1
|
Iwanczyk Z, Vasudev K, Cozzi E, Cooper DKC. Contributions of Europeans to Xenotransplantation Research: 1. Pig Organ Xenotransplantation. Transpl Int 2025; 38:14041. [PMID: 40083833 PMCID: PMC11903215 DOI: 10.3389/ti.2025.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Xenotransplantation has a rich history, marked by European pioneers who laid the groundwork for many breakthroughs in the field. Pig organ xenotransplantation offers a solution to the global shortage of deceased human donor organs, whilst allowing the modification of the donor graft itself. The field has continued to garner interest, particularly with the recent advent of simpler and faster genetic-engineering technologies. This review highlights the contributions of European researchers to xenotransplantation, spanning pig kidney, heart, liver, and lung transplantation. Research has focused on (i) identifying and deleting key xenoantigens and modifying the source pig by expression of human "protective" proteins and (ii) testing novel immunosuppressive regimens. These contributions have played key roles in advancing xenotransplantation from the laboratory to early clinical experiments. Europeans have also addressed the potential risks of xenozoonotic infections and the regulatory challenges. The research endeavours of groups in Europe are summarized. Several European researchers moved either permanently or temporarily to US institutions, and their insight and innovations are also highlighted. While we aim to recognize the significant contributions of European physicians and scientists in this article, it is not an exhaustive list of all those who have influenced the field.
Collapse
Affiliation(s)
- Zuzanna Iwanczyk
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Krish Vasudev
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Emanuele Cozzi
- Transplantation Immunology Unit, University of Padua Hospital, Padua, Italy
| | - David K. C. Cooper
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Le Bas-Bernardet S, Blancho G. Progress in Porcine Kidney Transplantation to Non-Human Primates. Transpl Int 2025; 38:14003. [PMID: 40026598 PMCID: PMC11867791 DOI: 10.3389/ti.2025.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Renal xenotransplantation has recently made considerable progress in overcoming the barrier to its use in humans. This progress has been made possible owing to the use of preclinical pig-to-primate models. Overall, renal xenotransplantation has long been associated with lower survival rates than that of porcine hearts (mainly due to its life-sustaining nature). However, the use of the latest strains of genetically modified porcine donors, combined with progress in the control of the anti-porcine immune response and coagulation, has now enabled survival of up to 2 years. Although the pig-to-primate combination has long been considered a perfect reflection of the human situation, it has several limitations, particularly in terms of different natural anti-porcine antibodies. This fact, in association with survival prolongation, which is considered a prerequisite, has led some pioneering teams to cross the line of human application. However, use in humans will remain anecdotal, and further progress in renal xenotransplantation will be difficult to achieve without the use of non-human primates, which will remain complementary, particularly with regard to major innovations that have never been tested in humans.
Collapse
Affiliation(s)
- Stéphanie Le Bas-Bernardet
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Gilles Blancho
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Nantes Université, Service de Néphrologie et Immunologie Clinique, ITUN, Nantes, France
| |
Collapse
|
3
|
Lu TY, Xu XL, Du XG, Wei JH, Yu JN, Deng SL, Qin C. Advances in Innate Immunity to Overcome Immune Rejection during Xenotransplantation. Cells 2022; 11:cells11233865. [PMID: 36497122 PMCID: PMC9735653 DOI: 10.3390/cells11233865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transplantation is an effective approach for treating end-stage organ failure. There has been a long-standing interest in xenotransplantation as a means of increasing the number of available organs. In the past decade, there has been tremendous progress in xenotransplantation accelerated by the development of rapid gene-editing tools and immunosuppressive therapy. Recently, the heart and kidney from pigs were transplanted into the recipients, which suggests that xenotransplantation has entered a new era. The genetic discrepancy and molecular incompatibility between pigs and primates results in barriers to xenotransplantation. An increasing body of evidence suggests that innate immune responses play an important role in all aspects of the xenogeneic rejection. Simultaneously, the role of important cellular components like macrophages, natural killer (NK) cells, and neutrophils, suggests that the innate immune response in the xenogeneic rejection should not be underestimated. Here, we summarize the current knowledge about the innate immune system in xenotransplantation and highlight the key issues for future investigations. A better understanding of the innate immune responses in xenotransplantation may help to control the xenograft rejection and design optimal combination therapies.
Collapse
Affiliation(s)
- Tian-Yu Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Xue-Ling Xu
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu-Guang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Hua Wei
- Cardiovascular Surgery Department, Center of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jia-Nan Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Correspondence: (S.-L.D.); (C.Q.)
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Changping National Laboratory (CPNL), Beijing 102206, China
- Correspondence: (S.-L.D.); (C.Q.)
| |
Collapse
|
4
|
Kervella D, Le Bas-Bernardet S, Bruneau S, Blancho G. Protection of transplants against antibody-mediated injuries: from xenotransplantation to allogeneic transplantation, mechanisms and therapeutic insights. Front Immunol 2022; 13:932242. [PMID: 35990687 PMCID: PMC9389360 DOI: 10.3389/fimmu.2022.932242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term allograft survival in allotransplantation, especially in kidney and heart transplantation, is mainly limited by the occurrence of antibody-mediated rejection due to anti-Human Leukocyte Antigen antibodies. These types of rejection are difficult to handle and chronic endothelial damages are often irreversible. In the settings of ABO-incompatible transplantation and xenotransplantation, the presence of antibodies targeting graft antigens is not always associated with rejection. This resistance to antibodies toxicity seems to associate changes in endothelial cells phenotype and modification of the immune response. We describe here these mechanisms with a special focus on endothelial cells resistance to antibodies. Endothelial protection against anti-HLA antibodies has been described in vitro and in animal models, but do not seem to be a common feature in immunized allograft recipients. Complement regulation and anti-apoptotic molecules expression appear to be common features in all these settings. Lastly, pharmacological interventions that may promote endothelial cell protection against donor specific antibodies will be described.
Collapse
Affiliation(s)
- Delphine Kervella
- CHU Nantes, Nantes Université, Néphrologie et Immunologie Clinique, Institut Transplantation Urologie Néphrologie (ITUN), Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Stéphanie Le Bas-Bernardet
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Sarah Bruneau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Gilles Blancho
- CHU Nantes, Nantes Université, Néphrologie et Immunologie Clinique, Institut Transplantation Urologie Néphrologie (ITUN), Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- *Correspondence: Gilles Blancho,
| |
Collapse
|
5
|
Singh AK, Goerlich CE, Shah AM, Zhang T, Tatarov I, Ayares D, Horvath KA, Mohiuddin MM. Cardiac Xenotransplantation: Progress in Preclinical Models and Prospects for Clinical Translation. Transpl Int 2022; 35:10171. [PMID: 35401039 PMCID: PMC8985160 DOI: 10.3389/ti.2022.10171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022]
Abstract
Survival of pig cardiac xenografts in a non-human primate (NHP) model has improved significantly over the last 4 years with the introduction of costimulation blockade based immunosuppression (IS) and genetically engineered (GE) pig donors. The longest survival of a cardiac xenograft in the heterotopic (HHTx) position was almost 3 years and only rejected when IS was stopped. Recent reports of cardiac xenograft survival in a life-sustaining orthotopic (OHTx) position for 6 months is a significant step forward. Despite these achievements, there are still several barriers to the clinical success of xenotransplantation (XTx). This includes the possible transmission of porcine pathogens with pig donors and continued xenograft growth after XTx. Both these concerns, and issues with additional incompatibilities, have been addressed recently with the genetic modification of pigs. This review discusses the spectrum of issues related to cardiac xenotransplantation, recent progress in preclinical models, and its feasibility for clinical translation.
Collapse
Affiliation(s)
- Avneesh K. Singh
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Corbin E. Goerlich
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Aakash M. Shah
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Tianshu Zhang
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Ivan Tatarov
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
| | | | - Keith A. Horvath
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | - Muhammad M. Mohiuddin
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, United States
- *Correspondence: Muhammad M. Mohiuddin,
| |
Collapse
|
6
|
Bikhet M, Iwase H, Yamamoto T, Jagdale A, Foote JB, Ezzelarab M, Anderson DJ, Locke JE, Eckhoff DE, Hara H, Cooper DKC. What Therapeutic Regimen Will Be Optimal for Initial Clinical Trials of Pig Organ Transplantation? Transplantation 2021; 105:1143-1155. [PMID: 33534529 DOI: 10.1097/tp.0000000000003622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We discuss what therapeutic regimen might be acceptable/successful in the first clinical trial of genetically engineered pig kidney or heart transplantation. As regimens based on a calcineurin inhibitor or CTLA4-Ig have proved unsuccessful, the regimen we administer to baboons is based on induction therapy with antithymocyte globulin, an anti-CD20 mAb (Rituximab), and cobra venom factor, with maintenance therapy based on blockade of the CD40/CD154 costimulation pathway (with an anti-CD40 mAb), with rapamycin, and a corticosteroid. An anti-inflammatory agent (etanercept) is administered for the first 2 wk, and adjuvant therapy includes prophylaxis against thrombotic complications, anemia, cytomegalovirus, and pneumocystis. Using this regimen, although antibody-mediated rejection certainly can occur, we have documented no definite evidence of an adaptive immune response to the pig xenograft. This regimen could also form the basis for the first clinical trial, except that cobra venom factor will be replaced by a clinically approved agent, for example, a C1-esterase inhibitor. However, none of the agents that block the CD40/CD154 pathway are yet approved for clinical use, and so this hurdle remains to be overcome. The role of anti-inflammatory agents remains unproven. The major difference between this suggested regimen and those used in allotransplantation is the replacement of a calcineurin inhibitor with a costimulation blockade agent, but this does not appear to increase the complications of the regimen.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL
| | - Mohamed Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Douglas J Anderson
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jayme E Locke
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Devin E Eckhoff
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev 2020; 27:71-91. [DOI: 10.1007/s10741-020-09989-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Yamamoto T, Li Q, Hara H, Wang L, Zhou H, Li J, Eckhoff DE, Joseph Tector A, Klein EC, Lovingood R, Ezzelarab M, Ayares D, Wang Y, Cooper DKC, Iwase H. B cell phenotypes in baboons with pig artery patch grafts receiving conventional immunosuppressive therapy. Transpl Immunol 2018; 51:12-20. [PMID: 30092338 PMCID: PMC6249078 DOI: 10.1016/j.trim.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the pig-to-baboon artery patch model with no immunosuppressive therapy, a graft from an α1,3-galactosyltransferase gene-knockout (GTKO) pig elicits a significant anti-nonGal IgG response, indicating sensitization to the graft. A costimulation blockade-based regimen, e.g., anti-CD154mAb or anti-CD40mAb, prevents sensitization. However, neither of these agents is currently FDA-approved. The aim of the present study was to determine the efficacy of FDA-approved agents on the T and B cell responses. METHODS Artery patch xenotransplantation in baboons was carried out using GTKO/CD46 pigs with (n = 2) or without (n = 1) the mutant transgene for CIITA-knockdown. Immunosuppressive therapy consisted of induction with ATG and anti-CD20mAb, and maintenance with different combinations of CTLA4-Ig, tacrolimus, and rapamycin. In addition, all 3 baboons received daily corticosteroids, the IL-6R blocker, tocilizumab, at regular intervals, and the TNF-α blocker, etanercept, for the first 2 weeks. Recipient blood was monitored for anti-nonGal antibody levels by flow cytometry (using GTKO/CD46 pig aortic endothelial cells), and mixed lymphocyte reaction (MLR). CD22+B cell profiles (naïve [IgD+/CD27-], non-switched memory [IgD+/CD27+], and switched memory [IgD-/CD27+] B cell subsets) were measured by flow cytometry. At 6 months, the baboons were euthanized and the grafts were examined histologically. RESULTS No elicited anti-pig antibodies developed in any baboon. The frequency of naïve memory B cells increased significantly (from 34% to 90%, p = 0.0015), but there was a significant decrease in switched memory B cells (from 17% to 0.5%, p = 0.015). MLR showed no increase in the proliferative T cell response in those baboons that had received CTLA4-Ig (n = 2). Histological examination showed few or no features of rejection in any graft. CONCLUSIONS The data suggest that immunosuppressive therapy with only FDA-approved agents may be adequate to prevent an adaptive immune response to a genetically-engineered pig graft, particularly if CTLA4-Ig is included in the regimen, in part because the development of donor-specific memory B cells is inhibited.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liaoran Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hongmin Zhou
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Devin E Eckhoff
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A Joseph Tector
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edwin C Klein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ray Lovingood
- Kirklin Clinic Pharmacy, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yi Wang
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Lee JY, Park JH, Cho DW. Comparison of tracheal reconstruction with allograft, fresh xenograft and artificial trachea scaffold in a rabbit model. J Artif Organs 2018; 21:325-331. [PMID: 29752586 DOI: 10.1007/s10047-018-1045-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
This study evaluated the possibility of tracheal reconstruction with allograft, pig-to-rabbit fresh xenograft or use of a tissue-engineered trachea, and compared acute rejection of three different transplanted tracheal segments in rabbits. Eighteen healthy New Zealand White rabbits weighing 2.5-3.1 kg were transplanted with three different types of trachea substitutes. Two rabbits and two alpha 1, 3-galactosyltransferase gene-knockout pigs weighing 5 kg were used as donors. The rabbits were divided into three groups: an allograft control group consisting of rabbit-to-rabbit allotransplantation animals (n = 6), a fresh xenograft group consisting of pig-to-rabbit xenotransplantation animals (n = 6), and an artificial trachea scaffold group (n = 6). All animals were monitored for 4 weeks for anastomotic complications or infection. The recipients were sacrificed at 28 days after surgery and the grafts were evaluated. On bronchoscopy, all of the fresh xenograft group animals showed ischemic and necrotic changes at 28 days after trachea replacement. The allograft rabbits and the tissue-engineered rabbits showed mild mucosal granulation. The levels of interleukin-2 and interferon-γ in the fresh xenograft group were higher than in other groups. Histopathologic examination of the graft in the fresh xenograft rabbits showed ischemic and necrotic changes, including a loss of epithelium, mucosal granulation, and necrosis of cartilaginous rings. The pig-to-rabbit xenografts showed more severe acute rejection within a month than the rabbits with allograft or artificial trachea-mimetic graft. In addition, the artificial tracheal scaffold used in the present experiment is superior to fresh xenograft and may facilitate tracheal reconstruction in the clinical setting.
Collapse
Affiliation(s)
- Jae Yeon Lee
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Jeong Hun Park
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea.
| |
Collapse
|
10
|
Porcine to Human Heart Transplantation: Is Clinical Application Now Appropriate? J Immunol Res 2017; 2017:2534653. [PMID: 29238731 PMCID: PMC5697125 DOI: 10.1155/2017/2534653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/08/2017] [Indexed: 11/24/2022] Open
Abstract
Cardiac xenotransplantation (CXTx) is a promising solution to the chronic shortage of donor hearts. Recent advancements in immune suppression have greatly improved the survival of heterotopic CXTx, now extended beyond 2 years, and life-supporting kidney XTx. Advances in donor genetic modification (B4GALNT2 and CMAH mutations) with proven Gal-deficient donors expressing human complement regulatory protein(s) have also accelerated, reducing donor pig organ antigenicity. These advances can now be combined and tested in life-supporting orthotopic preclinical studies in nonhuman primates and immunologically appropriate models confirming their efficacy and safety for a clinical CXTx program. Preclinical studies should also allow for organ rejection to develop xenospecific assays and therapies to reverse rejection. The complexity of future clinical CXTx presents a substantial and unique set of regulatory challenges which must be addressed to avoid delay; however, dependent on these prospective life-supporting preclinical studies in NHPs, it appears that the scientific path forward is well defined and the era of clinical CXTx is approaching.
Collapse
|
11
|
Lee SC, Lee H, Oh KB, Hwang IS, Yang H, Park MR, Ock SA, Woo JS, Im GS, Hwang S. Production and Breeding of Transgenic Cloned Pigs Expressing Human CD73. Dev Reprod 2017; 21:157-165. [PMID: 28785737 PMCID: PMC5532308 DOI: 10.12717/dr.2017.21.2.157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
One of the reasons to causing blood coagulation in the tissue of xenografted
organs was known to incompatibility of the blood coagulation and
anti-coagulation regulatory system between TG pigs and primates. Thus,
overexpression of human CD73 (hCD73) in the pig endothelial cells is considered
as a method to reduce coagulopathy after pig-to-non-human-primate
xenotransplantation. This study was performed to produce and breed transgenic
pigs expressing hCD73 for the studies immune rejection responses and could
provide a successful application of xenotransplantation. The transgenic cells
were constructed an hCD73 expression vector under control porcine Icam2 promoter
(pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of
transferred reconstructed embryos were 127 ± 18.9. The pregnancy and delivery
rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered
cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them,
three live hCD73-pigs were successfully delivered by Caesarean section, but one
was dead after birth. The two hCD73 TG cloned pigs had normal reproductive
ability. They mated with wild type (WT) MGH (Massachusetts General Hospital)
female sows and produced totally 16 piglets. Among them, 5 piglets were
identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73
transgenic cloned pigs and produced their litters by natural mating. It can be
possible to use a mate for the production of multiple transgenic pigs such as
α-1,3-galactosyltransferase knock-out /hCD46 for xenotransplantation.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Sun-A Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|
12
|
Kwon DJ, Kim DH, Hwang IS, Kim DE, Kim HJ, Kim JS, Lee K, Im GS, Lee JW, Hwang S. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res 2016; 26:153-163. [PMID: 27554374 PMCID: PMC5243873 DOI: 10.1007/s11248-016-9979-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/17/2016] [Indexed: 11/26/2022]
Abstract
Recent progress in genetic manipulation of pigs designated for xenotransplantation ha6s shown considerable promise on xenograft survival in primates. However, genetic modification of multiple genes in donor pigs by knock-out and knock-in technologies, aiming to enhance immunological tolerance against transplanted organs in the recipients, has not been evaluated for health issues of donor pigs. We produced transgenic Massachusetts General Hospital piglets by knocking-out the α-1,3-galactosyltransferase (GT) gene and by simultaneously knocking-in an expression cassette containing five different human genes including, DAF, CD39, TFPI, C1 inhibitor (C1-INH), and TNFAIP3 (A20) [GT−(DAF/CD39/TFPI/C1-INH/TNFAIP3)/+] that are connected by 2A peptide cleavage sequences to release individual proteins from a single translational product. All five individual protein products were successfully produced as determined by western blotting of umbilical cords from the newborn transgenic pigs. Although gross observation and histological examination revealed no significant pathological abnormality in transgenic piglets, hematological examination found that the transgenic piglets had abnormally low numbers of platelets and WBCs, including neutrophils, eosinophils, basophils, and lymphocytes. However, transgenic piglets had similar numbers of RBC and values of parameters related to RBC compared to the control littermate piglets. These data suggest that transgenic expression of those human genes in pigs impaired hematopoiesis except for erythropoiesis. In conclusion, our data suggest that transgenic expression of up to five different genes can be efficiently achieved and provide the basis for determining optimal dosages of transgene expression and combinations of the transgenes to warrant production of transgenic donor pigs without health issues.
Collapse
Affiliation(s)
- Dae-Jin Kwon
- National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Dong-Hwan Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - In-Sul Hwang
- National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Dong-Ern Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hyung-Joo Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Gi-Sun Im
- National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Seongsoo Hwang
- National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea.
| |
Collapse
|
13
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Mohiuddin MM, Reichart B, Byrne GW, McGregor CGA. Current status of pig heart xenotransplantation. Int J Surg 2015; 23:234-239. [PMID: 26318967 PMCID: PMC4684783 DOI: 10.1016/j.ijsu.2015.08.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 02/03/2023]
Abstract
Significant progress in understanding and overcoming cardiac xenograft rejection using a clinically relevant large animal pig-to-baboon model has accelerated in recent years. This advancement is based on improved immune suppression, which attained more effective regulation of B lymphocytes and possibly newer donor genetics. These improvements have enhanced heterotopic cardiac xenograft survival from a few weeks to over 2 years, achieved intrathoracic heterotopic cardiac xenograft survival of 50 days and orthotopic survival of 57 days. This encouraging progress has rekindled interest in xenotransplantation research and refocused efforts on preclinical orthotopic cardiac xenotransplantation.
Collapse
Affiliation(s)
| | - Bruno Reichart
- Walter-Brendel-Centre for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Guerard W Byrne
- Institute of Cardiovascular Science, University College London, London, UK; Department of Surgery, Mayo Clinic Rochester, MN, USA
| | - Christopher G A McGregor
- Institute of Cardiovascular Science, University College London, London, UK; Department of Surgery, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
15
|
De Salvatore S, Segreto A, Chiusaroli A, Congiu S, Bizzarri F. Role of xenotransplantation in cardiac transplantation. J Card Surg 2014; 30:111-6. [PMID: 25345720 DOI: 10.1111/jocs.12454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review will discuss the history and development of the field of genetic modification, up to the most recent scientific discoveries, and will also consider the current uses of genetic therapy.
Collapse
Affiliation(s)
- Sergio De Salvatore
- Department of Science and Medical-Surgical Biotechnologies, Cardiac Surgery Unit, Universita' degli Studi di Roma "Sapienza", Latina, Italy
| | | | | | | | | |
Collapse
|
16
|
Cooper DKC, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB, Schuurman HJ. Progress in pig-to-non-human primate transplantation models (1998-2013): a comprehensive review of the literature. Xenotransplantation 2014; 21:397-419. [PMID: 25176336 DOI: 10.1111/xen.12127] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/03/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pig-to-non-human primate model is the standard choice for in vivo studies of organ and cell xenotransplantation. In 1998, Lambrigts and his colleagues surveyed the entire world literature and reported all experimental studies in this model. With the increasing number of genetically engineered pigs that have become available during the past few years, this model is being utilized ever more frequently. METHODS We have now reviewed the literature again and have compiled the data we have been able to find for the period January 1, 1998 to December 31, 2013, a period of 16 yr. RESULTS The data are presented for transplants of the heart (heterotopic and orthotopic), kidney, liver, lung, islets, neuronal cells, hepatocytes, corneas, artery patches, and skin. Heart, kidney, and, particularly, islet xenograft survival have increased significantly since 1998. DISCUSSION The reasons for this are briefly discussed. A comment on the limitations of the model has been made, particularly with regard to those that will affect progression of xenotransplantation toward the clinic.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Generation of GGTA1 biallelic knockout pigs via zinc-finger nucleases and somatic cell nuclear transfer. SCIENCE CHINA-LIFE SCIENCES 2014; 57:263-8. [DOI: 10.1007/s11427-013-4601-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022]
|
18
|
Byrne GW, Azimzadeh AM, Ezzelarab M, Tazelaar HD, Ekser B, Pierson RN, Robson SC, Cooper DKC, McGregor CGA. Histopathologic insights into the mechanism of anti-non-Gal antibody-mediated pig cardiac xenograft rejection. Xenotransplantation 2013; 20:292-307. [PMID: 25098626 PMCID: PMC4126170 DOI: 10.1111/xen.12050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/31/2013] [Indexed: 01/13/2023]
Abstract
The histopathology of cardiac xenograft rejection has evolved over the last 20 yr with the development of new modalities for limiting antibody-mediated injury, advancing regimens for immune suppression, and an ever-widening variety of new donor genetics. These new technologies have helped us progress from what was once an overwhelming anti-Gal-mediated hyperacute rejection to a more protracted anti-Gal-mediated vascular rejection to what is now a more complex manifestation of non-Gal humoral rejection and coagulation dysregulation. This review summarizes the changing histopathology of Gal- and non-Gal-mediated cardiac xenograft rejection and discusses the contributions of immune-mediated injury, species-specific immune-independent factors, transplant and therapeutic procedures, and donor genetics to the overall mechanism(s) of cardiac xenograft rejection.
Collapse
Affiliation(s)
- Guerard W Byrne
- Institute of Cardiovascular Science, University College London, London, UK; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Cardiac xenotransplantation (CXTx) remains a promising approach to alleviate the chronic shortage of donor hearts. This review summarizes recent results of heterotopic and orthotopic CXTx, highlights the role of non-Gal antibody in xenograft rejection, and discusses challenges to clinical orthotopic CXTx. RECENT FINDINGS Pigs mutated in the α 1,3 galactosyltransferase gene (GTKO pigs) are devoid of the galactose α1,3 galactose (αGal) carbohydrate antigen. This situation effectively eliminates any role for anti-Gal antibody in GTKO cardiac xenograft rejection. Survival of heterotopic GTKO cardiac xenografts in nonhuman primates continues to increase. GTKO graft rejection commonly involves vascular antibody deposition and variable complement deposition. Non-Gal antibody responses to porcine antigens associated with inflammation, complement, and hemostatic regulation and to new carbohydrate antigens have been identified. Their contribution to rejection remains under investigation. Orthotopic CXTx is limited by early perioperative cardiac xenograft dysfunction (PCXD). However, hearts affected by PCXD recover full cardiac function and orthotopic survival up to 2 months without rejection has been reported. SUMMARY CXTx remains a promising technology for treating end-stage cardiac failure. Genetic modification of the donor and refinement of immunosuppressive regimens have extended heterotopic cardiac xenograft survival from minutes to in excess of 8 months.
Collapse
Affiliation(s)
- Guerard W Byrne
- University College London, Institute for Cardiovascular Sciences, London, UK.
| | | |
Collapse
|
20
|
Iver RHM, McGee EC, McCarthy PM. Cardiac Transplantation for Ischemic Heart Disease. Coron Artery Dis 2012. [DOI: 10.1007/978-1-84628-712-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
Shimizu A, Yamada K, Robson SC, Sachs DH, Colvin RB. Pathologic characteristics of transplanted kidney xenografts. J Am Soc Nephrol 2011; 23:225-35. [PMID: 22114174 DOI: 10.1681/asn.2011040429] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For xenotransplantation to become a clinical reality, we need to better understand the mechanisms of graft rejection or acceptance. We examined pathologic changes in α1,3-galactosyltransferase gene-knockout pig kidneys transplanted into baboons that were treated with a protocol designed to induce immunotolerance through thymic transplantation (n=4) or were treated with long-term immunosuppressants (n=3). Hyperacute rejection did not occur in α1,3-galactosyltransferase gene-knockout kidney xenografts. By 34 days, acute humoral rejection led to xenograft loss in all three xenografts in the long-term immunosuppression group. The failing grafts exhibited thrombotic microangiopathic glomerulopathy with multiple platelet-fibrin microthrombi, focal interstitial hemorrhage, and acute cellular xenograft rejection. Damaged glomeruli showed IgM, IgG, C4d, and C5b-9 deposition. They also demonstrated endothelial cell death, diffuse endothelial procoagulant activation with high expression of tissue factor and vWF, and low expression of the ectonucleotidase CD39. In contrast, in the immunotolerance group, two of four grafts had normal graft function and no pathologic findings of acute or chronic rejection at 56 and 83 days. One of the remaining kidneys had mild but transient graft dysfunction with reversible, mild microangiopathic glomerulopathy, probably associated with preformed antibodies. The other kidney in the immunotolerance group developed unstable graft function at 81 days and developed chronic xenograft glomerulopathy. In summary, the success of pig-to-primate xenotransplantation may necessitate immune tolerance to inhibit acute humoral and cellular xenograft rejection.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND This study compares the pathologic condition of delayed xenograft rejection in Gal-positive and Gal-knockout cardiac xenografts after pig-to-baboon heterotopic cardiac xenotransplantation when the induced anti-Gal antibody response is unregulated, blocked, or absent. METHODS Baboon recipients of Gal-positive, CD46 pig hearts were treated with an αGal polymer (group 1; n=11) or Gal-specific immunoapheresis (group 2; n=8) to block anti-Gal antibody. Gal-knockout cardiac xenografts recipients (group 3; n=5) received no anti-Gal therapy. Perioperative and interim biopsies were examined and antibody responses were determined. RESULTS No hyperacute rejection was seen and histologic findings were similar across the groups. All groups showed vascular antibody deposition in perioperative and interim biopsies and in explant samples. A prominent antibody response was detected only in group 2. Complement activation was evident by C3d deposition but deposition of C5b and C5b-9 was limited. Earliest evidence of myocardial injury was myocyte vacuolization in the absence of microvascular thrombosis or coagulative necrosis that developed later. Histology of explanted hearts exhibited mainly microvascular thrombosis and coagulative necrosis with little evidence of interstitial hemorrhage or edema. CONCLUSIONS The histology of rejection seemed independent of the anti-Gal or non-Gal immune response. Myocyte vacuolization seems to be an early feature of delayed xenograft rejection presaging more classic pathologic features.
Collapse
|
23
|
Lee HJ, Lee BC, Kim YH, Paik NW, Rho HM. Characterization of Transgenic Pigs That Express Human Decay Accelerating Factor and Cell Membrane-tethered Human Tissue Factor Pathway Inhibitor. Reprod Domest Anim 2011; 46:325-32. [DOI: 10.1111/j.1439-0531.2010.01670.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Corcoran PC, Horvath KA, Singh AK, Hoyt RF, Thomas ML, Eckhaus MA, Mohiuddin MM. Surgical and nonsurgical complications of a pig to baboon heterotopic heart transplantation model. Transplant Proc 2011; 42:2149-51. [PMID: 20692430 DOI: 10.1016/j.transproceed.2010.05.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A modified immunosuppressive regimen, developed at the National Institutes of Health, has been employed in a large animal model of heterotopic cardiac xenotransplantation. Graft survival has been prolonged, but despite this, our recipients have succumbed to various surgical or nonsurgical complications. Herein, we have described different complications and management strategies. The most common complication was hypercoagulability (HC) after transplantation, causing thrombosis of both small and large vasculature, ultimately leading to graft loss. While managing this complication we discovered that there was a delicate balance between HC and consumptive coagulopathy (CC). CC encountered in some recipient baboons was not able to be reversed by stopping anticoagulation and administering multiple blood transfusions. Some complications had iatrogenic components. To monitor the animals, a solid state left ventricular telemetry probe was placed directly into the transplanted heart via the apex. Induction of hypocoagulable states by continuous heparin infusion led to uncontrollable intra-abdominal bleeding in 1 baboon from this apical site. This occurrence necessitated securing the probe more tightly with multiple purse strings and 4-quadrant pledgeted stay sutures. One instance of cardiac rupture originated from a lateral wall infarction site. Earlier studies have shown infections to be uniformly fatal in this transplant model. However, owing to the telemetry placement, infections were identified early by temperature spikes that were treated promptly with antibiotics. We had several cases of wound dehiscence due to recipients disrupting the suture line. These complications were promptly resolved by either re-approximating the wound or finding distractions for the baboon. A few of the most common problems we faced in our earlier experiments were related to the jacket, tether, and infusion pumps. It was difficult to keep the jackets on some baboons and the tether had to be modified several times before we assured long-term success. Infusion catheter replacement resulted in transplant heart venous obstruction and thrombosis from a right common femoral venous line. Homeostatic perturbations such as HC and CC and baboon-induced wound complications comprised most complications. Major bleeding and death due to telemetry implantation and infarct rupture occurred in 2 baboons. Despite the variety of complications, we achieved significant graft prolongation in this model.
Collapse
Affiliation(s)
- P C Corcoran
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Byrne GW, Du Z, Sun Z, Asmann YW, McGregor CGA. Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 2011; 18:14-27. [PMID: 21342284 PMCID: PMC10022692 DOI: 10.1111/j.1399-3089.2010.00620.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Gene profiling methods have been widely useful for delineating changes in gene expression as an approach for gaining insight into the mechanism of rejection or disease pathology. Herein, we use gene profiling to compare changes in gene expression associated with different orthotopic cardiac xenotransplantation (OCXTx) outcomes and to identify potential effects of OCXTx on cardiac physiology. METHODS We used the Affymetrix GeneChip Porcine Genomic Array to characterize three types of orthotopic cardiac xenograft outcomes: 1) rejected hearts that underwent delayed xenograft rejection (DXR); 2) survivor hearts in which the xenograft was not rejected and recipient death was due to model complications; and 3) hearts which failed to provide sufficient circulatory support within the first 48 h of transplant, termed "perioperative cardiac xenograft dysfunction" (PCXD). Gene expression in each group was compared to control, not transplanted pig hearts, and changes in gene expression > 3 standard deviations (±3SD) from the control samples were analyzed. A bioinformatics analysis was used to identify enrichments in genes involved in Kyoto Encyclopedia of Genes and Genomes pathways and gene ontogeny molecular functions. Changes in gene expression were confirmed by quantitative RT-PCR. RESULTS The ±3SD data set contained 260 probes, which minimally exhibited a 3.5-fold change in gene expression compared to control pig hearts. Hierarchical cluster analysis segregated rejected, survivor and PCXD samples, indicating a unique change in gene expression for each group. All transplant outcomes shared a set of 21 probes with similarly altered expression, which were indicative of ongoing myocardial inflammation and injury. Some outcome-specific changes in gene expression were identified. Bioinformatics analysis detected an enrichment of genes involved in protein, carbohydrate and branched amino acid metabolism, extracellular matrix-receptor interactions, focal adhesion, and cell communication. CONCLUSIONS This is the first genome wide assessment of changes in cardiac gene expression after OCXTx. Hierarchical cluster analysis indicates a unique gene profile for each transplant outcome but additional samples will be required to define the unique classifier probe sets. Quantitative RT-PCR confirmed that all transplants exhibited strong evidence of ongoing inflammation and myocardial injury consistent with the effects of cytokines and vascular antibody-mediated inflammation. This was also consistent with bioinformatic analysis suggesting ongoing tissue repair in survivor and PCXD samples. Bioinformatics analysis suggests for the first time that xenotransplantation may affect cardiac metabolism in survivor and rejected samples. This study highlights the potential utility of molecular analysis to monitor xenograft function, to identify new molecular markers and to understand processes, which may contribute to DXR.
Collapse
Affiliation(s)
- Guerard W Byrne
- Department of Medicine, University College London, London, UK.
| | | | | | | | | |
Collapse
|
26
|
Gock H, Nottle M, Lew AM, d'Apice AJ, Cowan P. Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev (Orlando) 2011; 25:9-20. [DOI: 10.1016/j.trre.2010.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/13/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
|
27
|
Shimizu A, Yamada K. Histopathology of xenografts in pig to non-human primate discordant xenotransplantation. Clin Transplant 2010; 24 Suppl 22:11-5. [PMID: 20590687 DOI: 10.1111/j.1399-0012.2010.01270.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Xenotransplantation could provide a solution to the critical shortage of organs for transplantation in humans. Swine have been proposed as a suitable donor species. Swine organs, however, when transplanted to primates, are rapidly rejected by hyperacute rejection (HAR) and acute humoral xenograft rejection (AHXR). Both HAR and AHXR are triggered by xenoreactive natural antibodies directed against a specific epitope (galactose alpha1-3 galactose: Gal) on porcine vascular endothelium. In attempt to prevent HAR and AHXR, alpha1,3-galactosyltransferase gene knockout (GalT-KO) pigs have been produced. GalT-KO pig organs do not express the Gal epitope (antigen), and it therefore can eliminate the anti-Gal antibody--Gal antigen immunoreaction in xenotransplantation. We reported our initial study of kidney transplantation from GalT-KO miniature swine to baboons with either immunosuppression protocol or with a tolerance inducing protocol. Here, we discussed the pathology of xenografts in GalT-KO pig to non-human primate kidney transplantation.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
28
|
Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. SCIENCE CHINA-LIFE SCIENCES 2010; 53:517-23. [DOI: 10.1007/s11427-010-0080-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/02/2009] [Indexed: 11/26/2022]
|
29
|
Rocha H, Eliziário LFE, Wafae GC, Silva NC, Ruiz CR, Wafae N. Anatomy of the septomarginal trabecula in Landrace pig hearts. Morphologie 2010; 94:26-29. [PMID: 20359929 DOI: 10.1016/j.morpho.2010.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The limitations on the availability of organs for transplantation have aroused interest in research on xenotransplantation of whole organs or certain parts of them. Thus, studies that confirm or reject similarities between the organs of different animals have started to have important clinical applications. In the present study, we investigated the septomarginal trabecula in 34 hearts from Landrace pigs with the aim of observing their similarities with the septomarginal trabecula in humans. In pigs, the muscle bundle of the septomarginal trabecula and the right branch of the stimulating complex are dissociated. The right branch is a narrow bridge that, after going out from the upper part of the interventricular septum, is attached to the upper part of the anterior papillary muscle. On the other hand, the muscle bundle of the septomarginal trabecula is generally a resistant crest that goes from the lower part of the septum to the lower part of the anterior papillary muscle. The septomarginal trabecula presents marked anatomical differences between humans and pigs.
Collapse
Affiliation(s)
- H Rocha
- FAMEPLAC, Faculdade de Medicina do Planalto Central Brasília, Brasília, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Lila N, McGregor CGA, Carpentier S, Rancic J, Byrne GW, Carpentier A. Gal knockout pig pericardium: new source of material for heart valve bioprostheses. J Heart Lung Transplant 2010; 29:538-43. [PMID: 20036160 DOI: 10.1016/j.healun.2009.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Although glutaraldehyde fixation is known to reduce immunogenicity and degeneration of heart valve bioprostheses, some degree of immunogenicity persists, which may trigger calcification. The aims of this study were to: (1) define the role of alpha-1,3-galactosyltransferase (alpha-Gal) antigen in valve calcification by comparing alpha-Gal-positive and alpha-Gal-deficient (GT-KO) pig pericardium; and (2) elucidate the role of human anti-Gal antibodies in the process of calcification and to determine the potential influence of different tissue-fixation techniques. METHODS Glutaraldehyde-treated pericardium from alpha-Gal-positive and GT-KO pigs, with or without pre-labeling with human anti-Gal antibodies, were implanted in rats during 1 month. RESULTS In glutaraldehyde-fixed pericardium, calcification levels were significantly lower in GT-KO pig pericardium (132.8 +/- 5.8 microg/mg) as compared with alpha-Gal-positive pig pericardium (155.7 +/- 7.1 microg/mg) (p < 0.015). In glutaraldehyde-fixed pig pericardium followed by a mix of formaldehyde, ethanol and Tween 80 (FET), the calcification levels were lower in GT-KO pig pericardium (0.35 +/- 0.1 microg/mg) as compared with alpha-Gal-positive pig pericardium (4.6 +/- 4.2 microg/mg). In glutaraldehyde-fixed pig pericardium + FET pre-incubated with human anti-Gal antibodies, calcification levels were significantly greater in alpha-Gal-positive pig pericardium (43.8 +/- 8.5 microg/mg) as compared with GT-KO pig pericardium (5.7 +/- 2.9 microg/mg) (p < 0.0001). CONCLUSIONS This study demonstrates the role of alpha-Gal antigen and human alpha-Gal antibodies in the calcification process of valvular bioprostheses. It is suggested that GT-KO pig pericardium could be beneficial as a new source of material for heart valve bioprostheses.
Collapse
Affiliation(s)
- Nermine Lila
- Laboratory of Biosurgical Researches, University Paris Descartes, Georges Pompidou Hospital, Paris, France.
| | | | | | | | | | | |
Collapse
|
31
|
Ekser B, Cooper DKC. Overcoming the barriers to xenotransplantation: prospects for the future. Expert Rev Clin Immunol 2010; 6:219-30. [PMID: 20402385 PMCID: PMC2857338 DOI: 10.1586/eci.09.81] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cross-species transplantation (xenotransplantation) has immense potential to solve the critical need for organs, tissues and cells for clinical transplantation. The increasing availability of genetically engineered pigs is enabling progress to be made in pig-to-nonhuman primate experimental models. Potent pharmacologic immunosuppressive regimens have largely prevented T-cell rejection and a T-cell-dependent elicited antibody response. However, coagulation dysfunction between the pig and primate is proving to be a major problem, and this can result in life-threatening consumptive coagulopathy. This complication is unlikely to be overcome until pigs expressing a human 'antithrombotic' or 'anticoagulant' gene, such as thrombomodulin, tissue factor pathway inhibitor or CD39, become available. Progress in islet xenotransplantation has been more encouraging, and diabetes has been controlled in nonhuman primates for periods in excess of 6 months, although this has usually been achieved using immunosuppressive protocols that might not be clinically applicable. Further advances are required to overcome the remaining barriers.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, and Department of Surgery and Organ Transplantation, University of Padua, Padua, Italy
| | - David KC Cooper
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1543, 200 Lothrop Street, Pittsburgh, PA 15261, USA, Tel.: +1 412 383 6961, Fax: +1 412 624 1172,
| |
Collapse
|
32
|
Crikis S, Zhang XM, Dezfouli S, Dwyer KM, Murray-Segal LM, Salvaris E, Selan C, Robson SC, Nandurkar HH, Cowan PJ, d’Apice AJF. Anti-inflammatory and anticoagulant effects of transgenic expression of human thrombomodulin in mice. Am J Transplant 2010; 10:242-50. [PMID: 20055798 PMCID: PMC5472991 DOI: 10.1111/j.1600-6143.2009.02939.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thrombomodulin (TBM) is an important vascular anticoagulant that has species specific effects. When expressed as a transgene in pigs, human (h)TBM might abrogate thrombotic manifestations of acute vascular rejection (AVR) that occur when GalT-KO and/or complement regulator transgenic pig organs are transplanted to primates. hTBM transgenic mice were generated and characterized to determine whether this approach might show benefit without the development of deleterious hemorrhagic phenotypes. hTBM mice are viable and are not subject to spontaneous hemorrhage, although they have a prolonged bleeding time. They are resistant to intravenous collagen-induced pulmonary thromboembolism, stasis-induced venous thrombosis and pulmonary embolism. Cardiac grafts from hTBM mice to rats treated with cyclosporine in a model of AVR have prolonged survival compared to controls. hTBM reduced the inflammatory reaction in the vein wall in the stasis-induced thrombosis and mouse-to-rat xenograft models and reduced HMGB1 levels in LPS-treated mice. These results indicate that transgenic expression of hTBM has anticoagulant and antiinflammatory effects that are graft-protective in murine models.
Collapse
Affiliation(s)
- S. Crikis
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - X. M. Zhang
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - S. Dezfouli
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - K. M. Dwyer
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - L. M. Murray-Segal
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - E. Salvaris
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - C. Selan
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - S. C. Robson
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - H. H. Nandurkar
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - P. J. Cowan
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia
| | - A. J. F. d’Apice
- Immunology Research Centre, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Vic. 3065, Australia,Corresponding author: Professor Anthony J. F. d’Apice,
| |
Collapse
|
33
|
Ezzelarab M, Garcia B, Azimzadeh A, Sun H, Lin CC, Hara H, Kelishadi S, Zhang T, Lin YJ, Tai HC, Wagner R, Thacker J, Murase N, McCurry K, Barth RN, Ayares D, Pierson RN, Cooper DKC. The innate immune response and activation of coagulation in alpha1,3-galactosyltransferase gene-knockout xenograft recipients. Transplantation 2009; 87:805-12. [PMID: 19300181 PMCID: PMC4135362 DOI: 10.1097/tp.0b013e318199c34f] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The role of the innate immune system in the development of thrombotic microangiopathy (TM) after alpha1,3-galactosyltransferase gene-knockout (GTKO) pig organ transplantation in primates is uncertain. METHODS Twelve organs (nine hearts, three kidneys) from GTKO pigs were transplanted into baboons that received no immunosuppressive therapy, partial regimens, or a full regimen based on costimulation blockade. After graft failure, histologic and immunohistologic examinations were carried out. RESULTS Graft survival of less than 1 day was prolonged to 2 to 12 days with partial regimens (acute humoral xenograft rejection) and to 5 and 8 weeks with the full regimen (TM). Clinical or laboratory features of consumptive coagulopathy occurred in 7 of 12 baboons. Immunohistochemistry demonstrated IgM, IgG, and complement deposition in most cases. Histopathology demonstrated neutrophil and macrophage infiltrates, intravascular fibrin deposition, and platelet aggregation (TM). Grafts showed expression of primate tissue factor (TF), with increased mRNA levels, and TF was also expressed on baboon macrophages/monocytes infiltrating the graft. CONCLUSIONS Our data suggest that (1) irrespective of the presence or absence of the adaptive immune response, early or late xenograft rejection is associated with activation of the innate immune system; and (2) porcine endothelial cell activation and primate TF expression by recipient innate immune cells may both contribute to the development of TM.
Collapse
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Byrne GW, Stalboerger PG, Davila E, Heppelmann CJ, Gazi MH, McGregor HCJ, LaBreche PT, Davies WR, Rao VP, Oi K, Tazelaar HD, Logan JS, McGregor CGA. Proteomic identification of non-Gal antibody targets after pig-to-primate cardiac xenotransplantation. Xenotransplantation 2009; 15:268-76. [PMID: 18957049 DOI: 10.1111/j.1399-3089.2008.00480.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Experience with non-antigenic galactose alpha1,3 galactose (alphaGal) polymers and development of alphaGal deficient pigs has reduced or eliminated the significance of this antigen in xenograft rejection. Despite these advances, delayed xenograft rejection (DXR) continues to occur most likely due to antibody responses to non-Gal endothelial cell (EC) antigens. METHODS To gauge the diversity of the non-Gal antibody response we used antibody derived from CD46 transgenic heterotopic cardiac xenografts performed without T-cell immunosuppression, Group A (n = 4) and Gal knockout (GT-KO) heart transplants under tacrolimus and sirolimus immunosuppression, Group B (n = 8). Non-Gal antibody was measured by flow cytometry and by western blots using GT-KO EC membrane antigens. A nanoLC/MS/MS analysis of proteins recovered from 2D gels was used to identify target antigens. RESULTS Group A recipients exhibited a mixed cellular and humoral rejection. Group B recipients mainly exhibited classical DXR. Western blot analysis showed a non-Gal antibody response induced by GT+ and GT-KO hearts to an overlapping set of pig aortic EC membrane antigens. Proteomic analysis identified 14 potential target antigens but failed to define several immunodominant targets. CONCLUSIONS These experiments indicate that the non-Gal antibody response is directed to a number of stress response and inflammation related pig EC antigens and a few undefined targets. Further analysis of these antibody specificities using alternative methods is required to more fully define the repertoire of non-Gal antibody responses.
Collapse
Affiliation(s)
- Guerard W Byrne
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sachs DH, Sykes M, Yamada K. Achieving tolerance in pig-to-primate xenotransplantation: reality or fantasy. Transpl Immunol 2008; 21:101-5. [PMID: 19059481 DOI: 10.1016/j.trim.2008.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/18/2008] [Indexed: 02/06/2023]
Abstract
Because the immunologic differences between species are far greater than those within species, it is likely that the amount of immunosuppression that would be required for successful xenografting would be so much greater than that now used for allografting, that the side-effects and complications would be unacceptable. Tolerance approaches to xenotransplantation would overcome this concern. Studies in humanized mouse models have demonstrated that human T cells can be tolerized to porcine xenografts, providing important proofs of principle of the potential feasibility of pig-to-primate xenograft tolerance. The results available from studies of pig-to-primate xenotransplantation to date have demonstrated that while chronic immunosuppressive drugs have not completely avoided either T cell responses or humoral rejection, approaches directed toward tolerance induction have been encouraging with regard to avoiding immunization at both of these levels.
Collapse
Affiliation(s)
- David H Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School Boston, Massachusetts, USA.
| | | | | |
Collapse
|
36
|
Hisashi Y, Yamada K, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Colvin RB, Shimizu A. Rejection of cardiac xenografts transplanted from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) pigs to baboons. Am J Transplant 2008; 8:2516-26. [PMID: 19032222 PMCID: PMC2836186 DOI: 10.1111/j.1600-6143.2008.02444.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine donors in discordant xenotransplantation has extended the survival of cardiac xenografts in baboons following transplantation. Eight baboons received heterotopic cardiac xenografts from GalT-KO swine and were treated with a chronic immunosuppressive regimen. The pathologic features of acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR) and chronic rejection were assessed in the grafts. No hyperacute rejection developed and one graft survived up to 6 months after transplantation. However, all GalT-KO heart grafts underwent graft failure with AHXR, ACXR and/or chronic rejection. AHXR was characterized by interstitial hemorrhage and multiple thrombi in vessels of various sizes. ACXR was characterized by TUNEL(+) graft cell injury with the infiltration of T cells (including CD3 and TIA-1(+) cytotoxic T cells), CD4(+) cells, CD8(+) cells, macrophages and a small number of B and NK cells. Chronic xenograft vasculopathy, a manifestation of chronic rejection, was characterized by arterial intimal thickening with TUNEL(+) dead cells, antibody and complement deposition, and/or cytotoxic T-cell infiltration. In conclusion, despite the absence of the Gal epitope, acute and chronic antibody and cell-mediated rejection developed in grafts, maintained by chronic immunosupression, presumably due to de novo responses to non-Gal antigens.
Collapse
Affiliation(s)
- Y. Hisashi
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Kuwaki
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Y.-L Tseng
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - F. J. M. F. Dor
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. L Houser
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. C. Robson
- Department of Medicine, Transplant Center, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | | | - D. K. C. Cooper
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - D. H. Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - R. B. Colvin
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Immerge BioTherapeutics Inc., Cambridge, MA, Department of Pathology, Nippon Medical School, Tokyo, Japan,Corresponding author: Akira Shimizu,
| |
Collapse
|
37
|
Petersen B, Lucas-Hahn A, Oropeza M, Hornen N, Lemme E, Hassel P, Queisser AL, Niemann H. Development and Validation of a Highly Efficient Protocol of Porcine Somatic Cloning Using Preovulatory Embryo Transfer in Peripubertal Gilts. CLONING AND STEM CELLS 2008; 10:355-62. [DOI: 10.1089/clo.2008.0026] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Björn Petersen
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | - Marianne Oropeza
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | - Nadine Hornen
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | - Erika Lemme
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | - Petra Hassel
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | - Anna-Lisa Queisser
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| |
Collapse
|
38
|
|
39
|
Vieira THM, Moura PC, Vieira SRC, Moura PR, Silva NC, Wafae GC, Ruiz CR, Wafae N. Anatomical indicators of dominance between the coronary arteries in swine. Morphologie 2008; 92:3-6. [PMID: 18501658 DOI: 10.1016/j.morpho.2008.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interest in experimental use of coronary arteries of swine as a stage towards their application in human hearts justifies the need for obtaining a detailed anatomical understanding of those arteries, particularly to evaluate similarities and differences. However, we did not find any citations about anatomical indicators of coronary dominance among swine in the literature. Many authors have used the crux cordis and the origin of the posterior interventricular branch as references for defining three types of pattern in human hearts: right, balanced and left dominance. We used 30 hearts fixed in 10% formalin from male and female Landrace swine aged five to six months, weighing 80 to 110 kg. The branch corresponding to the subsinuosal interventricular sulcus came from the right coronary artery (96.7%) or from both coronary arteries (3.3%). The subsinuosal interventricular branch presented at least one small branch that went beyond the crux cordis. The apical area presented predominance of the paraconal interventricular (left anterior descending) branch in 43.3%, the subsinuosal interventricular branch in 23.3% and presence of both arteries in 33.3%. The left coronary artery emitted 54.5% of the ventricular branches and the right coronary artery 46.5%. Taking the crux cordis and the subsinuosal interventricular branch as references, the arterial pattern in swine hearts is right dominance. The diversity of the apical pattern and the balance in the distribution of ventricular branches do not allow this to be used as an approach in isolation. The similarities between human and swine hearts also apply to the coronary artery pattern.
Collapse
Affiliation(s)
- T H M Vieira
- Faculdade de Medicina do Planalto-Central, Brasília, BR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Yamada K, Colvin RB. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1471-81. [PMID: 18467706 DOI: 10.2353/ajpath.2008.070672] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heterotopic cardiac xenotransplantation from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine to baboons was performed to characterize immunological reaction to the xenograft in the absence of anti-Gal antibody-mediated rejection. Eight baboons received heterotopic cardiac xenografts from GalT-KO porcine donors. All baboons were treated with chronic immunosuppressive therapy. Both histological and immunohistochemical studies were performed on biopsy and graftectomy samples. No hyperacute rejection was observed. Three baboons were euthanized or died 16 to 56 days after transplantation. The other five grafts ceased beating between days 59 and 179 (median, 78 days). All failing grafts exhibited thrombotic microangiopathy (TM) with platelet-rich fibrin thrombi in the microvasculature, myocardial ischemia and necrosis, and focal interstitial hemorrhage. TM developed in parallel with increases in immunoglobulin (IgM and IgG) and complement (C3, C4d, and C5b-9) deposition, as well as with subsequent increases in both TUNEL(+) endothelial cell death and procoagulant activation (increased expression of both tissue factor and von Willebrand factor and decreased expression of CD39). CD3(+) T-cell infiltration occurred in all grafts and weakly correlated with the development of TM. In conclusion, although the use of GalT-KO swine donors prevented hyperacute rejection and prolonged graft survival, slowly progressive humoral rejection--probably associated with non-Gal antibodies to the xenograft--and disordered thromboregulation represent major immunological barriers to long-term xenograft survival.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Xenotransplantation holds promise to solve the ever increasing shortage of donor organs for allotransplantation. In the last 2 decades, major progress has been made in understanding the immunobiology of pig-into-(non)human primate transplantation and today we are on the threshold of the first clinical trials. Hyperacute rejection, which is mediated by pre-existing anti-alpha Gal xenoreactive antibodies, can in non-human primates be overcome by complement- and/or antibody-modifying interventions. A major step forward was the development of genetically engineered pigs, either transgenic for human complement regulatory proteins or deficient in the alpha1,3-galactosyltranferase enzyme. However, several other immunologic and nonimmunologic hurdles remain. Acute vascular xenograft rejection is mediated by humoral and cellular mechanisms. Elicited xenoreactive antibodies play a key role. In addition to providing B cell help, xenoreactive T cells may directly contribute to xenograft rejection. Long-term survival of porcine kidney- and heart xenografts in non-human primates has been obtained but required severe T and B cell immunosuppression. Induction of xenotolerance, e.g. through mixed hematopoietic chimerism, may represent the preferred approach, but although proof of principle has been delivered in rodents, induction of pig-to-non-human primate chimerism remains problematic. Finally, it is now clear that innate immune cells, in particular macrophages and natural killer cells, can mediate xenograft destruction, the determinants of which are being elucidated. Chronic xenograft rejection is not well understood, but recent studies indicate that non-immunological problems, such as incompatibilities between human procoagulant and pig anticoagulant components may play an important role. Here, we give a comprehensive overview of the currently known obstacles to xenografting: immune and non-immune problems are discussed, as well as the possible strategies that are under development to overcome these hurdles.
Collapse
Affiliation(s)
- B Sprangers
- Laboratory of Experimental Transplantation, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
42
|
Petersen B, Carnwath JW, Niemann H. The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 2008; 32:91-105. [PMID: 18280567 DOI: 10.1016/j.cimid.2007.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2007] [Indexed: 10/22/2022]
Abstract
The shortage of donated human organs for transplantation continues to be a life threatening problem for patients suffering from complete organ failure. Although this gap is increasing due to the demographic changes in aging Western populations, it is generally accepted that international trading in human organ is not an ethical solution. Alternatives to the use of human organs for transplantation must be developed and these alternatives include stem cell therapy, artificial organs and organs from other species, i.e. xenografts. For practical reasons but most importantly because of its physiological similarity with humans, the pig is generally accepted as the species of choice for xenotransplantation. Nevertheless, before porcine organs can be used in human xenotransplantation, it is necessary to make a series of precise genetic modifications to the porcine genome, including the addition of genes for factors which suppress the rejection of transplanted porcine tissues and the inactivation or removal of undesirable genes which can only be accomplished at this time by targeted recombination and somatic nuclear transfer. This review will give an insight into the advances in transgenic manipulation and cloning in pigs--in the context of porcine-to-human xenotransplantation.
Collapse
Affiliation(s)
- Bjoern Petersen
- Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Hoeltystrasse 10, 31535 Neustadt, Germany
| | | | | |
Collapse
|
43
|
Moura Junior PC, Vieira TH, Vieira SR, Sobreiro D, Ruiz CR, Wafae GC, Silva NCD, Wafae N. Estudo anatômico das artérias coronárias de suínos Landrace. PESQUISA VETERINARIA BRASILEIRA 2008. [DOI: 10.1590/s0100-736x2008000200002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A utilização de artérias coronárias de suínos em experiências sobre ação de fármacos para observações clínicas e aplicações cirúrgicas é freqüente. Para o estudo anatômico das artérias coronárias foram utilizados 30 corações fixados em formalina a 10% de suínos Landrace, de ambos os sexos, idades entre 5 e 6 meses, peso de 80 a 110 kg. As artérias coronárias e os ramos foram dissecados até as ramificações visíveis macroscopicamente. Foi verificada a presença de uma artéria coronária esquerda, comprimento de 0,4-1,2cm, terminando em 2 (80%) ou 3 (20%) ramos. O ramo interventricular paraconal, comprimento de 10-16cm, emitiu 16-25 ramos sendo 52,3% para o ventrículo direito e 47,7% para o ventrículo esquerdo. O ramo circunflexo, comprimento de 7-15cm, emitiu 4-13 ramos para o ventrículo esquerdo (55,6%) e 4-9 ramos para o átrio esquerdo (44,4%). Observou-se uma artéria coronária direita, comprimento de 7,5-11,5cm, que emitiu 12-21 ramos sendo 57,4% para o ventrículo direito e 42,6% para o átrio direito. O ramo interventricular subsinuoso, comprimento de 5,1-10,2cm, emitiu 9-22 ramos sendo 50,9% para o ventrículo direito e 49,1% para o ventrículo esquerdo. A freqüência de ramos do ramo interventricular paraconal foi semelhante para ambos os ventrículos. A freqüência de ramos do ramo interventricular subsinuoso, ramo terminal da coronária direita foi semelhante para ambos os ventrículos. As comparações dos resultados obtidos nesta pesquisa com os resultados encontrados na literatura especializada indicam semelhança de distribuição dos ramos coronários nos suínos e nos humanos.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nader Wafae
- Centro Universitário São Camilo, Brasil; UNIPLAC
| |
Collapse
|
44
|
Sykes M. 2007 IXA Presidential Address. Progress toward an ideal source animal: opportunities and challenges in a changing world. Xenotransplantation 2008; 15:7-13. [DOI: 10.1111/j.1399-3089.2008.00441.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Cooper DK. Frankenswine, or bringing home the bacon: How close are we to clinical trials in xenotransplantation? Organogenesis 2008; 4:1-10. [PMID: 19279708 DOI: 10.4161/org.5383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/19/2022] Open
Abstract
Xenotransplantation-specifically from pig into human-could resolve the critical shortage of organs, tissues and cells for clinical transplantation. Genetic engineering techniques in pigs are relatively well-developed and to date have largely been aimed at producing pigs that either (1) express high levels of one or more human complement-regulatory protein(s), such as decay-accelerating factor or membrane cofactor protein, or (2) have deletion of the gene responsible for the expression of the oligosaccharide, Galalpha1,3Gal (Gal), the major target for human anti-pig antibodies, or (3) have both manipulations. Currently the transplantation of pig organs in adequately-immunosuppressed baboons results in graft function for periods of 2-6 months (auxiliary hearts) and 2-3 months (life-supporting kidneys). Pig islets have maintained normoglycemia in diabetic monkeys for >6 months. The remaining immunologic barriers to successful xenotransplantation are discussed, and brief reviews made of (1) the potential risk of the transmission of an infectious microorganism from pig to patient and possibly to the public at large, (2) the potential physiologic incompatibilities between a pig organ and its human counterpart, (3) the major ethical considerations of clinical xenotransplantation, and (4) the possible alternatives that compete with xenotransplantation in the field of organ or cell replacement, such as mechanical devices, tissue engineering, stem cell biology and organogenesis. Finally, the proximity of clinical trials is discussed. Islet xenotransplantation is already at the stage where clinical trials are actively being considered, but the transplantation of pig organs will probably require further genetic modifications to be made to the organ-source pigs to protect their tissues from the coagulation/anticoagulation dysfunction that plays a significant role in pig graft failure after transplantation in primates.
Collapse
Affiliation(s)
- David Kc Cooper
- Thomas E. Starzl Transplantation Institute; Department of Surgery; University of Pittsburgh; Pittsburgh, Pennsylvania USA
| |
Collapse
|
46
|
Ricci D, Tazelaar HD, Miyagi N, Rao VP, Pedersen RA, Kremers WK, Byrne GW, McGregor CGA. The utility of right ventricular endomyocardial biopsy for the diagnosis of xenograft rejection after CD46 pig-to-baboon cardiac transplantation. J Heart Lung Transplant 2007; 26:1025-32. [PMID: 17919623 DOI: 10.1016/j.healun.2007.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/05/2007] [Accepted: 07/15/2007] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Endomyocardial biopsy is the standard means of establishing cardiac allograft rejection diagnosis. The efficacy of this procedure in xenotransplantation has not been determined. In this study we compare the histology of right ventricular endomyocardial biopsy specimens with the corresponding full cross sections of explanted right ventricle (RV). We also compare RV with the related left ventricle (LV) cross sections. METHODS Heterotopic CD46 pig-to-baboon cardiac xenotransplants (n = 64) were studied. RV endomyocardial biopsy specimens were taken at cardiac explant by using a standard bioptome (n = 24) or by sharp dissection (n = 40). Hematoxylin and eosin stained sections of RV and LV cross-section and RV endomyocardial biopsy specimens were compared in a blinded fashion. Characteristics of delayed xenograft rejection and a global assessment of ischemia were scored from 0 to 4 according to the percentage of myocardium involved (0, 0%; 1, 1%-25%; 2, 26%-50%; 3, 51%-75%; and 4, 76%-100%). RESULTS Median graft survival was 30 days (range, 3-137 days). Linear regression analysis of histology scores demonstrated that specimens from both bioptome and sharp dissection equally represented the histology of the RV cross section. Global ischemic injury was strongly correlated between RV and RV endomyocardial biopsy (R(2) = 0.84) and between RV and LV cross sections (R(2) = 0.84). Individual characteristics of delayed xenograft rejection showed no significant variation between RV and RV endomyocardial biopsy or between RV and LV (p < 0.05). CONCLUSIONS These results indicate that delayed xenograft rejection is a widespread process involving both right and left ventricles similarly. This study shows that histologic assessment of RV endomyocardial biopsy specimens is an effective method for the monitoring of delayed xenograft rejection after cardiac xenotransplantation.
Collapse
Affiliation(s)
- Davide Ricci
- Mayo Clinic William J von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Brandl U, Erhardt M, Michel S, Jöckle H, Burdorf L, Bittmann I, Rössle M, Mordstein V, Brenner P, Hammer C, Reichart B, Schmoeckel M. Soluble Galalpha(1,3)Gal conjugate combined with hDAF preserves morphology and improves function of cardiac xenografts. Xenotransplantation 2007; 14:323-32. [PMID: 17669174 DOI: 10.1111/j.1399-3089.2007.00410.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cytotoxic anti-Galalpha(1,3)Gal antibodies play a key role in the rejection of pig organs transplanted into primates. Regimens reducing anti-Galalpha(1,3)Gal antibodies were associated with severe side effects unable to prevent antibody rebound until soluble synthetic oligosaccharides with terminal Galalpha(1,3)Gal inhibiting antigen binding became available. We displayed kinetics of anti-pig and anti-Galalpha(1,3)Gal IgM and IgG antibody levels using GAS914, a Galalpha(1,3)Gal trisaccharide conjugated to poly-l-lysine, and investigated corresponding changes of parameters of heart function. METHODS Using a working heart model, hDAF pig hearts were perfused with human blood containing GAS914 (group 1). As controls hDAF pig hearts (group 2) and landrace pig hearts (group 3) were perfused with human blood only. Levels of anti-Galalpha(1,3)Gal (IgM, IgG) and anti-pig antibodies were assessed to prove the effectiveness of GAS914. As parameters of heart function, cardiac output (CO), stroke work index (SWI), coronary blood flow (CBF) and coronary resistance were measured. Creatine phosphokinases, lactate dehydrogenase and aspartate aminotransferase were evaluated as markers of myocardial damage. Histological and immunohistochemical investigations were performed at the end of perfusion. RESULTS In group 1 an immediate and extensive reduction in both IgM and IgG anti-Galalpha(1,3)Gal was found. Anti-pig antibodies were eliminated accordingly. Antibody binding to GAS914 was complete before the start of organ perfusion. Corresponding to rapid antibody elimination in group 1 GAS914 not only was able to significantly prolong the beating time of the heart in hDAF pigs, but also to clearly improve functional parameters. When switching to the working heart mode hDAF pig hearts perfused with human blood containing GAS914 (group 1) revealed a CO starting at a significantly higher level than hDAF (group 2) and non-transgenic pig hearts (group 3) perfused with human blood only. Similarly, in group 1 SWI was significantly increased at the beginning of perfusion compared to that of group 2 and group 3. The increase in CBF during perfusion and the corresponding fall of coronary resistance occurred without significant differences between the groups revealing the independence of hDAF and GAS914. CONCLUSIONS Due to an immediate and profound reduction in Galalpha(1,3)Gal-specific antibodies, soluble Galalpha(1,3)Gal conjugates not only prolong survival, but also improve the hemodynamic performance of the heart in DAF pigs.
Collapse
Affiliation(s)
- Ulrike Brandl
- Department of Cardiac Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cooper DKC, Dorling A, Pierson RN, Rees M, Seebach J, Yazer M, Ohdan H, Awwad M, Ayares D. Alpha1,3-galactosyltransferase gene-knockout pigs for xenotransplantation: where do we go from here? Transplantation 2007; 84:1-7. [PMID: 17627227 DOI: 10.1097/01.tp.0000260427.75804.f2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability to genetically engineer pigs that no longer express the Galalpha1,3Gal (Gal) oligosaccharide has been a significant step toward the clinical applicability of xenotransplantation. Using a chronic immunosuppressive regimen based on costimulatory blockade, hearts from these pigs have survived from 2 to 6 months in baboons. Graft failure was predominantly from the development of a thrombotic microangiopathy. Potential contributing factors include the presence of preformed anti-nonGal antibodies or the development of low levels of elicited antibodies to nonGal antigens, natural killer (NK) cell or macrophage activity, and inherent coagulation dysregulation between pigs and primates. The breeding of pigs transgenic for an "anticoagulant" gene, such as human tissue factor pathway inhibitor, hirudin, or CD39, or lacking the gene for the prothrombinase, fibrinogen-like protein-2, is anticipated to inhibit the change in the endothelium to a procoagulant state that takes place in the pig organ after transplantation. The identification of the targets for anti-nonGal antibodies and/or human macrophages might allow further genetic modification of the pig, and xenogeneic NK cell recognition and activation may be inhibited by the transgenic expression of human leukocyte antigen molecules and/or by blocking the function of activating NK receptors. The ultimate goal of induction of T-cell tolerance may be possible only if these hurdles in the coagulation system and innate immunity can be overcome.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vajta G, Zhang Y, Macháty Z. Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod Fertil Dev 2007; 19:403-23. [PMID: 17257528 DOI: 10.1071/rd06089] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/24/2006] [Indexed: 12/11/2022] Open
Abstract
During the past 6 years, considerable advancement has been achieved in experimental embryology of pigs. This process was mainly generated by the rapidly increasing need for transgenic pigs for biomedical research purposes, both for future xenotransplantation to replace damaged human organs or tissues, and for creating authentic animal models for human diseases to study aetiology, pathogenesis and possible therapy. Theoretically, among various possibilities, an established somatic cell nuclear transfer system with genetically engineered donor cells seems to be an efficient and reliable approach to achieve this goal. However, as the result of unfortunate coincidence of known and unknown factors, porcine embryology had been a handicapped branch of reproductive research in domestic animals and a very intensive and focused research was required to eliminate or minimise this handicap. This review summarises recent achievements both in the background technologies (maturation, activation, embryo culture) and the actual performance of the nuclear replacement. Recent simplified methods for in vivo development after embryo transfer are also discussed. Finally, several fields of potential application for human medical purposes are discussed. The authors conclude that although in this early phase of research no direct evidence can be provided about the practical use of transgenic pigs produced by somatic cell nuclear transfer as organ donors or disease models, the future chances even in medium term are good, and at least proportional with the efforts and sums that are invested into this research area worldwide.
Collapse
Affiliation(s)
- Gábor Vajta
- Population Genetics and Embryology, Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, DK-8830 Tjele, Denmark.
| | | | | |
Collapse
|
50
|
Abstract
Mohiuddin discusses the lessons learned from large animal xenograft models and why the immunological barrier is still the most important hurdle preventing clinical xenotransplantation of organs.
Collapse
Affiliation(s)
- Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| |
Collapse
|