1
|
Ng TF, Cho JY, Zhao JL, Gardiner JR, Wang ES, Leung E, Xu Z, Fineman SL, Lituchy M, Lo AC, Taylor AW. Alpha-Melanocyte-Stimulating Hormone Maintains Retinal Homeostasis after Ischemia/Reperfusion. Biomolecules 2024; 14:525. [PMID: 38785932 PMCID: PMC11118772 DOI: 10.3390/biom14050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.
Collapse
Affiliation(s)
- Tat Fong Ng
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Jenna Y. Cho
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - John L. Zhao
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - John R. Gardiner
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Eric S. Wang
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Elman Leung
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Ziqian Xu
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Samantha L. Fineman
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Melinda Lituchy
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| | - Amy C. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew W. Taylor
- Department of Ophthalmology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA 02118, USA; (T.F.N.)
| |
Collapse
|
2
|
Wang S, Kahale F, Naderi A, Surico PL, Yin J, Dohlman T, Chen Y, Dana R. Therapeutic Effects of Stimulating the Melanocortin Pathway in Regulating Ocular Inflammation and Cell Death. Biomolecules 2024; 14:169. [PMID: 38397406 PMCID: PMC10886905 DOI: 10.3390/biom14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) and its binding receptors (the melanocortin receptors) play important roles in maintaining ocular tissue integrity and immune homeostasis. Particularly extensive studies have demonstrated the biological functions of α-MSH in both immunoregulation and cyto-protection. This review summarizes the current knowledge of both the physiological and pathological roles of α-MSH and its receptors in the eye. We focus on recent developments in the biology of α-MSH and the relevant clinical implications in treating ocular diseases.
Collapse
Affiliation(s)
- Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Francesca Kahale
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| |
Collapse
|
3
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
4
|
Chang M, Chen B, Shaffner J, Dworkin LD, Gong R. Melanocortin System in Kidney Homeostasis and Disease: Novel Therapeutic Opportunities. Front Physiol 2021; 12:651236. [PMID: 33716796 PMCID: PMC7943476 DOI: 10.3389/fphys.2021.651236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Melanocortin peptides, melanocortin receptors, melanocortin receptor accessory proteins, and endogenous antagonists of melanocortin receptors are the key components constituting the melanocortin hormone system, one of the most complex and important hormonal systems in our body. A plethora of evidence suggests that melanocortins possess a protective activity in a variety of kidney diseases in both rodent models and human patients. In particular, the steroidogenic melanocortin peptide adrenocorticotropic hormone (ACTH), has been shown to exert a beneficial effect in a number of kidney diseases, possibly via a mechanism independent of its steroidogenic activity. In patients with steroid-resistant nephrotic glomerulopathy, ACTH monotherapy is still effective in inducing proteinuria remission. This has inspired research on potential implications of the melanocortin system in glomerular diseases. However, our understanding of the role of the melanocortinergic pathway in kidney disease is very limited, and there are still huge unknowns to be explored. The most controversial among these is the identification of effector cells in the kidney as well as the melanocortin receptors responsible for conveying the renoprotective action. This review article introduces the melanocortin hormone system, summarizes the existing evidence for the expression of melanocortin receptors in the kidney, and evaluates the potential strategy of melanocortin therapy for kidney disease.
Collapse
Affiliation(s)
- Mingyang Chang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Bohan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - James Shaffner
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| |
Collapse
|
5
|
Dinparastisaleh R, Mirsaeidi M. Antifibrotic and Anti-Inflammatory Actions of α-Melanocytic Hormone: New Roles for an Old Player. Pharmaceuticals (Basel) 2021; 14:ph14010045. [PMID: 33430064 PMCID: PMC7827684 DOI: 10.3390/ph14010045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. Among the most common and burdensome consequences of chronic inflammation is the development of fibrosis. Depending on the regenerative capacity of the affected tissue and the quality of the inflammatory response, the outcome is not always perfect, with the development of some fibrosis. Despite the heterogeneous etiology and clinical presentations, fibrosis in many pathological states follows the same path of activation or migration of fibroblasts, and the differentiation of fibroblasts to myofibroblasts, which produce collagen and α-SMA in fibrosing tissue. The melanocortin agonists might have favorable effects on the trajectories leading from tissue injury to inflammation, from inflammation to fibrosis, and from fibrosis to organ dysfunction. In this review we briefly summarized the data on structure, receptor signaling, and anti-inflammatory and anti-fibrotic properties of α-MSH and proposed that α-MSH analogues might be promising future therapeutic candidates for inflammatory and fibrotic diseases, regarding their favorable safety profile.
Collapse
Affiliation(s)
- Roshan Dinparastisaleh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33146, USA
- Correspondence: ; Tel.: +1-305-243-1377
| |
Collapse
|
6
|
El-Sheikh AAK, Morsy MA, Abdel-Latif RG. Modulation of eNOS/iNOS by nebivolol protects against cyclosporine A-mediated nephrotoxicity through targeting inflammatory and apoptotic pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:26-35. [PMID: 30927701 DOI: 10.1016/j.etap.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate effect of nitric oxide (NO) modulation on possible nephroprotective mechanisms of nebivolol (NEB) in cyclosporine A (CsA)-induced nephrotoxicity. Rats were treated with 20 mg/kg/day s.c. of CsA for 21 days, with NEB alone (10 mg/kg/day orally) or together with a NOS inhibitor, L-NAME (10 mg/kg/day i.p.). NEB conferred nephroprotection against CsA-induced toxicity, significantly decreasing serum kidney function tests and improving renal histopathology. NEB showed antioxidant effects, by significantly decreasing renal malondialdehyde levels, while increasing reduced glutathione levels and catalase activity. NEB showed anti-inflammatory and anti-apoptotic effects; reducing renal expression NF-κB and fas ligand. NEB also reversed CsA-induced effects on NO system; increasing renal NO level, with up-regulation of eNOS and down-regulation of iNOS expression. Administering L-NAME with NEB reversed all beneficial effects of NEB. Thus, NEB's modulation of NO system in CsA-induced nephrotoxicity might be the triggering mechanism controlling NEB's nephroprotective effect.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Basic Health Sciences Department, Faculty of Medicine, Princess Nourah bint Abdulrahman University, 11671 Riyadh, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt.
| | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt; Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
| | - Rania G Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61511 El-Minia, Egypt
| |
Collapse
|
7
|
Botte DAC, Noronha IL, Malheiros DMAC, Peixoto TV, de Mello SBV. Alpha-melanocyte stimulating hormone ameliorates disease activity in an induced murine lupus-like model. Clin Exp Immunol 2014; 177:381-90. [PMID: 24666423 DOI: 10.1111/cei.12336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide exhibiting anti-inflammatory activity in experimental models of autoimmune diseases. However, no studies thus far have examined the effects of α-MSH on systemic lupus erythematosus (SLE). This study aimed to determine the effects of an α-MSH agonist in induced murine lupus. Here we employed female Balb/cAn mice in which lupus was induced by pristane. Groups of lupus animals were treated daily with the α-MSH analogue [Nle4, DPhe7]-α-MSH (NDP-MSH) (1·25 mg/kg) injected intraperitoneally or saline for 180 days. Normal animals comprised the control group. Arthritis incidence, plasma immunoglobulin (Ig)G isotypes, anti-nuclear antibodies (ANA) and plasma cytokines were evaluated. Renal function was assessed by proteinuria and histopathological lesion. Glomerular levels of IgG, α-smooth muscle actin (α-SMA), inducible nitric oxide synthase (iNOS), C3, CD3, melanocortin receptors (MCR)1, corticotrophin-releasing factor (CRF) and α-MSH was estimated by immunohistochemistry. When compared with normal controls, lupus animals exhibited increased arthritis, IgG levels, ANA, interleukin (IL)-6, IL-10, proteinuria and mesangial cell proliferation together with glomerular expression of α-SMA and iNOS. Glomerular expression of MCR1 was reduced in lupus animals. NDP-MSH treatment reduced arthritis scores by 70% and also diminished IgG1 and IgG2a levels and ANA incidence. In the glomerulus, NDP-MSH treatment reduced cellularity by 50% together with reducing IgG deposits, and expression levels of α-SMA, iNOS and CRF were also all decreased. Taken together, our results suggest for the first time that α-MSH treatment improves several parameters of SLE disease activity in mice, and indicate that this hormone is an interesting potential future treatment option.
Collapse
Affiliation(s)
- D A C Botte
- Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
8
|
Decker DA, Grant C, Oh L, Becker PM, Young D, Jordan S. Immunomodulatory effects of H.P. Acthar Gel on B cell development in the NZB/W F1 mouse model of systemic lupus erythematosus. Lupus 2014; 23:802-12. [DOI: 10.1177/0961203314531840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/17/2014] [Indexed: 12/29/2022]
Abstract
H.P. Acthar Gel® (Acthar) is a highly purified repository gel preparation of adrenocorticotropic hormone (ACTH1-39), a melanocortin peptide that can bind and activate specific receptors expressed on a range of systemic lupus erythematosus (SLE)-relevant target cells and tissues. This study was performed to evaluate the effects of Acthar in a mouse model of SLE, using an F1 hybrid of the New Zealand Black and New Zealand White strains (NZB/W F1). Twenty-eight week old NZB/W F1 mice with established autoimmune disease were treated with Acthar, Placebo Gel (Placebo), or prednisolone and monitored for 19 weeks. Outcomes assessed included disease severity (severe proteinuria, ≥ 20% body weight loss, or prostration), measurement of serial serum autoantibody titers, terminal spleen immunophenotyping, and evaluation of renal histopathology. Acthar treatment was linked with evidence of altered B cell differentiation and development, manifested by a significant reduction in splenic B cell follicular and germinal center cells, and decreased levels of circulating total and anti-double-stranded DNA (IgM, IgG, and IgG2a) autoantibodies as compared with Placebo. Additionally, Acthar treatment resulted in a significant decrease of proteinuria, reduced renal lymphocyte infiltration, and attenuation of glomerular immune complex deposition. These data suggest that Acthar diminished pathogenic autoimmune responses in the spleen, peripheral blood, and kidney of NZB/W F1 mice. This is the first preclinical evidence demonstrating Acthar's potential immunomodulatory activity and efficacy in a murine model of systemic lupus erythematosus.
Collapse
Affiliation(s)
- DA Decker
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - C Grant
- Biomedical Research Models, Inc., Worcester, MA, USA
| | - L Oh
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - PM Becker
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - D Young
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| | - S Jordan
- Questcor Pharmaceuticals Inc., Ellicott City, MD, USA
| |
Collapse
|
9
|
van Rijt WG, Secher N, Keller AK, Møldrup U, Chynau Y, Ploeg RJ, van Goor H, Nørregaard R, Birn H, Frøkiaer J, Nielsen S, Leuvenink HGD, Jespersen B. α-Melanocyte stimulating hormone treatment in pigs does not improve early graft function in kidney transplants from brain dead donors. PLoS One 2014; 9:e94609. [PMID: 24728087 PMCID: PMC3984270 DOI: 10.1371/journal.pone.0094609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/17/2014] [Indexed: 01/24/2023] Open
Abstract
Delayed graft function and primary non-function are serious complications following transplantation of kidneys derived from deceased brain dead (DBD) donors. α-melanocyte stimulating hormone (α-MSH) is a pleiotropic neuropeptide and its renoprotective effects have been demonstrated in models of acute kidney injury. We hypothesized that α-MSH treatment of the recipient improves early graft function and reduces inflammation following DBD kidney transplantation. Eight Danish landrace pigs served as DBD donors. After four hours of brain death both kidneys were removed and stored for 18 hours at 4°C in Custodiol preservation solution. Sixteen recipients were randomized in a paired design into two treatment groups, transplanted simultaneously. α-MSH or a vehicle was administered at start of surgery, during reperfusion and two hours post-reperfusion. The recipients were observed for ten hours following reperfusion. Blood, urine and kidney tissue samples were collected during and at the end of follow-up. α-MSH treatment reduced urine flow and impaired recovery of glomerular filtration rate (GFR) compared to controls. After each dose of α-MSH, a trend towards reduced mean arterial blood pressure and increased heart rate was observed. α-MSH did not affect expression of inflammatory markers. Surprisingly, α-MSH impaired recovery of renal function in the first ten hours following DBD kidney transplantation possibly due to hemodynamic changes. Thus, in a porcine experimental model α-MSH did not reduce renal inflammation and did not improve short-term graft function following DBD kidney transplantation.
Collapse
Affiliation(s)
- Willem G. van Rijt
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| | - Niels Secher
- Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - Anna K. Keller
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Møldrup
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Yahor Chynau
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Rutger J. Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jørgen Frøkiaer
- The Water and Salt Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Nielsen
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Gong R. Leveraging melanocortin pathways to treat glomerular diseases. Adv Chronic Kidney Dis 2014; 21:134-51. [PMID: 24602463 DOI: 10.1053/j.ackd.2013.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022]
Abstract
The melanocortin system is a neuroimmunoendocrine hormone system that constitutes the fulcrum in the homeostatic control of a diverse array of physiological functions, including melanogenesis, inflammation, immunomodulation, adrenocortical steroidogenesis, hemodynamics, natriuresis, energy homeostasis, sexual function, and exocrine secretion. The kidney is a quintessential effector organ of the melanocortin hormone system with melanocortin receptors abundantly expressed by multiple kidney parenchymal cells, including podocytes, mesangial cells, glomerular endothelial cells, and renal tubular cells. Converging evidence unequivocally demonstrates that the melanocortin-based therapy using the melanocortin peptide adrenocorticotropic hormone (ACTH) is prominently effective in inducing remission of steroid-resistant nephrotic syndrome caused by various glomerular diseases, including membranous nephropathy, minimal change disease and focal segmental glomerulosclerosis, suggesting a steroidogenic-independent mechanism. Mechanistically, ACTH and other synthetic melanocortin analogues possess potent proteinuria-reducing and renoprotective activities that could be attributable to direct protection of glomerular cells and systemic immunomodulation. Thus, leveraging melanocortin signaling pathways using ACTH or novel synthetic melanocortin analogues represents a promising and pragmatic therapeutic strategy for glomerular diseases. This review article introduces the biophysiology of the melanocortin hormone system with an emphasis on the kidney as a target organ, discusses the existing data on melanocortin therapy for glomerular diseases, and elucidates the potential mechanisms of action.
Collapse
|
11
|
Taylor AW. Alpha-melanocyte stimulating hormone (α-MSH) is a post-caspase suppressor of apoptosis in RAW 264.7 macrophages. PLoS One 2013; 8:e74488. [PMID: 24009773 PMCID: PMC3757010 DOI: 10.1371/journal.pone.0074488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/01/2013] [Indexed: 01/04/2023] Open
Abstract
The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) is an important regulator of immune cell activity within the immunosuppressive ocular microenvironment. Its constitutive presence not only suppresses macrophage inflammatory activity, it also participates in retinal pigment epithelial cell (RPE) mediated activation of macrophages to function similar to myeloid suppressor cells. In addition, α-MSH promotes survival of the alternatively activated macrophages where without α-MSH RPE induce apoptosis in the macrophages, which is seen as increased TUNEL stained cells. Since there is little know about α-MSH as an anti-apoptotic factor, the effects of α-MSH on caspase activity, mitochondrial membrane potential, Bcl2 to BAX expression, along with TUNEL staining, and Annexin V binding were examined in RAW 264.7 macrophages under serum-starved conditions that trigger apoptosis. There was no effect of α-MSH on activated Caspase 9 and Caspase 3 while there was suppression of Caspase 8 activity. In addition, α-MSH did not improve mitochondrial membrane potential, change the ratio between Bcl-2 and BAX, nor reduce Annexin V binding. These results demonstrate that the diminution in TUNEL staining by α-MSH is through α-MSH mediating suppression of the apoptotic pathway that is post-Caspase 3, but before DNA fragmentation. Therefore, as α-MSH promotes the alternative activation of macrophages it also provides a survival signal, and the potential for the caspases to participate in non-apoptotic activities that can contribute to an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Si J, Ge Y, Zhuang S, Wang LJ, Chen S, Gong R. Adrenocorticotropic hormone ameliorates acute kidney injury by steroidogenic-dependent and -independent mechanisms. Kidney Int 2013; 83:635-46. [PMID: 23325074 PMCID: PMC3612362 DOI: 10.1038/ki.2012.447] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adrenocorticotropic hormone (ACTH) has a renoprotective effect in chronic kidney disease; however, its effect on acute kidney injury (AKI) remains unknown. In a rat model of tumor necrosis factor (TNF)–induced AKI, we found that ACTH gel prevented kidney injury, corrected acute renal dysfunction, and improved survival. Morphologically, ACTH gel ameliorated TNF-induced acute tubular necrosis, associated with a reduction in tubular apoptosis. While the steroidogenic response to ACTH gel plateaued, the kidney-protective effect continued to increase at even higher doses, suggesting steroid-independent mechanisms. Of note, ACTH also acts as a key agonist of the melanocortin system, with its cognate melanocortin 1 receptor (MC1R) abundantly expressed in renal tubules. In TNF-injured tubular epithelial cells in vitro, ACTH reinstated cellular viability and eliminated apoptosis. This beneficial effect was blunted in MC1R-silenced cells, suggesting that this receptor mediates the anti-apoptotic signaling of ACTH. Moreover, ACTH gel protected mice against cecal ligation puncture–induced septic AKI better than α-melanocyte-stimulating hormone: a protein equal in biological activity to ACTH except for steroidogenesis. Thus, ACTH has additive renoprotective actions achieved by both steroid-dependent mechanisms and MC1R-directed anti-apoptosis. ACTH may represent a novel therapeutic strategy to prevent or treat AKI.
Collapse
Affiliation(s)
- Jin Si
- Division of Kidney Disease and Hypertension, Department of Medicine, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
13
|
Xiao Z, Shan J, Li C, Luo L, Lu J, Li S, Long D, Li Y. Mechanisms of cyclosporine-induced renal cell apoptosis: a systematic review. Am J Nephrol 2012; 37:30-40. [PMID: 23295863 DOI: 10.1159/000345988] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/21/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Chronic cyclosporine A (CsA) nephrotoxicity (CCN) is an important cause of chronic renal dysfunction with no effective clinical intervention. To further elucidate the mechanisms of renal cell apoptosis in CCN, all relevant in vivo studies on this subject were analyzed. METHODS We searched for in vivo studies on the mechanisms of CsA-induced renal cell apoptosis in Medline (1966-July 2010), Embase (1980-July 2010) and ISI (1986-July 2010). The studies were evaluated for their quality according to a set of in vivo standards, data extracted according to PICOS, and then synthesized. RESULTS Renal cell apoptosis was an important feature of CCN and an important factor of renal dysfunction. First, CsA could upregulate Fas/Fas ligand, downregulate Bcl-2/Bcl-XL, and increase caspase-1 and caspase-3. Second, it could induce oxidative stress and damage the antioxidant defense system. Third, it could increase endoplasmic reticulum stress protein in a dose- and time-dependent manner. Fourth, CsA could impair the urine concentration and decrease the expression of hypertonicity-induced genes. Fifth, CsA-induced renal cell apoptosis was significantly decreased by blocking the angiotensin II type 1 receptor using losartan. CONCLUSIONS The in vivo mechanisms for CCN are more complex than those found in vitro. CsA can induce renal cell apoptosis using five pathways in vivo and activated caspases might be the ultimate intersection of these pathways and the common intracellular pathway mediating apoptosis. These data provide new potential points for intervention and need to be confirmed by further studies.
Collapse
Affiliation(s)
- Zheng Xiao
- Key Laboratory of Transplant Engineering and Immunology of the Ministry of Health of China, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chung SD, Lai TY, Chien CT, Yu HJ. Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney. PLoS One 2012; 7:e47299. [PMID: 23071780 PMCID: PMC3468574 DOI: 10.1371/journal.pone.0047299] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Exacerbated oxidative stress and inflammation may induce three types of programmed cell death, autophagy, apoptosis and pyroptosis in unilateral ureteral obstruction (UUO) kidney. Sulforaphane activating NF-E2-related nuclear factor erythroid-2 (Nrf-2) signaling may ameliorate UUO-induced renal damage. UUO was induced in the left kidney of female Wistar rats. The level of renal blood flow, cortical and medullary oxygen tension and reactive oxygen species (ROS) was evaluated. Fibrosis, ED-1 (macrophage/monocyte) infiltration, oxidative stress, autophagy, apoptosis and pyroptosis were evaluated by immunohistochemistry and Western blot in UUO kidneys. Effects of sulforaphane, an Nrf-2 activator, on Nrf-2- and mitochondrial stress-related proteins and renal injury were examined. UUO decreased renal blood flow and oxygen tension and increased renal ROS, 3-nitrotyrosine stain, ED-1 infiltration and fibrosis. Enhanced renal tubular Beclin-1 expression started at 4 h UUO and further enhanced at 3d UUO, whereas increased Atg-5-Atg12 and LC3-II expression were found at 3d UUO. Increased renal Bax/Bcl-2 ratio, caspase 3 and PARP fragments, apoptosis formation associated with increased caspase 1 and IL-1β expression for pyroptosis formation were started from 3d UUO. UUO reduced nuclear Nrf-2 translocation, increased cytosolic and inhibitory Nrf-2 expression, increased cytosolic Bax translocation to mitochondrial and enhanced mitochondrial Cytochrome c release into cytosol of the UUO kidneys. Sulforaphane significantly increased nuclear Nrf-2 translocation and decreased mitochondrial Bax translocation and Cytochrome c release into cytosol resulting in decreased renal injury. In conclusion, sulforaphane via activating Nrf-2 signaling preserved mitochondrial function and suppressed UUO-induced renal oxidative stress, inflammation, fibrosis, autophagy, apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Shue Dong Chung
- Department of Urology, Far East Memory Hospital, New Taipei City, Taiwan
- Graduate Institution of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting Yu Lai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiang Ting Chien
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- * E-mail: (HJY); (CTC)
| | - Hong Jen Yu
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (HJY); (CTC)
| |
Collapse
|
15
|
Zhang Z, Ma J, Yao K, Yin J. Alpha-melanocyte stimulating hormone suppresses the proliferation of human Tenon’s capsule fibroblast proliferation induced by transforming growth factor beta 1. Mol Biol 2012. [DOI: 10.1134/s0026893312040140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Page S, Chandhoke V, Baranova A. Melanin and melanogenesis in adipose tissue: possible mechanisms for abating oxidative stress and inflammation? Obes Rev 2011; 12:e21-31. [PMID: 20576005 DOI: 10.1111/j.1467-789x.2010.00773.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity has become a worldwide epidemic and can lead to multiple chronic diseases. Adipose tissue is increasingly thought to play an active role in obesity-related pathologies such as insulin resistance and non-alcoholic fatty liver disease. Obesity has been strongly associated with systemic inflammation and, to a lesser degree, with oxidative stress, although the causal relationships among these factors are unclear. A recent study demonstrating an expression of the components of the melanogenic pathway and the presence of melanin in visceral adipose has raised questions regarding the possible role of melanogenesis in adipose tissue. As this study also found larger amounts of melanin in the adipose tissue of obese patients relative to lean ones, we hypothesize that melanin, a pigment known for its antioxidant and anti-inflammatory properties, may scavenge reactive oxygen species and abate oxidative stress and inflammation in adipose tissue. This review considers the evidence to support such a hypothesis, and speculates on the role of melanin within adipocytes. Furthermore, we consider whether the α-melanocyte-stimulating hormone or its synthetic analogues could be used to stimulate melanin production in adipocytes, should the hypothesis be supported in future experiments.
Collapse
Affiliation(s)
- S Page
- Department of Molecular and Microbiology, College of Science, George Mason University, Fairfax Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA
| | | | | |
Collapse
|
17
|
Localized retinal neuropeptide regulation of macrophage and microglial cell functionality. J Neuroimmunol 2010; 232:17-25. [PMID: 20965575 DOI: 10.1016/j.jneuroim.2010.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/20/2022]
Abstract
The functionality of immune cells is manipulated within the ocular microenvironment to protect the sensitive and non-regenerating light-gathering tissue from the collateral damage of inflammation. This is mediated partly by the constitutive presence of immunomodulating neuropeptides. Treating primary resting macrophages with soluble factors produced by the posterior eye induced co-expression of Arginase1 and NOS2. The neuropeptides alpha-melanocyte stimulating hormone and Neuropeptide Y alternatively activated the macrophages to co-express Arginase1 and NOS2 like myeloid suppressor cells. Similar co-expressing cells were found within healthy, but not in wounded retinas. Therefore, the healthy retina regulates macrophage functionality to the benefit of ocular immune privilege.
Collapse
|
18
|
Álvarez-Mercado AI, García-Mediavilla MV, Sánchez-Campos S, Abadía F, Sáez-Lara MJ, Cabello-Donayre M, Gil Á, González-Gallego J, Fontana L. Deleterious Effect of Human Umbilical Cord Blood Mononuclear Cell Transplantation on Thioacetamide-Induced Chronic Liver Damage in Rats. Cell Transplant 2009; 18:1069-79. [DOI: 10.3727/096368909x12483162197088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our research group investigates whether human mononuclear cells isolated from umbilical cord blood (HUCBM cells) might be valuable in hepatic regenerative medicine. We recently demonstrated that HUCBM cell transplantation improves histological alterations and function of the liver in rats with acute liver damage induced by D-galactosamine. In the present study, HUCBM cells were transplanted into rats with thioacetamide (TAA)-induced liver cirrhosis, an experimental model that generates an intense fibrosis and mimics the histological and biochemical alterations found in the human disease. HUCBM transplantation had no effect on hepatic histology of cirrhotic animals. In contrast, analysis of plasma albumin and total bilirubin, liver damage markers, revealed a harmful effect of HUCBM cell transplantation in our experimental model of liver cirrhosis. Significantly higher plasma urea concentrations, marker of renal function, were observed in the cirrhotic and control rats intraportally injected with HUCBM cells than in those not receiving this therapy. Histological study revealed tubular and glomerular lesions in kidneys of cirrhotic animals transplanted with HUCBM cells. The glomeruli appeared ischemic, and the tubules showed a severe involvement that included peripheral asymmetric vacuolization and disappearance of the tubular lumen. Taken together, the histological and biochemical data suggest that the cirrhotic rats subjected to HUCBM cell therapy developed a hepatorenal syndrome.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - María V. García-Mediavilla
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sonia Sánchez-Campos
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, Campus de Vegazana s/n, 24071 León, Spain
| | - Francisco Abadía
- Department of Cell Biology, School of Sciences, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - María J. Sáez-Lara
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - María Cabello-Donayre
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Javier González-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, Campus de Vegazana s/n, 24071 León, Spain
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| |
Collapse
|
19
|
Jin KB, Choi HJ, Kim HT, Hwang EA, Han SY, Park SB, Kim HC, Ha EY, Kim YH, Suh SI, Mun KC. Cytokine array after cyclosporine treatment in rats. Transplant Proc 2008; 40:2682-4. [PMID: 18929835 DOI: 10.1016/j.transproceed.2008.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Long-term treatment with cyclosporine (CsA) results in chronic nephrotoxicity, which is known to be mediated by several cytokines including transforming growth factor-betal. Cytokines are known to play an important role in innate immunity, apoptosis, angiogenesis, cell growth, and differentiation. They are known to be involved in most disease processes, including cancer, cardiac disease, and nephrotoxicity. To evaluate changes of cytokines in a rat model of CsA-induced chronic nephrotoxicity, we performed a cytokine array. METHODS Experiments were performed on two groups of rats; normal control group and CsA-treated group. Cytokine array in rat serum was performed using Cytokine Antibody Array I kit from RayBiotech. RESULTS Serum creatinine, urine creatinine, and creatinine clearance increased in the CsA-treated group. Among the several cytokines, the expressions of the lipopolysaccharide-induced CXC chemokine (LIX), monocyte chemoattractant protein 1 (MCP-1), nerve growth factor (beta-NGF), and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the CsA-treated group were increased above that of cytokines in the control group. The density of the LIX in controls was 0.62, and in the CsA-treated group was 1.24. The density of the MCP-1 in controls was 0.68, and in CsA-treated, 1.43. The density of the beta-NGF in controls was 0.62, and that in CsA-treated, 1.24. The density of the TIMP-1 in controls 1.13, and in CsA-treated, 1.40. CONCLUSIONS Our data suggested that among several cytokines elevated levels of the LIX, MCP-1, beta-NGF, and TIMP-1 are the contributing factors to CsA-induced nephropathy.
Collapse
Affiliation(s)
- K B Jin
- Dongsan Kidney Institute and Chronic Disease Research Center, Keimyung University, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lasaga M, Debeljuk L, Durand D, Scimonelli TN, Caruso C. Role of alpha-melanocyte stimulating hormone and melanocortin 4 receptor in brain inflammation. Peptides 2008; 29:1825-35. [PMID: 18625277 DOI: 10.1016/j.peptides.2008.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/13/2008] [Accepted: 06/14/2008] [Indexed: 11/20/2022]
Abstract
Inflammatory processes contribute widely to the development of neurodegenerative diseases. The expression of many inflammatory mediators was found to be increased in central nervous system (CNS) disorders suggesting that these molecules are major contributors to neuronal damage. Melanocortins are neuropeptides that have been implicated in a wide range of physiological processes. The melanocortin alpha-melanocyte stimulating hormone (alpha-MSH) has pleiotropic functions and exerts potent anti-inflammatory actions by antagonizing the effects of pro-inflammatory cytokines and by decreasing important inflammatory mediators. Five subtypes of melanocortin receptors (MC1R-MC5R) have been identified. Of these, the MC4 receptor is expressed predominantly throughout the CNS. Evidence of effectiveness of selective MC4R agonists in modulating inflammatory processes and their low toxicity suggest that these molecules may be useful in the treatment of CNS disorders with an inflammatory component. This review describes the involvement of the MC4R in central anti-inflammatory effects of melanocortins and discusses the potential value of MC4R agonists for the treatment of inflammatory-related disorders.
Collapse
Affiliation(s)
- Mercedes Lasaga
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires 1121ABG, Argentina.
| | | | | | | | | |
Collapse
|
21
|
Brzoska T, Luger TA, Maaser C, Abels C, Böhm M. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 2008; 29:581-602. [PMID: 18612139 DOI: 10.1210/er.2007-0027] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha-MSH is a tridecapeptide derived from proopiomelanocortin. Many studies over the last few years have provided evidence that alpha-MSH has potent protective and antiinflammatory effects. These effects can be elicited via centrally expressed melanocortin receptors that orchestrate descending neurogenic antiinflammatory pathways. alpha-MSH can also exert antiinflammatory and protective effects on cells of the immune system and on peripheral nonimmune cell types expressing melanocortin receptors. At the molecular level, alpha-MSH affects various pathways implicated in regulation of inflammation and protection, i.e., nuclear factor-kappaB activation, expression of adhesion molecules and chemokine receptors, production of proinflammatory cytokines and mediators, IL-10 synthesis, T cell proliferation and activity, inflammatory cell migration, expression of antioxidative enzymes, and apoptosis. The antiinflammatory effects of alpha-MSH have been validated in animal models of experimentally induced fever; irritant and allergic contact dermatitis, vasculitis, and fibrosis; ocular, gastrointestinal, brain, and allergic airway inflammation; and arthritis, but also in models of organ injury. One obstacle limiting the use of alpha-MSH in inflammatory disorders is its pigmentary effect. Due to its preserved antiinflammatory effect but lack of pigmentary action, the C-terminal tripeptide of alpha-MSH, KPV, has been delineated as an alternative for antiinflammatory therapy. KdPT, a derivative of KPV corresponding to amino acids 193-195 of IL-1beta, is also emerging as a tripeptide with antiinflammatory effects. The physiochemical properties and expected low costs of production render both agents suitable for the future treatment of immune-mediated inflammatory skin and bowel disease, fibrosis, allergic and inflammatory lung disease, ocular inflammation, and arthritis.
Collapse
Affiliation(s)
- Thomas Brzoska
- Department of Dermatology, University of Münster, Von Esmarch-Strasse 58, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
22
|
Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 2008; 13:11-32. [PMID: 17968659 DOI: 10.1007/s10495-007-0151-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apoptosis plays a central role not only in the physiological processes of kidney growth and remodeling, but also in various human renal diseases and drug-induced nephrotoxicity. We present in a synthetic fashion the main molecular and cellular pathways leading to drug-induced apoptosis in kidney and the mechanisms regulating it. We illustrate them using three main nephrotoxic drugs (cisplatin, gentamicin, and cyclosporine A). We discuss the main regulators and effectors that have emerged as key targets for the design of therapeutic strategies. Novel approaches using gene therapy, antisense strategies, recombinant proteins, or compounds obtained from both classical organic and combinatorial chemistry are examined. Finally, key issues that need to be addressed for the success of apoptosis-based therapies are underlined.
Collapse
|
23
|
Caruso C, Durand D, Schiöth HB, Rey R, Seilicovich A, Lasaga M. Activation of melanocortin 4 receptors reduces the inflammatory response and prevents apoptosis induced by lipopolysaccharide and interferon-gamma in astrocytes. Endocrinology 2007; 148:4918-26. [PMID: 17595227 DOI: 10.1210/en.2007-0366] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alpha-MSH exerts an immunomodulatory action in the brain and may play a neuroprotective role acting through melanocortin 4 receptors (MC4Rs). In the present study, we show that MC4Rs are constitutively expressed in astrocytes as determined by immunocytochemistry, RT-PCR, and Western blot analysis. alpha-MSH (5 microm) reduced the nitric oxide production and the expression of inducible nitric oxide synthase (iNOS) induced by bacterial lipopolysaccharide (LPS, 1 microg/ml) plus interferon-gamma (IFN-gamma, 50 ng/ml) in cultured astrocytes after 24 h. alpha-MSH also attenuated the stimulatory effect of LPS/IFN-gamma on prostaglandin E(2) release and cyclooxygenase-2 (COX-2) expression. Treatment with HS024, a selective MC4R antagonist, blocked the antiinflammatory effects of alpha-MSH, suggesting a MC4R-mediated mechanism in the action of this melanocortin. In astrocytes, LPS/IFN-gamma treatment reduced cell viability, increased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells and activated caspase-3. alpha-MSH prevented these apoptotic events, and this cytoprotective effect was abolished by HS024. LPS/IFN-gamma decreased Bcl-2, whereas it increased Bax protein expression in astrocytes, thus increasing the Bax/Bcl-2 ratio. Alpha-MSH produced a shift in Bax/Bcl-2 ratio toward astrocyte survival because it increased Bcl-2 expression and also prevented the effect of LPS/IFN-gamma on Bax and Bcl-2 expression. In summary, these findings suggest that alpha-MSH, through MC4R activation, attenuates LPS/IFN-gamma-induced inflammation by decreasing iNOS and COX-2 expression and prevents LPS/IFN-gamma-induced apoptosis of astrocytes by modulating the expression of proteins of the Bcl-2 family.
Collapse
Affiliation(s)
- Carla Caruso
- Centro de Investigaciones en Reproducción, School of Medicine, University of Buenos Aires, Buenos Aires 1121ABG, Argentina
| | | | | | | | | | | |
Collapse
|
24
|
Lee TH, Jawan B, Chou WY, Lu CN, Wu CL, Kuo HM, Concejero AM, Wang CH. Alpha-melanocyte-stimulating hormone gene therapy reverses carbon tetrachloride induced liver fibrosis in mice. J Gene Med 2006; 8:764-72. [PMID: 16508911 DOI: 10.1002/jgm.899] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatic fibrosis represents a process of healing and scarring in response to chronic liver injury. Effective therapies are lacking. We have previously demonstrated that alpha-melanocyte-stimulating hormone (alpha-MSH) gene therapy protects against thioacetamide-induced acute liver failure in mice. Recent reports showed that collagen metabolism is a novel target of alpha-MSH. Therefore, the aim of this study is to investigate whether alpha-MSH gene therapy possesses anti-hepatic fibrogenic effect in mice. METHODS Liver fibrosis was induced in mice by administering carbon tetrachloride (CCl4) continuously for 10 weeks. Alpha-MSH expression plasmid was delivered via electroporation after liver fibrosis had been established. Histopathology, reverse-transcription polymerase chain reaction (RT-PCR), immunoblotting, and gelatin zymography were used to investigate its possible mechanisms of action. RESULTS Alpha-MSH gene therapy reversed established liver fibrosis in CCl4-treated mice. RT-PCR revealed that alpha-MSH gene therapy attenuated the liver TGF-beta1, collagen alpha1, and cell adhesion molecule mRNA upregulation. Following gene transfer, both the activation of alpha-smooth muscle actin (alpha-SMA) and cyclooxygenase-2 (COX-2) was significantly attenuated. Further, alpha-MSH significantly increased matrix metalloproteinase (MMP) activity with tissue inhibitors of matrix metalloproteinase (TIMP) inactivation. CONCLUSIONS We have demonstrated that alpha-MSH gene therapy reversed established liver fibrosis in mice. It also prevented the upregulated fibrogenic and proinflammatory gene response after CCl4 administration. Its collagenolytic effect may be attributed to MMP and TIMP modulation. In summary, alpha-MSH gene therapy may be an effective therapeutic modality against liver fibrosis with potential clinical use.
Collapse
Affiliation(s)
- Tsung-Hsing Lee
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang CH, Lee TH, Lu CN, Chou WY, Hung KS, Concejero AM, Jawan B. Electroporative alpha-MSH gene transfer attenuates thioacetamide-induced murine hepatic fibrosis by MMP and TIMP modulation. Gene Ther 2006; 13:1000-9. [PMID: 16511523 DOI: 10.1038/sj.gt.3302744] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatic fibrosis represents a process of healing and scarring in response to chronic liver injury. alpha-Melanocyte-stimulating hormone (alpha-MSH) is a 13-amino-acid peptide with potent anti-inflammatory effects. We have previously demonstrated that alpha-MSH gene therapy protects against thioacetamide (TAA)-induced acute liver failure. Therefore, the aim of this study is to investigate whether alpha-MSH gene therapy possesses antihepatic fibrogenic effect. Liver fibrosis was induced by long-term TAA administration in mice. alpha-Melanocyte-stimulating hormone expression plasmid was delivered via electroporation after liver fibrosis was established. Our results showed that alpha-MSH gene therapy attenuated liver fibrosis in TAA-treated mice. Reverse transcription polymerase chain reaction revealed that alpha-MSH gene therapy attenuated the liver transforming growth factor-beta1, collagen alpha1 and cell adhesion molecule mRNA upregulation. Following gene transfer, the expression of alpha-smooth muscle actin and cyclooxygenase-2 were both significantly attenuated. Further, alpha-MSH significantly increased matrix metalloproteinase (MMP), while tissue inhibitors of matrix metalloproteinase (TIMPs) were inactivated. In summary, alpha-MSH gene therapy reversed established liver fibrosis in mice and prevented the upregulated fibrogenic and pro-inflammatory gene responses after TAA administration. Its collagenolytic effect might be attributed to MMP and TIMP modulation. Hence, alpha-MSH gene therapy may be an effective therapeutic modality against liver fibrosis with potential clinical use.
Collapse
Affiliation(s)
- C-H Wang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Gatti S, Colombo G, Turcatti F, Lonati C, Sordi A, Bonino F, Lipton JM, Catania A. Reduced expression of the melanocortin-1 receptor in human liver during brain death. Neuroimmunomodulation 2006; 13:51-5. [PMID: 16864968 DOI: 10.1159/000094513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 06/07/2006] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE There is evidence that brain death has detrimental effects on peripheral organs. Clinical and experimental studies on organ donors showed marked inflammation in tissue samples of livers and kidneys collected during brain death. The inflammatory reaction is characterized by release of cytokines and inflammatory cell infiltration. Because melanocortins and their receptors are significant modulators of inflammation, we hypothesized that downregulation of melanocortin receptors during brain death could contribute to enhance inflammation. METHODS Using real-time polymerase chain reaction (PCR) analysis, we determined expression of melanocortin receptors in liver biopsies obtained from brain-dead organ donors before cold ischemia and in normal liver tissue during resection of benign focal lesions of the liver. Tissue biopsies were also analyzed for expression of intercellular adhesion molecule-1 (ICAM-1), which has a central function in inflammatory cell migration. RESULTS Expression of melanocortin-1 receptor (MC1R) mRNA was markedly reduced in liver samples obtained from brain-dead organ donors compared to hepatic tissue collected during resection of benign focal lesions of the liver. Conversely, expression of the adhesion molecule ICAM-1 was significantly increased in livers of brain-dead organ donors. CONCLUSIONS Disruption of the endogenous anti-inflammatory circuit based on MC1R could contribute to tissue damage during brain death.
Collapse
Affiliation(s)
- Stefano Gatti
- Liver Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li C, Shi Y, Wang W, Sardeli C, Kwon TH, Thomsen K, Jonassen T, Djurhuus JC, Knepper MA, Nielsen S, Frøkiaer J. alpha-MSH prevents impairment in renal function and dysregulation of AQPs and Na-K-ATPase in rats with bilateral ureteral obstruction. Am J Physiol Renal Physiol 2005; 290:F384-96. [PMID: 16189288 DOI: 10.1152/ajprenal.00282.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the effects of the anti-inflammatory hormone alpha-melanocyte-stimulating hormone (alpha-MSH) treatment on renal function and expression of aquaporins (AQPs) and Na-K-ATPase in the kidney in response to 24 h of bilateral ureteral obstruction (BUO) or release of BUO (BUO-R). In rats with 24-h BUO, immunoblotting revealed that downregulation of AQP2 and AQP3 was attenuated (AQP2: 38 +/- 5 vs. 13 +/- 4%; AQP3: 44 +/- 3 vs. 19 +/- 4% of sham levels; P < 0.05), whereas downregulation of Na-K-ATPase was prevented by alpha-MSH treatment (Na-K-ATPase: 94 +/- 7 vs. 35 +/- 5% of sham levels; P < 0.05). Immunocytochemistry confirmed the changes in AQP1 and Na-K-ATPase expression. Renal tubular cell apoptosis was confirmed in BUO kidneys, and alpha-MSH treatment virtually completely abolished apoptosis. Furthermore, we measured glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), respectively. Forty-eight hours after BUO-R demonstrated that alpha-MSH treatment almost completely prevented the decrease in GFR (nontreated: 271 +/- 50; alpha-MSH: 706 +/- 85; sham: 841 +/- 105 microl x min(-1).100 g body wt(-1), P < 0.05) and ERPF (nontreated: 1,139 +/- 217; alpha-MSH: 2,598 +/- 129; sham: 2,633 +/- 457 microl x min(-1).100 g body wt(-1), P < 0.05). alpha-MSH treatment also partly prevented the downregulation of AQP1 and Na-K-ATPase expression in rats after BUO-R for 48 h. In conclusion, alpha-MSH treatment significantly prevents impairment in renal function and also prevents downregulation of AQP2, AQP3, and Na-K-ATPase during BUO or AQP1 and Na-K-ATPase after BUO-R, demonstrating a marked renoprotective effect of alpha-MSH treatment in conditions with urinary tract obstruction.
Collapse
Affiliation(s)
- Chunling Li
- The Water and Salt Research Center, Institute of Clinical Medicine, University of Aarhus, Brendstrupgaardsvej, DK-8230 Aarhus N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|