprived liver lobe on a liver subjected to concurrent portal vein ligation (PVL) and partial hepatectomy (PHx). MATERIALS AND METHODS Using a surgical rat model consisting of right PVL (rPVL) plus 70% PHx, we evaluated the size regulation of liver lobes 1, 2, 3, and 7 days after the operation in terms of liver weight and hepatocyte proliferation. Portal hyperperfusion was confirmed by measuring portal flow. The portal vascular tree was visualized by injection of a contrast agent followed by CT imaging of explanted livers. Control groups consisted of 70% PHx, rPVL, and sham operation. RESULTS The size of the ligated right lobe increased to 1.4-fold on postoperative day 7 when subjected to rPVL + 70% PHx. The right lobe increased to 3-fold when subjected to 70% PHx alone and decreased to 0.3-fold when subjected to rPVL only. The small but significant increase in liver weight after the combined procedure was accompanied by a low proliferative response. In contrast, hepatocyte proliferation was undetectable in the right lobe undergoing atrophy after PVL only. The caudate lobe in the rPVL + 70% PHx group increased to 4.6-fold, which is significantly more than in the other groups. This increase in liver weight was paralleled by persisting portal hyperperfusion and a prolonged proliferative phase of 3 days. CONCLUSIONS A discontinued portal blood supply does not always result in atrophy of the ligated lobe. The concurrent regenerative stimulus induced by 70% PHx seemed to counteract the local atrophy after a simultaneously performed rPVL, leading to a low but prolonged regenerative response of the portally deprived liver lobe. This observation supports the conclusion that portal flow is not necessary for liver regeneration. The persisting portal hyperperfusion may be crucial for the specific kinetics of prolonged liver regeneration after rPVL + 70% PHx in the portally supplied caudate lobe. Both observations deserve more attention regarding the underlying mechanism in further studies.
Collapse
Affiliation(s)
- Weiwei Wei
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Meier M, Andersen KJ, Knudsen AR, Nyengaard JR, Hamilton-Dutoit S, Mortensen FV. Liver regeneration is dependent on the extent of hepatectomy. J Surg Res 2016; 205:76-84. [PMID: 27621002 DOI: 10.1016/j.jss.2016.06.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The upper limit for the size of hepatectomy is approximately 90% in rats. The aim of the study was to assess quantitatively using stereological methods the impact on liver function, regeneration rate (RR), and hepatocyte proliferation of varying hepatectomy size in a rat model. MATERIALS AND METHODS A total of 104 male Wistar rats were subjected to 30%, 70%, or 90% partial hepatectomy, sham operation, or no operation. Euthanization and harvesting of liver tissue and blood took place at postoperative days 1, 3, and 5 (n = 8 per group). Liver-specific biochemistry and RR were evaluated. Hepatocyte proliferation was estimated by immunohistochemical staining for Ki-67 antigen using unbiased stereological principles. RESULTS Liver RR in the 90% group increased by a 6.6 fold during the 5 postoperative days compared with only a minor increase in both the 70% and 30% partial hepatectomy groups. The highest number of Ki-67-positive hepatocytes was observed in the 70% group at postoperative day 1 and for the 90% group at postoperative day 3. Prothrombin-proconvertin ratio was significantly lower in the 90% group 1 d after surgery compared with all other groups, however, nearly normalized at postoperative day 5. CONCLUSIONS We show that liver RR and the number of proliferating hepatocytes increase, whereas the initial hepatic synthetic capacity decreases with increasing hepatectomy size.
Collapse
Affiliation(s)
- Michelle Meier
- Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | - Jens Randel Nyengaard
- Stereology & Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark
| | | | | |
Collapse
|
49
|
Yang L, Luo Y, Ma L, Wang H, Ling W, Li J, Qi X, Lu Q, Chen K. Establishment of a novel rat model of different degrees of portal vein stenosis following 70% partial hepatectomy. Exp Anim 2016; 65:165-73. [PMID: 26822935 PMCID: PMC4873485 DOI: 10.1538/expanim.15-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Liver transplantation may fail due to complications of insufficient portal vein (PV) flow
such as portal vein stenosis (PVS). Therefore, establishing a model to explore the effect
of PV flow on liver regeneration is crucial and essential. Rats were randomly divided into
6 groups: sham operation rats group; 70% partial hepatectomy (PH) group (group A); PVS
groups with mild, moderate, or severe stenosis (group B–D) and portal vein ligation (PVL)
group. PVS was produced by ligating PV with parallelly placed needles of different gauges.
Ultrasound was performed to validate the stenosis ratio (SR) and velocity ratio (VR) at
the prestenotic and stenotic site. Rats were sacrificed on day 1,3,7, and 14 after
surgery, and liver regeneration rate (LRR) was calculated. We successfully established rat
models of different degrees of PVS following 70%PH in 72 rats. The SRs of each PVS group
were 44.8 ± 5.23%, 59.3 ± 4.07% and 69.5 ± 2.17%, which showed no statistical differences
compared with those measured by stenosis ratio measured by ultrasound. The survival rate
in groups A-D were 100%, 83.3%, 66.7% and 50% respectively. Differences were demonstrated
between groups A and C, as well as groups A and D (both P<0.05).
Moreover, LRR negatively correlated with SRu and VR, and the correlation
coefficients were −0.534 and −0.522, respectively. The rat model we established has the
potential to be applied in most conditions of liver regeneration with reduced PV inflow,
and it provides a foundation for further exploring the relationship between PV hemodynamic
changes and liver regeneration.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Plaschke K, Weigand MA, Fricke F, Kopitz J. Neuroinflammation: effect of surgical stress compared to anaesthesia and effect of physostigmine. Neurol Res 2016; 38:397-405. [DOI: 10.1080/01616412.2016.1173889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|