1
|
Galili U. Self-Tumor Antigens in Solid Tumors Turned into Vaccines by α-gal Micelle Immunotherapy. Pharmaceutics 2024; 16:1263. [PMID: 39458595 PMCID: PMC11510312 DOI: 10.3390/pharmaceutics16101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
A major reason for the failure of the immune system to detect tumor antigens (TAs) is the insufficient uptake, processing, and presentation of TAs by antigen-presenting cells (APCs). The immunogenicity of TAs in the individual patient can be markedly increased by the in situ targeting of tumor cells for robust uptake by APCs, without the need to identify and characterize the TAs. This is feasible by the intra-tumoral injection of α-gal micelles comprised of glycolipids presenting the carbohydrate-antigen "α-gal epitope" (Galα1-3Galβ1-4GlcNAc-R). Humans produce a natural antibody called "anti-Gal" (constituting ~1% of immunoglobulins), which binds to α-gal epitopes. Tumor-injected α-gal micelles spontaneously insert into tumor cell membranes, so that multiple α-gal epitopes are presented on tumor cells. Anti-Gal binding to these epitopes activates the complement system, resulting in the killing of tumor cells, and the recruitment of multiple APCs (dendritic cells and macrophages) into treated tumors by the chemotactic complement cleavage peptides C5a and C3a. In this process of converting the treated tumor into a personalized TA vaccine, the recruited APC phagocytose anti-Gal opsonized tumor cells and cell membranes, process the internalized TAs and transport them to regional lymph-nodes. TA peptides presented on APCs activate TA-specific T cells to proliferate and destroy the metastatic tumor cells presenting the TAs. Studies in anti-Gal-producing mice demonstrated the induction of effective protection against distant metastases of the highly tumorigenic B16 melanoma following injection of natural and synthetic α-gal micelles into primary tumors. This treatment was further found to synergize with checkpoint inhibitor therapy by the anti-PD1 antibody. Phase-1 clinical trials indicated that α-gal micelle immunotherapy is safe and can induce the infiltration of CD4+ and CD8+ T cells into untreated distant metastases. It is suggested that, in addition to converting treated metastases into an autologous TA vaccine, this treatment should be considered as a neoadjuvant therapy, administering α-gal micelles into primary tumors immediately following their detection. Such an immunotherapy will convert tumors into a personalized anti-TA vaccine for the period prior to their resection.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Galili U. Anti-Non-Gal Antibodies Against Porcine Protein Antigens as Barrier to Long-Term Grafting of Xenografts in Humans. Xenotransplantation 2024; 31:e12875. [PMID: 38990768 DOI: 10.1111/xen.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
4
|
Stone KR, Walgenbach AW, Turek TJ, Crues JV, Galili U. Xenograft bone-patellar tendon-bone ACL reconstruction: a case series at 20-year follow-up as proof of principle. J Exp Orthop 2023; 10:91. [PMID: 37672199 PMCID: PMC10482801 DOI: 10.1186/s40634-023-00651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
PURPOSE ACL reconstruction has a significant failure rate. To address the need for inexpensive strong tissue, a treatment process to "humanize" porcine tissue was developed and tested in primates and humans. This report describes the long-term outcomes from the first human clinical trial using a porcine xenograft ACL reconstruction device. METHODS The study was performed with Z-Lig™ xenograft ACL device in 2003 as a pilot clinical feasibility study. This device was processed to slow its immune-mediated destruction by enzymatic elimination of α-gal epitopes and by partial crosslinking to slow the infiltration of macrophages into the biotransplant. RESULTS Ten patients underwent reconstruction with the Z-Lig™ device. Five of 10 patients failed due to subsequent trauma (n = 3), arthrofibrosis (n = 1), and surgical technical error (n = 1). One patient was lost to follow-up after the 12-year evaluation. Each remaining patient reported a stable fully athletic knee. Physical exams are consistent with a score of less than one on the ACL stability tests. MRIs demonstrate mature remodeling of the device. There is no significant degradation in patient-reported outcome scores, physical exams, or MRI appearance from 12 to 20-year follow-ups. CONCLUSIONS The studies in a small group of patients have demonstrated that implantation of porcine ligament bioprosthesis into patients with torn ACLs can result in the reconstruction of the bioprosthesis into autologous ACL that remains successful over 20 years. The possibility of humanizing porcine tissue opens the door to unlimited clinical material for tissue reconstructions if supported by additional clinical trials. LEVEL OF EVIDENCE IV, case series.
Collapse
Affiliation(s)
- Kevin R Stone
- The Stone Clinic, San Francisco, CA, USA.
- Stone Research Foundation, San Francisco, CA, 94123, USA.
| | - Ann W Walgenbach
- The Stone Clinic, San Francisco, CA, USA
- Stone Research Foundation, San Francisco, CA, 94123, USA
| | - Thomas J Turek
- Stone Research Foundation, San Francisco, CA, 94123, USA
| | | | - Uri Galili
- Division of Cardiology, Department of Medicine, Rush University Medical College, Chicago, IL, USA
| |
Collapse
|
5
|
Galili U. Antibody production and tolerance to the α-gal epitope as models for understanding and preventing the immune response to incompatible ABO carbohydrate antigens and for α-gal therapies. Front Mol Biosci 2023; 10:1209974. [PMID: 37449060 PMCID: PMC10338101 DOI: 10.3389/fmolb.2023.1209974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
This review describes the significance of the α-gal epitope (Galα-3Galβ1-4GlcNAc-R) as the core of human blood-group A and B antigens (A and B antigens), determines in mouse models the principles underlying the immune response to these antigens, and suggests future strategies for the induction of immune tolerance to incompatible A and B antigens in human allografts. Carbohydrate antigens, such as ABO antigens and the α-gal epitope, differ from protein antigens in that they do not interact with T cells, but B cells interacting with them require T-cell help for their activation. The α-gal epitope is the core of both A and B antigens and is the ligand of the natural anti-Gal antibody, which is abundant in all humans. In A and O individuals, anti-Gal clones (called anti-Gal/B) comprise >85% of the so-called anti-B activity and bind to the B antigen in facets that do not include fucose-linked α1-2 to the core α-gal. As many as 1% of B cells are anti-Gal B cells. Activation of quiescent anti-Gal B cells upon exposure to α-gal epitopes on xenografts and some protozoa can increase the titer of anti-Gal by 100-fold. α1,3-Galactosyltransferase knockout (GT-KO) mice lack α-gal epitopes and can produce anti-Gal. These mice simulate human recipients of ABO-incompatible human allografts. Exposure for 2-4 weeks of naïve and memory mouse anti-Gal B cells to α-gal epitopes in the heterotopically grafted wild-type (WT) mouse heart results in the elimination of these cells and immune tolerance to this epitope. Shorter exposures of 7 days of anti-Gal B cells to α-gal epitopes in the WT heart result in the production of accommodating anti-Gal antibodies that bind to α-gal epitopes but do not lyse cells or reject the graft. Tolerance to α-gal epitopes due to the elimination of naïve and memory anti-Gal B cells can be further induced by 2 weeks in vivo exposure to WT lymphocytes or autologous lymphocytes engineered to present α-gal epitopes by transduction of the α1,3-galactosyltransferase gene. These mouse studies suggest that autologous human lymphocytes similarly engineered to present the A or B antigen may induce corresponding tolerance in recipients of ABO-incompatible allografts. The review further summarizes experimental works demonstrating the efficacy of α-gal therapies in amplifying anti-viral and anti-tumor immune-protection and regeneration of injured tissues.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical College, Chicago, IL, United States
| |
Collapse
|
6
|
Itoh M, Itou J, Imai S, Okazaki K, Iwasaki K. A survey on the usage of decellularized tissues in orthopaedic clinical trials. Bone Joint Res 2023; 12:179-188. [PMID: 37051813 PMCID: PMC10032226 DOI: 10.1302/2046-3758.123.bjr-2022-0383.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery. Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers' websites. We initially identified 4,402 clinical trials, 27 of which were eligible for inclusion and analysis, including nine shoulder surgery trials, eight knee surgery trials, two ankle surgery trials, two hand surgery trials, and six peripheral nerve graft trials. Nine of the trials were completed. We identified only one product that will be commercially available for use in knee surgery with significant mechanical load resistance. Peracetic acid and gamma irradiation were frequently used for sterilization. Despite the demand for decellularized tissue, few decellularized tissue products are currently commercially available, particularly for the knee joint. To be viable in orthopaedic surgery, decellularized tissue must exhibit biocompatibility and mechanical strength, and these requirements are challenging for the clinical application of decellularized tissue. However, the variety of available decellularized products has recently increased. Therefore, decellularized grafts may become a promising option in orthopaedic surgery.
Collapse
Affiliation(s)
- Masafumi Itoh
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
- Institute for Medical Regulatory Science, Comprehensive Research Organization, Waseda University, Tokyo, Japan
- Tokyo Women's Medical University - Waseda University Joint Graduate School, Waseda University, Tokyo, Japan
| | - Junya Itou
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
- Tokyo Women's Medical University - Waseda University Joint Graduate School, Waseda University, Tokyo, Japan
| | - Shinya Imai
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Institute for Medical Regulatory Science, Comprehensive Research Organization, Waseda University, Tokyo, Japan
- Tokyo Women's Medical University - Waseda University Joint Graduate School, Waseda University, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Mordern Mechanical Engineering, School of Creative Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
Bach FC, Poramba-Liyanage DW, Riemers FM, Guicheux J, Camus A, Iatridis JC, Chan D, Ito K, Le Maitre CL, Tryfonidou MA. Notochordal Cell-Based Treatment Strategies and Their Potential in Intervertebral Disc Regeneration. Front Cell Dev Biol 2022; 9:780749. [PMID: 35359916 PMCID: PMC8963872 DOI: 10.3389/fcell.2021.780749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic low back pain is the number one cause of years lived with disability. In about 40% of patients, chronic lower back pain is related to intervertebral disc (IVD) degeneration. The standard-of-care focuses on symptomatic relief, while surgery is the last resort. Emerging therapeutic strategies target the underlying cause of IVD degeneration and increasingly focus on the relatively overlooked notochordal cells (NCs). NCs are derived from the notochord and once the notochord regresses they remain in the core of the developing IVD, the nucleus pulposus. The large vacuolated NCs rapidly decline after birth and are replaced by the smaller nucleus pulposus cells with maturation, ageing, and degeneration. Here, we provide an update on the journey of NCs and discuss the cell markers and tools that can be used to study their fate and regenerative capacity. We review the therapeutic potential of NCs for the treatment of IVD-related lower back pain and outline important future directions in this area. Promising studies indicate that NCs and their secretome exerts regenerative effects, via increased proliferation, extracellular matrix production, and anti-inflammatory effects. Reports on NC-like cells derived from embryonic- or induced pluripotent-stem cells claim to have successfully generated NC-like cells but did not compare them with native NCs for phenotypic markers or in terms of their regenerative capacity. Altogether, this is an emerging and active field of research with exciting possibilities. NC-based studies demonstrate that cues from developmental biology can pave the path for future clinical therapies focused on regenerating the diseased IVD.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jerome Guicheux
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes, France
| | - Anne Camus
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Marianna A. Tryfonidou,
| |
Collapse
|
8
|
Design by Nature: Emerging Applications of Native Liver Extracellular Matrix for Cholangiocyte Organoid-Based Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9030110. [PMID: 35324799 PMCID: PMC8945468 DOI: 10.3390/bioengineering9030110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Organoid technology holds great promise for regenerative medicine. Recent studies show feasibility for bile duct tissue repair in humans by successfully transplanting cholangiocyte organoids in liver grafts during perfusion. Large-scale expansion of cholangiocytes is essential for extending these regenerative medicine applications. Human cholangiocyte organoids have a high and stable proliferation capacity, making them an attractive source of cholangiocytes. Commercially available basement membrane extract (BME) is used to expand the organoids. BME allows the cells to self-organize into 3D structures and stimulates cell proliferation. However, the use of BME is limiting the clinical applications of the organoids. There is a need for alternative tissue-specific and clinically relevant culture substrates capable of supporting organoid proliferation. Hydrogels prepared from decellularized and solubilized native livers are an attractive alternative for BME. These hydrogels can be used for the culture and expansion of cholangiocyte organoids in a clinically relevant manner. Moreover, the liver-derived hydrogels retain tissue-specific aspects of the extracellular microenvironment. They are composed of a complex mixture of bioactive and biodegradable extracellular matrix (ECM) components and can support the growth of various hepatobiliary cells. In this review, we provide an overview of the clinical potential of native liver ECM-based hydrogels for applications with human cholangiocyte organoids. We discuss the current limitations of BME for the clinical applications of organoids and how native ECM hydrogels can potentially overcome these problems in an effort to unlock the full regenerative clinical potential of the organoids.
Collapse
|
9
|
Tran DT, Guang Zhan Y, Tsai L. Dynamic tensile properties of porcine knee ligament. Biomed Mater Eng 2022; 33:293-302. [PMID: 35213341 DOI: 10.3233/bme-211318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The knee plays an essential role in movement. There are four major ligaments in the knee which all have crucial functionalities for human activities. The anterior cruciate ligament (ACL) is the most commonly injured ligament in the knee, especially in athletes. OBJECTIVE The aim of this study was to investigate the dynamic tensile response of the porcine ACL at strain rates from 800 to 1500 s-1 for simulations of acute injury from sudden impact or collision. METHODS Split Hopkinson Tension Bar (SHTB) was utilized to create a dynamic tensile wave on the ACL. Stress-strain curves of strain rates between 800 s-1 to 1500 s-1 were recorded. RESULTS The results demonstrated that the elastic modulus of the porcine ACL at higher strain rates was six to eight times higher than that of porcine and human specimens at quasi-static strain rate. However, the failure stress was quite similar while the strain was much smaller than that at the lower strain rate. CONCLUSIONS ACL is highly strain rate sensitive and easier to break with lower failure strain when the strain rates increased to more than 1000 s-1. The stress-strain curves indicated that the sketching crimps at the slack region did not happen but switched to the sliding process of collagen fibers and was accompanied by some ruptures, which can develop into tears when strain and stress were large enough. On the other hand, the viscoelastic properties of the ligament, depending on the proteoglycan matrix and the cross-link, showed a limited value in the studied strain rate range.
Collapse
Affiliation(s)
- Dat Trong Tran
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.,School of Transportation Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Yao Guang Zhan
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Liren Tsai
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Galili U. Biosynthesis of α-Gal Epitopes (Galα1-3Galβ1-4GlcNAc-R) and Their Unique Potential in Future α-Gal Therapies. Front Mol Biosci 2021; 8:746883. [PMID: 34805272 PMCID: PMC8601398 DOI: 10.3389/fmolb.2021.746883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
The α-gal epitope is a carbohydrate antigen which appeared early in mammalian evolution and is synthesized in large amounts by the glycosylation enzyme α1,3galactosyltransferase (α1,3GT) in non-primate mammals, lemurs, and New-World monkeys. Ancestral Old-World monkeys and apes synthesizing α-gal epitopes underwent complete extinction 20–30 million years ago, and their mutated progeny lacking α-gal epitopes survived. Humans, apes, and Old-World monkeys which evolved from the surviving progeny lack α-gal epitopes and produce the natural anti-Gal antibody which binds specifically to α-gal epitopes. Because of this reciprocal distribution of the α-gal epitope and anti-Gal in mammals, transplantation of organs from non-primate mammals (e.g., pig xenografts) into Old-World monkeys or humans results in hyperacute rejection following anti-Gal binding to α-gal epitopes on xenograft cells. The in vivo immunocomplexing between anti-Gal and α-gal epitopes on molecules, pathogens, cells, or nanoparticles may be harnessed for development of novel immunotherapies (referred to as “α-gal therapies”) in various clinical settings because such immune complexes induce several beneficial immune processes. These immune processes include localized activation of the complement system which can destroy pathogens and generate chemotactic peptides that recruit antigen-presenting cells (APCs) such as macrophages and dendritic cells, targeting of antigens presenting α-gal epitopes for extensive uptake by APCs, and activation of recruited macrophages into pro-reparative macrophages. Some of the suggested α-gal therapies associated with these immune processes are as follows: 1. Increasing efficacy of enveloped-virus vaccines by synthesizing α-gal epitopes on vaccinating inactivated viruses, thereby targeting them for extensive uptake by APCs. 2. Conversion of autologous tumors into antitumor vaccines by expression of α-gal epitopes on tumor cell membranes. 3. Accelerating healing of external and internal injuries by α-gal nanoparticles which decrease the healing time and diminish scar formation. 4. Increasing anti-Gal–mediated protection against zoonotic viruses presenting α-gal epitopes and against protozoa, such as Trypanosoma, Leishmania, and Plasmodium, by vaccination for elevating production of the anti-Gal antibody. The efficacy and safety of these therapies were demonstrated in transgenic mice and pigs lacking α-gal epitopes and producing anti-Gal, raising the possibility that these α-gal therapies may be considered for further evaluation in clinical trials.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
11
|
Lombardi JA, Hoonjan A, Rodriguez N, Delossantos A, Monteiro G, Sandor M, Xu H. Porcine bone-patellar tendon-bone xenograft in a caprine model of anterior cruciate ligament repair. J Orthop Surg (Hong Kong) 2021; 28:2309499020939737. [PMID: 32715928 DOI: 10.1177/2309499020939737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of human tissue-derived autografts and allografts continues to be the gold standard in anterior cruciate ligament (ACL) repair. However, autografts and allografts have their own set of associated risks. Many alternative options, including synthetic replacements, have failed to demonstrate long-term success. In this study, sterile acellular porcine bone-tendon-bone (BTB) xenografts were created using a proprietary process and tested against BTB autografts in goats for 13 and 52 weeks. At 13 weeks, all xenograft-implanted animals (n = 9) had subjective hind leg motor function (HLMF) that was categorized as either normal (score = 0) or a slight limp (score = 1) compared with two of nine autograft-implanted animals having a moderate limp (score = 2). At 39 weeks, there was HLMF improvement with each autograft-implanted and xenograft-implanted animal having normal HLMF or only a slight limp. At 13 weeks, six of nine animals in each group achieved normal anterior drawer scores, which increased to nine of nine animals in each group by 39 weeks. Both autografts and xenografts exhibited minimal inflammation with excellent integration of the fibrous tendon portion of the graft to host bone, as evidenced histologically by Sharpey's fiber formation. At 52 weeks, maximum mechanical load at failure for xenografts was 1092.0 ± 586.4 N compared with 1037.0 ± 422.6 N for autografts. These results demonstrate that a sterile acellular porcine BTB xenograft can perform equivalently to BTB autograft in a caprine model of ACL repair.
Collapse
Affiliation(s)
- Jared A Lombardi
- LifeCell Corporation (an Allergan affiliate), Research and Development Department, Bridgewater, NJ, USA
| | - Amardeep Hoonjan
- LifeCell Corporation (an Allergan affiliate), Research and Development Department, Bridgewater, NJ, USA
| | - Neil Rodriguez
- LifeCell Corporation (an Allergan affiliate), Research and Development Department, Bridgewater, NJ, USA
| | - Aubrey Delossantos
- LifeCell Corporation (an Allergan affiliate), Research and Development Department, Bridgewater, NJ, USA
| | - Gary Monteiro
- LifeCell Corporation (an Allergan affiliate), Research and Development Department, Bridgewater, NJ, USA
| | - Maryellen Sandor
- LifeCell Corporation (an Allergan affiliate), Research and Development Department, Bridgewater, NJ, USA
| | - Hui Xu
- LifeCell Corporation (an Allergan affiliate), Research and Development Department, Bridgewater, NJ, USA
| |
Collapse
|
12
|
In Situ "Humanization" of Porcine Bioprostheses: Demonstration of Tendon Bioprostheses Conversion into Human ACL and Possible Implications for Heart Valve Bioprostheses. Bioengineering (Basel) 2021; 8:bioengineering8010010. [PMID: 33445522 PMCID: PMC7826727 DOI: 10.3390/bioengineering8010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review describes the first studies on successful conversion of porcine soft-tissue bioprostheses into viable permanently functional tissue in humans. This process includes gradual degradation of the porcine tissue, with concomitant neo-vascularization and reconstruction of the implanted bioprosthesis with human cells and extracellular matrix. Such a reconstruction process is referred to in this review as “humanization”. Humanization was achieved with porcine bone-patellar-tendon-bone (BTB), replacing torn anterior-cruciate-ligament (ACL) in patients. In addition to its possible use in orthopedic surgery, it is suggested that this humanization method should be studied as a possible mechanism for converting implanted porcine bioprosthetic heart-valves (BHV) into viable tissue valves in young patients. Presently, these patients are only implanted with mechanical heart-valves, which require constant anticoagulation therapy. The processing of porcine bioprostheses, which enables humanization, includes elimination of α-gal epitopes and partial (incomplete) crosslinking with glutaraldehyde. Studies on implantation of porcine BTB bioprostheses indicated that enzymatic elimination of α-gal epitopes prevents subsequent accelerated destruction of implanted tissues by the natural anti-Gal antibody, whereas the partial crosslinking by glutaraldehyde molecules results in their function as “speed bumps” that slow the infiltration of macrophages. Anti-non gal antibodies produced against porcine antigens in implanted bioprostheses recruit macrophages, which infiltrate at a pace that enables slow degradation of the porcine tissue, neo-vascularization, and infiltration of fibroblasts. These fibroblasts align with the porcine collagen-fibers scaffold, secrete their collagen-fibers and other extracellular-matrix (ECM) components, and gradually replace porcine tissues degraded by macrophages with autologous functional viable tissue. Porcine BTB implanted in patients completes humanization into autologous ACL within ~2 years. The similarities in cells and ECM comprising heart-valves and tendons, raises the possibility that porcine BHV undergoing a similar processing, may also undergo humanization, resulting in formation of an autologous, viable, permanently functional, non-calcifying heart-valves.
Collapse
|
13
|
Van Der Merwe W, Lind M, Faunø P, Van Egmond K, Zaffagnini S, Marcacci M, Cugat R, Verdonk R, Ibañez E, Guillen P, Marcheggiani Muccioli GM. Xenograft for anterior cruciate ligament reconstruction was associated with high graft processing infection. J Exp Orthop 2020; 7:79. [PMID: 33026544 PMCID: PMC7541808 DOI: 10.1186/s40634-020-00292-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022] Open
Abstract
Purpose To evaluate clinical ad radiological outcomes of anterior cruciate ligament (ACL) reconstruction with an immunochemically modified porcine patellar tendon xenograft controlled against human Achilles tendon allograft at 24-month minimum follow-up. Methods 66 patients undergoing arthroscopic ACL reconstruction were randomized into 2 groups: 34 allografts and 32 xenografts treated to attenuate the host immune response. Follow-up was 24-month minimum. Anterior knee stability was measured as KT − 1000 side-to-side laxity difference (respect to the contralateral healthy knee). Functional performance was assessed by one-legged hop test. Objective manual pivot-shift test and subjective (IKDC, Tegner and SF-36) outcomes were collected. MRI and standard X-Ray were performed. Results 61 subjects (32 allograft, 29 xenograft) were evaluated at 12 and 24 months. Six of the subjects in xenograft group (20.6%) got an infection attributed to a water-based pathogen graft contamination in processing. Intention-to-treat analysis (using the last observation carried forward imputation method) revealed higher KT − 1000 laxity in xenograft group at 24-month follow-up (P = .042). Also pivot-shift was higher in xenograft group at 12-month (P = .015) and 24-month follow-up (P = .038). Per-protocol analysis (missing/contaminated subjects excluded) did not revealed clinical differences between groups. Tibial tunnel widening in the allograft group was low, whereas xenograft tunnel widening was within the expected range of 20–35% as reported in the literature. No immunological reactivity was associated to xenograft group. Conclusions High infection rate (20.6%) was reported in xenograft group. Both groups of patients achieved comparable clinical outcomes if missing/contaminated subjects are excluded. Improved harvesting/processing treatments in future studies using xenografts for ACL reconstruction are needed to reduce infection rate, otherwise xenograft should not be used in ACL reconstruction. Level of evidence Multicenter and double-blinded Randomized Controlled Clinical Trial, Level I.
Collapse
Affiliation(s)
| | | | | | - Kees Van Egmond
- Dept. of Orthopaedic Surgery, Isala Klinieken, Zwolle, Netherlands
| | - Stefano Zaffagnini
- IRCCS Istituto Ortopedici Rizzoli, University of Bologna, Lab. Biomeccanica - Via di Barbiano, 1/10, 40137, Bologna, Italy
| | - Maurilio Marcacci
- IRCCS Humanitas University, Milano / former Istituto Ortopedici Rizzoli, University of Bologna, II Clinica Ortopedica, Bologna, Italy
| | - Ramon Cugat
- Hospital Quiron, Artoscopia GC, Barcelona, Spain
| | - Rene Verdonk
- Dept. of Orthopaedic Surgery & Traumatology, Gent Univ. Hospital, Ghent, Belgium
| | - Enrique Ibañez
- Clinica Cemtro, Orthopaedic Surgery & Traumatology, Madrid, Spain
| | - Pedro Guillen
- Clinica Cemtro, Orthopaedic Surgery & Traumatology, Madrid, Spain
| | | |
Collapse
|
14
|
Chakraborty J, Roy S, Ghosh S. Regulation of decellularized matrix mediated immune response. Biomater Sci 2020; 8:1194-1215. [PMID: 31930231 DOI: 10.1039/c9bm01780a] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The substantially growing gap between suitable donors and patients waiting for new organ transplantation has compelled tissue engineers to look for suitable patient-specific alternatives. Lately, a decellularized extracellular matrix (dECM), obtained primarily from either discarded human tissues/organs or other species, has shown great promise in the constrained availability of high-quality donor tissues. In this review, we have addressed critical gaps and often-ignored aspects of understanding the innate and adaptive immune response to the dECM. Firstly, although most of the studies claim preservation of the ECM ultrastructure, almost all methods employed for decellularization would inevitably cause a certain degree of disruption to the ECM ultrastructure and modulation in secondary conformations, which may elicit a distinct immunogenic response. Secondly, it is still a major challenge to find ways to conserve the native biochemical, structural and biomechanical cues by making a judicious decision regarding the choice of decellularization agents/techniques. We have critically analyzed various decellularization protocols and tried to find answers on various aspects such as whether the secondary structural conformation of dECM proteins would be preserved after decellularization. Thirdly, to keep the dECM ultrastructure as close to the native ECM we have raised the question "How good is good enough?" Even residual cellular antigens or nucleic acid fragments may elicit antigenicity leading to a low-grade immune response. A combinative knowledge of macrophage plasticity in the decellularized tissue and limits of decellularization will help achieve the native ultrastructure. Lastly, we have shifted our focus on the scientific basis of the presently accepted criteria for decellularization, and the effect on immune response concerning the interaction between the decellularized extracellular matrix and macrophages with the subsequent influence of T-cell activation. Amalgamating suitable decellularization approaches, sufficient knowledge of macrophage plasticity and elucidation of molecular pathways together will help fabricate functional immune informed decellularized tissues in vitro that will have substantial implications for efficient clinical translation and prediction for in vivo reprogramming and tissue regeneration.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Regenerative Engineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi, 110016 India.
| | - Subhadeep Roy
- Regenerative Engineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi, 110016 India.
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi, 110016 India.
| |
Collapse
|
15
|
Ling Y, Xu W, Yang L, Liang C, Xu B. Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process. Regen Biomater 2020; 7:443-451. [PMID: 33149933 PMCID: PMC7597803 DOI: 10.1093/rb/rbaa024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Due to the unique microstructures and components of extracellular matrix (ECM), decellularized scaffolds had been used widely in clinical. The reaction of the host toward decellularized scaffolds depends on their biocompatibility, which should be satisfied before applied in clinical. The aim of this study is to develop a decellularized xenograft material with good biocompatibility for further bone repair, in an effective and gentle method. The existing chemical and physical decellularization techniques including ethylene diamine tetraacetic acid (EDTA), sodium dodecyl sulfate (SDS) and supercritical carbon dioxide (SC-CO2) were combined and modified to decellularize bovine cancellous bone (CB). After decellularization, almost 100% of ɑ-Gal epitopes were removed, the combination of collagen, calcium and phosphate was reserved. The direct and indirect contact with macrophages was used to evaluate the cytotoxicity and immunological response of the materials. Mesenchymal stem cells (MSCs) were used in the in vitro cells’ proliferation assay. The decellularized CB was proved has no cytotoxicity (grade 1) and no immunological response (NO, IL-2, IL-6 and TNF-α secretion inhibited), and could support MSCs proliferated continuedly. These results were similar to that of commercial decellularized human bone. This study suggests the potential of using this kind of combine decellularization process to fabricate heterogeneous ECM scaffolds for clinical application.
Collapse
Affiliation(s)
- You Ling
- National Engineering Research Center for Human Tissue Restoration and Function Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou, Guangdong 510006, China
- Department of Scientific Research, National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
- National Engineering Laboratory for Regenerative Implantable Medical Devices, R&D Center, Grandhope Biotech Co., Ltd, Guangzhou, Guangdong 510530, China
| | - Weikang Xu
- Department of Scientific Research, National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong 510500, China
| | - Lifeng Yang
- Department of Biosecurity Evaluation, Guangdong Medical Devices Quality Surveillance and Test Institute, No. 1 Guangpu West Road, Huangpu District, Guangzhou, Guangdong 510663, China
| | - Changyan Liang
- Department of Gynecology, Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou 510630, China
| | - Bin Xu
- National Engineering Laboratory for Regenerative Implantable Medical Devices, R&D Center, Grandhope Biotech Co., Ltd, Guangzhou, Guangdong 510530, China
| |
Collapse
|
16
|
Hexter AT, Hing KA, Haddad FS, Blunn G. Decellularized porcine xenograft for anterior cruciate ligament reconstruction: A histological study in sheep comparing cross-pin and cortical suspensory femoral fixation. Bone Joint Res 2020; 9:293-301. [PMID: 32728430 PMCID: PMC7376309 DOI: 10.1302/2046-3758.96.bjr-2020-0030.r2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aims To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. Methods A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization). Results The pSFT remodelled into a ligament-like structure and no adverse inflammatory reaction was seen. The ground reaction force in the operated leg of the Endobutton group was higher at 11 weeks (p < 0.05). An indirect insertion was seen at the graft-bone interface characterized by Sharpey-like fibres. Qualitative differences in tendon remodelling were seen between the two groups, with greater crimp-like organization and more aligned collagen fibres seen with Endobutton fixation. One graft rupture occurred in the cross-pin group, which histologically showed low collagen organization. Conclusion Decellularized pSFT xenograft remodels into a ligament-like structure after 12 weeks and regenerates an indirect-type insertion with Sharpey-like fibres. No adverse inflammatory reaction was observed. Cortical suspensory femoral fixation was associated with more enhanced graft remodelling and earlier functional recovery when compared with the stiffer cross-pin fixation.
Collapse
Affiliation(s)
- Adam T Hexter
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, London, UK; NIHR Academic Clinical Fellow, Royal National Orthopaedic Hospital, London, UK
| | - Karin A Hing
- Institute of Bioengineering and School of Engineering and Materials, Queen Mary University of London, London, UK
| | | | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
17
|
Galili U. Human Natural Antibodies to Mammalian Carbohydrate Antigens as Unsung Heroes Protecting against Past, Present, and Future Viral Infections. Antibodies (Basel) 2020; 9:E25. [PMID: 32580274 PMCID: PMC7344964 DOI: 10.3390/antib9020025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Human natural antibodies to mammalian carbohydrate antigens (MCA) bind to carbohydrate-antigens synthesized in other mammalian species and protect against zoonotic virus infections. Three such anti-MCA antibodies are: (1) anti-Gal, also produced in Old-World monkeys and apes, binds to α-gal epitopes synthesized in non-primate mammals, lemurs, and New-World monkeys; (2) anti-Neu5Gc binds to Neu5Gc (N-glycolyl-neuraminic acid) synthesized in apes, Old-World monkeys, and many non-primate mammals; and (3) anti-Forssman binds to Forssman-antigen synthesized in various mammals. Anti-viral protection by anti-MCA antibodies is feasible because carbohydrate chains of virus envelopes are synthesized by host glycosylation machinery and thus are similar to those of their mammalian hosts. Analysis of MCA glycosyltransferase genes suggests that anti-Gal appeared in ancestral Old-World primates following catastrophic selection processes in which parental populations synthesizing α-gal epitopes were eliminated in enveloped virus epidemics. However, few mutated offspring in which the α1,3galactosyltransferase gene was accidentally inactivated produced natural anti-Gal that destroyed viruses presenting α-gal epitopes, thereby preventing extinction of mutated offspring. Similarly, few mutated hominin offspring that ceased to synthesize Neu5Gc produced anti-Neu5Gc, which destroyed viruses presenting Neu5Gc synthesized in parental hominin populations. A present-day example for few humans having mutations that prevent synthesis of a common carbohydrate antigen (produced in >99.99% of humans) is blood-group Bombay individuals with mutations inactivating H-transferase; thus, they cannot synthesize blood-group O (H-antigen) but produce anti-H antibody. Anti-MCA antibodies prevented past extinctions mediated by enveloped virus epidemics, presently protect against zoonotic-viruses, and may protect in future epidemics. Travelers to regions with endemic zoonotic viruses may benefit from vaccinations elevating protective anti-MCA antibody titers.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical School, Chicago, IL 60605, USA
| |
Collapse
|
18
|
Bracey DN, Cignetti NE, Jinnah AH, Stone AV, Gyr BM, Whitlock PW, Scott AT. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single‐center case series. Xenotransplantation 2020; 27:e12600. [DOI: 10.1111/xen.12600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/22/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel N. Bracey
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| | - Natalie E. Cignetti
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| | - Alexander H. Jinnah
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery and Sports Medicine University of Kentucky Lexington KY USA
| | - Bettina M. Gyr
- Department of Orthopedic Surgery and Sports Medicine Children’s Hospital of the King’s Daughters Norfolk VA USA
| | - Patrick W. Whitlock
- Division of Orthopaedic Surgery Cincinnati Children’s Hospital Medical Center Cincinnati OH USA
| | - Aaron T. Scott
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| |
Collapse
|
19
|
Polacek M. Arthroscopic Superior Capsular Reconstruction With Acellular Porcine Dermal Xenograft for the Treatment of Massive Irreparable Rotator Cuff Tears. Arthrosc Sports Med Rehabil 2019; 1:e75-e84. [PMID: 32266343 PMCID: PMC7120814 DOI: 10.1016/j.asmr.2019.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/17/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the short-term clinical outcomes and the complications related to arthroscopic superior capsular reconstruction (SCR) with acellular porcine dermal xenograft for the treatment of irreparable massive rotator cuff tears. Methods A prospective observational study of patients treated with arthroscopic SCR for irreparable massive rotator cuff tears in the period from 2016 to 2017 was performed. Range of motion and Shoulder Pain and Disability Index (SPADI) scores were assessed preoperatively, at 6 months postoperatively, and at 12 months postoperatively. Results A total of 20 shoulders in 19 patients, with an average age of 60 years, were included in the study. Twelve patients met the criterion for the minimal clinically important difference in the SPADI score. The mean SPADI score showed significant improvement from 51.3% to 10.4% at 1-year follow-up. Active abduction improved from 65.4° to 149.3° and active forward flexion improved from 68.6° to 151.4° at 1-year follow-up. The procedure had a 30% complication rate, including a 15% rate of immunologic rejection of the xenograft. Five patients underwent revision procedures, including arthroscopic debridement and removal of xenograft residuals, implantation of a balloon spacer, and revision SCR with a fascia lata autograft. Conclusions Arthroscopic SCR with an acellular porcine dermal xenograft led to a successful outcome in 60% of cases. The procedure showed a quite high complication rate; the most severe cases were related to acute immunologic rejection of the xenograft. Level of Evidence Level IV, case series.
Collapse
Affiliation(s)
- Martin Polacek
- Address correspondence to Martin Polacek, M.D., Ph.D., Orthopedic Department, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway.
| |
Collapse
|
20
|
Bracey DN, Seyler TM, Jinnah AH, Smith TL, Ornelles DA, Deora R, Parks GD, Van Dyke ME, Whitlock PW. A porcine xenograft-derived bone scaffold is a biocompatible bone graft substitute: An assessment of cytocompatibility and the alpha-Gal epitope. Xenotransplantation 2019; 26:e12534. [PMID: 31342586 DOI: 10.1111/xen.12534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Xenografts are an attractive alternative to traditional bone grafts because of the large supply from donors with predictable morphology and biology as well as minimal risk of human disease transmission. Clinical series involving xenograft bone transplantation, most commonly from bovine sources, have reported poor results with frequent graft rejection and failure to integrate with host tissue. Failures have been attributed to residual alpha-Gal epitope in the xenograft which humans produce natural antibody against. To the authors' knowledge, there is currently no xenograft-derived bone graft substitute that has been adopted by orthopedic surgeons for routine clinical use. METHODS In the current study, a bone scaffold intended to serve as a bone graft substitute was derived from porcine cancellous bone using a tissue decellularization and chemical oxidation protocol. In vitro cytocompatibility, pathogen clearance, and alpha-Gal quantification tests were used to assess the safety of the bone scaffold intended for human use. RESULTS In vitro studies showed the scaffold was free of processing chemicals and biocompatible with mouse and human cell lines. When bacterial and viral pathogens were purposefully added to porcine donor tissue, processing successfully removed these pathogens to comply with sterility assurance levels established by allograft tissue providers. Critically, 98.5% of the alpha-Gal epitope was removed from donor tissue after decellularization as shown by ELISA inhibition assay and immunohistochemical staining. CONCLUSIONS The current investigation supports the biologic safety of bone scaffolds derived from porcine donors using a decellularization protocol that meets current sterility assurance standards. The majority of the highly immunogenic xenograft carbohydrate was removed from donor tissue, and these findings support further in vivo investigation of xenograft-derived bone tissue for orthopedic clinical application.
Collapse
Affiliation(s)
- Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thorsten M Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Alexander H Jinnah
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, Department of Microbiology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Patrick W Whitlock
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
21
|
Stahl EC, Bonvillain RW, Skillen CD, Burger BL, Hara H, Lee W, Trygg CB, Didier PJ, Grasperge BF, Pashos NC, Bunnell BA, Bianchi J, Ayares DL, Guthrie KI, Brown BN, Petersen TH. Evaluation of the host immune response to decellularized lung scaffolds derived from α-Gal knockout pigs in a non-human primate model. Biomaterials 2018; 187:93-104. [DOI: 10.1016/j.biomaterials.2018.09.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
|
22
|
Liu Q, Yu Y, Reisdorf RL, Qi J, Lu CK, Berglund LJ, Amadio PC, Moran SL, Steinmann SP, An KN, Gingery A, Zhao C. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials 2018; 192:189-198. [PMID: 30453215 DOI: 10.1016/j.biomaterials.2018.10.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Reducing rotator cuff failure after repair remains a challenge due to suboptimal tendon-to-bone healing. In this study we report a novel biomaterial with engineered tendon-fibrocartilage-bone composite (TFBC) and bone marrow-derived mesenchymal stem cell sheet (BMSCS); this construct was tested for augmentation of rotator cuff repair using a canine non-weight-bearing (NWB) model. A total of 42 mixed-breed dogs were randomly allocated to 3 groups (n = 14 each). Unilateral infraspinatus tendon underwent suture repair only (control); augmentation with engineered TFBC alone (TFBC), or augmentation with engineered TFBC and BMSCS (TFBC + BMSCS). Histomorphometric analysis and biomechanical testing were performed at 6 weeks after surgery. The TFBC + BMSCS augmented repairs demonstrated superior histological scores, greater new fibrocartilage formation and collagen fiber organization at the tendon-bone interface compared with the controls. The ultimate failure load and ultimate stress were 286.80 ± 45.02 N and 4.50 ± 1.11 MPa for TFBC + BMSCS group, 163.20 ± 61.21 N and 2.60 ± 0.97 MPa for control group (TFBC + BMSCS vs control, P = 1.12E-04 and 0.003, respectively), 206.10 ± 60.99 N and 3.20 ± 1.31 MPa for TFBC group (TFBC + BMSCS vs TFBC, P = 0.009 and 0.045, respectively). In conclusion, application of an engineered TFBC and BMSCS can enhance rotator cuff healing in terms of anatomic structure, collagen organization and biomechanical strength in a canine NWB model. Combined TFBC and BMSCS augmentation is a promising strategy for rotator cuff tears and has a high potential impact on clinical practice.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yinxian Yu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jun Qi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chun-Kuan Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Peter C Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
de Vries SAH, van Doeselaar M, Kaper HJ, Sharma PK, Ito K. Notochordal cell matrix as a bioactive lubricant for the osteoarthritic joint. Sci Rep 2018; 8:8875. [PMID: 29891965 PMCID: PMC5995895 DOI: 10.1038/s41598-018-27130-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/24/2018] [Indexed: 11/08/2022] Open
Abstract
Notochordal cell derived matrix (NCM) can induce regenerative effects on nucleus pulposus cells and may exert such effects on chondrocytes as well. Furthermore, when dissolved at low concentrations, NCM forms a viscous fluid with potential lubricating properties. Therefore, this study tests the feasibility of the use of NCM as a regenerative lubricant for the osteoarthritic joint. Chondrocyte-seeded alginate beads were cultured in base medium (BM), BM with NCM (NCM), or BM with TGF-β1 (TGF), as well as BM and NCM treated with IL-1β. NCM increased GAG deposition and cell proliferation (stronger than TGF), and GAG/DNA ratio and hydroxyproline content (similar to TGF). These effects were maintained in the presence of IL-1β. Moreover, NCM mitigated expression of IL-1β-induced IL-6, IL-8, ADAMTS-5 and MMP-13. Reciprocating sliding friction tests of cartilage on glass were performed to test NCM's lubricating properties relative to hyaluronic acid (HA), and showed a dose-dependent reduction in coefficient of friction with NCM, similar to HA. NCM has anabolic and anti-inflammatory effects on chondrocytes, as well as lubricating properties. Therefore, intra-articular NCM injection may have potential as a treatment to minimize pain while restoring the affected cartilage tissue in the osteoarthritic joint.
Collapse
Affiliation(s)
- S A H de Vries
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - M van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - H J Kaper
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - P K Sharma
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
24
|
You L, Weikang X, Lifeng Y, Changyan L, Yongliang L, Xiaohui W, Bin X. In vivo immunogenicity of bovine bone removed by a novel decellularization protocol based on supercritical carbon dioxide. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:334-344. [PMID: 29726299 DOI: 10.1080/21691401.2018.1457044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trauma or infections associated critical bone defects lead to a huge economic burden in the healthcare system worldwide. Recent advances in tissue engineering have led to potential new strategies for the repair, replacement, and regeneration of bone defects, especially in biomaterials and decellularization protocols from xenogenic tissues. However, the complexity in bone structure and mechanical environment limits the synthesis of artificial bone with biomaterials. Thus, the purpose of our study is to develop a natural bone scaffold with great immunocompatibility. We combined decellularization techniques base on SC-CO2 to decellularize bovine bone. In order to study the immune response of mice to materials, the histology, spleen index, immune cells contents and in vitro proliferative performance, cytokine and immunoglobulin light chain expression of mice were characterized. Compared with the fresh bone group, the immune responses of decellularized group were significantly reduced. In conclusion, decellularization via this method can achieve a decellularized scaffold with great immunocompatibility. Our findings suggest the potential of using decellularized BB as a scaffold for bone bioengineering.
Collapse
Affiliation(s)
- Ling You
- a National Engineering Research Center for Human Tissue Restoration and Function Reconstruction , South China University of Technology , Guangzhou , Guangdong , China.,b National Engineering Laboratory for Regenerative Implantable Medical Devices , Grandhope Biotech Co., Ltd , Guangzhou , Guangdong , China
| | - Xu Weikang
- a National Engineering Research Center for Human Tissue Restoration and Function Reconstruction , South China University of Technology , Guangzhou , Guangdong , China
| | - Yang Lifeng
- c Guangdong Medical Devices Quality Surveillance and Test Institute , Guangzhou , Guangdong , China
| | - Liang Changyan
- d Department of Gynecology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Lin Yongliang
- b National Engineering Laboratory for Regenerative Implantable Medical Devices , Grandhope Biotech Co., Ltd , Guangzhou , Guangdong , China
| | - Wei Xiaohui
- b National Engineering Laboratory for Regenerative Implantable Medical Devices , Grandhope Biotech Co., Ltd , Guangzhou , Guangdong , China
| | - Xu Bin
- b National Engineering Laboratory for Regenerative Implantable Medical Devices , Grandhope Biotech Co., Ltd , Guangzhou , Guangdong , China
| |
Collapse
|
25
|
Cone SG, Warren PB, Fisher MB. Rise of the Pigs: Utilization of the Porcine Model to Study Musculoskeletal Biomechanics and Tissue Engineering During Skeletal Growth. Tissue Eng Part C Methods 2017; 23:763-780. [PMID: 28726574 PMCID: PMC5689129 DOI: 10.1089/ten.tec.2017.0227] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Large animal models play an essential role in the study of tissue engineering and regenerative medicine (TERM), as well as biomechanics. The porcine model has been increasingly used to study the musculoskeletal system, including specific joints, such as the knee and temporomandibular joints, and tissues, such as bone, cartilage, and ligaments. In particular, pigs have been utilized to evaluate the role of skeletal growth on the biomechanics and engineered replacements of these joints and tissues. In this review, we explore the publication history of the use of pig models in biomechanics and TERM discuss interspecies comparative studies, highlight studies on the effect of skeletal growth and other biological considerations in the porcine model, and present challenges and emerging opportunities for using this model to study functional TERM.
Collapse
Affiliation(s)
- Stephanie G. Cone
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Paul B. Warren
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Matthew B. Fisher
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Wu LC, Kuo YJ, Sun FW, Chen CH, Chiang CJ, Weng PW, Tsuang YH, Huang YY. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell Tissue Bank 2017; 18:383-396. [PMID: 28342099 PMCID: PMC5587617 DOI: 10.1007/s10561-017-9619-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
Abstract
Recent advances in tissue engineering have led to potential new strategies, especially decellularization protocols from natural tissues, for the repair, replacement, and regeneration of intervertebral discs. This study aimed to validate our previously reported method for the decellularization of annulus fibrosus (AF) tissue and to quantify potentially antigenic α-Gal epitopes in the decellularized tissue. Porcine AF tissue was decellularized using different freeze-thaw temperatures, chemical detergents, and incubation times in order to determine the optimal method for cell removal. The integrity of the decellularized material was determined using biochemical and mechanical tests. The α-Gal epitope was quantified before and after decellularization. Decellularization with freeze-thaw in liquid nitrogen, an ionic detergent (0.1% SDS), and a 24 h incubation period yielded the greatest retention of GAG and collagen relative to DNA reduction when tested as single variables. Combined, these optimal decellularization conditions preserved more GAG while removing the same amount of DNA as the conditions used in our previous study. Components and biomechanical properties of the AF matrix were retained. The decellularized AF scaffold exhibited suitable immune-compatibility, as evidenced by successful in vivo remodeling and a decrease in the α-Gal epitope. Our study defined the optimal conditions for decellularization of porcine AF tissues while preserving the biological composition and mechanical properties of the scaffold. Under these conditions, immunocompatibility was evidenced by successful in vivo remodeling and reduction of the α-Gal epitope in the decellularized material. Decellularized AF scaffolds are potential candidates for clinical applications in spinal surgery.
Collapse
Affiliation(s)
- Lien-Chen Wu
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 110, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fu-Wen Sun
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, Taiwan
| | - Chia-Hsien Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan
| | - Chang-Jung Chiang
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yang-Hwei Tsuang
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-You Huang
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, Taiwan.
| |
Collapse
|
27
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Lee E, Milan A, Urbani L, De Coppi P, Lowdell MW. Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia. Expert Opin Biol Ther 2017; 17:573-584. [PMID: 28303723 DOI: 10.1080/14712598.2017.1308482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Esophageal atresia refers to an anomaly in foetal development in which the esophagus terminates in a blind end. Whilst surgical correction is achievable in most patients, when a long gap is present it still represents a major challenge associated with higher morbidity and mortality. In this context, tissue engineering could represent a successful alternative to restore oesophageal function and structure. Naturally derived biomaterials made of decellularized tissues retain native extracellular matrix architecture and composition, providing a suitable bed for the anchorage and growth of relevant cell types. Areas covered: This review outlines the various strategies and challenges in esophageal tissue engineering, highlighting the evolution of ideas in the development of decellularized scaffolds for clinical use. It explores the interplay between clinical needs, ethical dilemmas, and manufacturing challenges in the development of a tissue engineered decellularized scaffold for oesophageal atresia. Expert opinion: Current progress on oesophageal tissue engineering has enabled effective repair of patch defects, whilst the development of a full circumferential construct remains a challenge. Despite the different approaches available and the improvements achieved, a gold standard for fully functional tissue engineered oesophageal constructs has not been defined yet.
Collapse
Affiliation(s)
- Esmond Lee
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK.,b Institute for Stem Cell Biology and Regenerative Medicine , Stanford University , Stanford , CA , USA.,c Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR) , Singapore
| | - Anna Milan
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Luca Urbani
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Paolo De Coppi
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Mark W Lowdell
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK
| |
Collapse
|
29
|
Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials. Semin Immunol 2017; 29:72-91. [PMID: 28274693 DOI: 10.1016/j.smim.2017.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
Abstract
Biomaterials based on natural materials including decellularized tissues and tissue-derived hydrogels are becoming more widely used for clinical applications. Because of their native composition and structure, these biomaterials induce a distinct form of the foreign body response that differs from that of non-native biomaterials. Differences include direct interactions with cells via preserved moieties as well as the ability to undergo remodeling. Moreover, these biomaterials could elicit adaptive immune responses due to the presence of modified native molecules. Therefore, these biomaterials present unique challenges in terms of understanding the progression of the foreign body response. This review covers this response to natural materials including natural polymers, decellularized tissues, cell-derived matrix, tissue derived hydrogels, and biohybrid materials. With the expansion of the fields of regenerative medicine and tissue engineering, the current repertoire of biomaterials has also expanded and requires continuous investigation of the responses they elicit.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States
| | - D K Stamer
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - T R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Pathology, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
30
|
Stone KR, Walgenbach A, Galili U. Induced Remodeling of Porcine Tendons to Human Anterior Cruciate Ligaments by α-GAL Epitope Removal and Partial Cross-Linking. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:412-419. [PMID: 28068870 PMCID: PMC5567590 DOI: 10.1089/ten.teb.2016.0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review describes a novel method developed for processing porcine tendon and other ligament implants that enables in situ remodeling into autologous ligaments in humans. The method differs from methods using extracellular matrices (ECMs) that provide postoperative orthobiological support (i.e., augmentation grafts) for healing of injured ligaments, in that the porcine bone-patellar-tendon-bone itself serves as the graft replacing ruptured anterior cruciate ligament (ACL). The method allows for gradual remodeling of porcine tendon into autologous human ACL while maintaining the biomechanical integrity. The method was first evaluated in a preclinical model of monkeys and subsequently in patients. The method overcomes detrimental effects of the natural anti-Gal antibody and harnesses anti-non-gal antibodies for the remodeling process in two steps: Step 1. Elimination of α-gal epitopes—this epitope that is abundant in pigs (as in other nonprimate mammals) binds the natural anti-Gal antibody, which is the most abundant natural antibody in humans. This interaction, which can induce fast resorption of the porcine implant, is avoided by enzymatic elimination of α-gal epitopes from the implant with recombinant α-galactosidase. Step 2. Partial cross-linking of porcine tendon with glutaraldehyde—this cross-linking generates covalent bonds in the ECM, which slow infiltration of macrophages into the implant. Anti-non-gal antibodies are produced in recipients against the multiple porcine antigenic proteins and proteoglycans because of sequence differences between human and porcine homologous proteins. Anti-non-gal antibodies bind to the implant ECM, recruit macrophages, and induce the implant destruction by directing proteolytic activity of macrophages. Partial cross-linking of the tendon ECM decreases the extent of macrophage infiltration and degradation of the implant and enables concomitant infiltration of fibroblasts that follow the infiltrating macrophages. These fibroblasts align with the implant collagen fibers and secrete their own collagen and other ECM proteins, which gradually remodel the porcine tendon into human ACL. This ligamentization process lasts ∼2 years and the biomechanical integrity of the graft is maintained throughout the whole period. These studies are the first, and so far the only, to demonstrate remodeling of porcine tendon implants into permanently functional autologous ACL in humans.
Collapse
Affiliation(s)
- Kevin R Stone
- 1 The Stone Clinic and Foundation , San Francisco, California
| | - Ann Walgenbach
- 1 The Stone Clinic and Foundation , San Francisco, California
| | - Uri Galili
- 2 Department of Surgery, University of Massachusetts Medical School , Worcester, Massachusetts (retired)
| |
Collapse
|
31
|
The Development of a Xenograft-Derived Scaffold for Tendon and Ligament Reconstruction Using a Decellularization and Oxidation Protocol. Arthroscopy 2017; 33:374-386. [PMID: 27692557 DOI: 10.1016/j.arthro.2016.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate the biological, immunological, and biomechanical properties of a scaffold derived by architectural modification of a fresh-frozen porcine patella tendon using a decellularization protocol that combines physical, chemical, and enzymatic modalities. METHODS Porcine patellar tendons were processed using a decellularization and oxidation protocol that combines physical, chemical, and enzymatic modalities. Scaffolds (n = 88) were compared with native tendons (n = 70) using histologic, structural (scanning electron microscopy, porosimetry, and tensile testing), biochemical (mass spectrometry, peracetic acid reduction, DNA quantification, alpha-galactosidase [α-gal] content), as well as in vitro immunologic (cytocompatibility, cytokine induction) and in vivo immunologic nonhuman primate analyses. RESULTS A decrease in cellularity based on histology and a significant decrease in DNA content were observed in the scaffolds compared with the native tendon (P < .001). Porosity and pore size were increased significantly (P < .001). Scaffolds were cytocompatible in vitro. There was no difference between native tendons and scaffolds when comparing ultimate tensile load, stiffness, and elastic modulus. The α-gal xenoantigen level was significantly lower in the decellularized scaffold group compared with fresh-frozen, nondecellularized tissue (P < .001). The in vivo immunological response to implanted scaffolds measured by tumor necrosis factor-α and interleukin-6 levels was significantly (P < .001) reduced compared with untreated controls in vitro. These results were confirmed by an attenuated response to scaffolds in vivo after implantation in a nonhuman primate model. CONCLUSIONS Porcine tendon was processed via a method of decellularization and oxidation to produce a scaffold that possessed significantly less inflammatory potential than a native tendon, was biocompatible in vitro, of increased porosity, and with significantly reduced amounts of α-gal epitope while retaining tensile properties. CLINICAL RELEVANCE Porcine-derived scaffolds may provide a readily available source of material for musculoskeletal reconstruction and repair while eliminating concerns regarding disease transmission and the morbidity of autologous harvest.
Collapse
|
32
|
Colaço HB, Lord BR, Back DL, Davies AJ, Amis AA, Ajuied A. Biomechanical properties of bovine tendon xenografts treated with a modern processing method. J Biomech 2017; 53:144-147. [DOI: 10.1016/j.jbiomech.2017.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
33
|
Böer U, Buettner FFR, Schridde A, Klingenberg M, Sarikouch S, Haverich A, Wilhelmi M. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Ulrike Böer
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | | | - Ariane Schridde
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
| | - Melanie Klingenberg
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Samir Sarikouch
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Axel Haverich
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE); Hannover Medical School; Hannover Germany
- Division for Cardiothoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| |
Collapse
|
34
|
Lee W, Long C, Ramsoondar J, Ayares D, Cooper DKC, Manji RA, Hara H. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation 2016; 23:370-80. [DOI: 10.1111/xen.12254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | | | | | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| | - Rizwan A. Manji
- Department of Surgery; University of Manitoba; Winnipeg MB Canada
- Cardiac Sciences Program; Winnipeg Regional Health Authority and St Boniface Hospital; Winnipeg MB Canada
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
35
|
Albertini MR, Ranheim EA, Zuleger CL, Sondel PM, Hank JA, Bridges A, Newton MA, McFarland T, Collins J, Clements E, Henry MB, Neuman HB, Weber S, Whalen G, Galili U. Phase I study to evaluate toxicity and feasibility of intratumoral injection of α-gal glycolipids in patients with advanced melanoma. Cancer Immunol Immunother 2016; 65:897-907. [PMID: 27207605 DOI: 10.1007/s00262-016-1846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/08/2016] [Indexed: 12/14/2022]
Abstract
Effective uptake of tumor cell-derived antigens by antigen-presenting cells is achieved pre-clinically by in situ labeling of tumor with α-gal glycolipids that bind the naturally occurring anti-Gal antibody. We evaluated toxicity and feasibility of intratumoral injections of α-gal glycolipids as an autologous tumor antigen-targeted immunotherapy in melanoma patients (pts). Pts with unresectable metastatic melanoma, at least one cutaneous, subcutaneous, or palpable lymph node metastasis, and serum anti-Gal titer ≥1:50 were eligible for two intratumoral α-gal glycolipid injections given 4 weeks apart (cohort I: 0.1 mg/injection; cohort II: 1.0 mg/injection; cohort III: 10 mg/injection). Monitoring included blood for clinical, autoimmune, and immunological analyses and core tumor biopsies. Treatment outcome was determined 8 weeks after the first α-gal glycolipid injection. Nine pts received two intratumoral injections of α-gal glycolipids (3 pts/cohort). Injection-site toxicity was mild, and no systemic toxicity or autoimmunity could be attributed to the therapy. Two pts had stable disease by RECIST lasting 8 and 7 months. Tumor nodule biopsies revealed minimal to no change in inflammatory infiltrate between pre- and post-treatment biopsies except for 1 pt (cohort III) with a post-treatment inflammatory infiltrate. Two and four weeks post-injection, treated nodules in 5 of 9 pts exhibited tumor cell necrosis without neutrophilic or lymphocytic inflammatory response. Non-treated tumor nodules in 2 of 4 evaluable pts also showed necrosis. Repeated intratumoral injections of α-gal glycolipids are well tolerated, and tumor necrosis was seen in some tumor nodule biopsies after tumor injection with α-gal glycolipids.
Collapse
Affiliation(s)
- Mark R Albertini
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- University of Wisconsin Clinical Sciences Center, Room K6/530, 600 Highland Avenue, Madison, WI, 53792, USA.
| | - Erik A Ranheim
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cindy L Zuleger
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul M Sondel
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jacquelyn A Hank
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan Bridges
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michael A Newton
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Thomas McFarland
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Erin Clements
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Mary Beth Henry
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather B Neuman
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sharon Weber
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Giles Whalen
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Uri Galili
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
36
|
Expression of NeuGc on Pig Corneas and Its Potential Significance in Pig Corneal Xenotransplantation. Cornea 2016; 35:105-13. [PMID: 26418433 DOI: 10.1097/ico.0000000000000635] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (1) to document the lack of NeuGc expression on corneas and aortas and cultured endothelial cells [aortic endothelial cells (AECs); corneal (CECs)] of GTKO/NeuGcKO pigs, and (2) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. METHODS Wild-type (WT), GTKO, and GTKO/NeuGcKO pigs were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and human IgM and IgG binding to tissues was determined. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. RESULTS Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither humans nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared with binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than that to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. CONCLUSIONS The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide a better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas.
Collapse
|
37
|
Lee W, Hara H, Ezzelarab MB, Iwase H, Bottino R, Long C, Ramsoondar J, Ayares D, Cooper DKC. Initial in vitro studies on tissues and cells from GTKO/CD46/NeuGcKO pigs. Xenotransplantation 2016; 23:137-50. [PMID: 26988899 DOI: 10.1111/xen.12229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The impact that the absence of expression of NeuGc in pigs might have on pig organ or cell transplantation in humans has been studied in vitro, but only using red blood cells (pRBCs) and peripheral blood mononuclear cells (pPBMCs) as the target cells for immune assays. We have extended this work in various in vitro models and now report our initial results. METHODS The models we have used involve GTKO/hCD46 and GTKO/hCD46/NeuGcKO pig aortas and corneas, and pRBCs, pPBMCs, aortic endothelial cells (pAECs), corneal endothelial cells (pCECs), and isolated pancreatic islets. We have investigated the effect of the absence of NeuGc expression on (i) human IgM and IgG binding, (ii) the T-cell proliferative response, (iii) human platelet aggregation, and (iv) in an in vitro assay of the instant blood-mediated inflammatory reaction (IBMIR) following exposure of pig islets to human blood/serum. RESULTS The lack of expression of NeuGc on some pig tissues (aortas, corneas) and cells (RBCs, PBMCs, AECs) significantly reduces the extent of human antibody binding. In contrast, the absence of NeuGc expression on some pig tissues (CECs, isolated islet cells) does not reduce human antibody binding, possibly due to their relatively low NeuGc expression level. The strength of the human T-cell proliferative response may also be marginally reduced, but is already weak to GTKO/hCD46 pAECs and islet cells. We also demonstrate that the absence of NeuGc expression on GTKO/hCD46 pAECs does not reduce human platelet aggregation, and nor does it significantly modify the IBMIR to pig islets. CONCLUSION The absence of NeuGc on some solid organs from GTKO/hCD46/NeuGcKO pigs should reduce the human antibody response after clinical transplantation when compared to GTKO/hCD46 pig organs. However, the clinical benefit of using certain tissue (e.g., cornea, islets) from GTKO/hCD46/NeuGcKO pigs is questionable.
Collapse
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, Roberti Di Sarsina T, Raggi F, Benzi A, Marcacci M. Anterior cruciate ligament reconstruction with a novel porcine xenograft: the initial Italian experience. JOINTS 2015; 3:85-90. [PMID: 26605257 DOI: 10.11138/jts/2015.3.2.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At the current state of the art in anterior cruciate ligament (ACL) reconstruction, multiple techniques have been presented but none has given clearly defined and improved results. One of the main issues concerns the choice of graft. The concept of using xenograft tissue, defined as a graft tissue from one species and destined for implantation in an unlike species, was introduced in order to try to overcome the mechanical and biological concerns associated with synthetic materials and the safety and quality concerns and availability problems of allograft tissue. Xenograft tissue carries the risk of producing an immunological reaction. In order to try to overcome or attenuate the immune response against porcine xenograft tissue, the Z-Process® (Aperion Biologics Inc, San Antonio, Texas, USA) has been developed and used to produce the Z-Lig® family of devices for ACL reconstruction procedures. Z-Lig® is a tendon graft with or without bone blocks, sourced from animal tissue in a manner consistent with what has normally been sourced from human tissue, and processed to overcome anti-Gal-mediated rejection and to attenuate other immunological recognition in humans. All this while ensuring sterility, viral inactivation and preservation of mechanical proprieties appropriate for an ACL reconstruction device. The Z-Lig® device has been tested in skeletally mature monkeys and given interesting and promising results from the preclinical performance and safety profile point of view. On this basis, it was possible to proceed with the first clinical trial involving humans, which gave similar encouraging results. The Z-Lig® device has also been implanted in Italy at the Rizzoli Orthopaedic Institute in Bologna, as a part of international multicenter prospective randomized blinded controlled study aimed at comparing xenograft with allograft tissue.
Collapse
Affiliation(s)
- Stefano Zaffagnini
- The II Orthopaedic and Traumatology Clinic, Biomechanics Laboratory and Technological Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Alberto Grassi
- The II Orthopaedic and Traumatology Clinic, Biomechanics Laboratory and Technological Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giulio Maria Marcheggiani Muccioli
- The II Orthopaedic and Traumatology Clinic, Biomechanics Laboratory and Technological Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Tommaso Roberti Di Sarsina
- The II Orthopaedic and Traumatology Clinic, Biomechanics Laboratory and Technological Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Federico Raggi
- The II Orthopaedic and Traumatology Clinic, Biomechanics Laboratory and Technological Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Andrea Benzi
- The II Orthopaedic and Traumatology Clinic, Biomechanics Laboratory and Technological Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Maurilio Marcacci
- The II Orthopaedic and Traumatology Clinic, Biomechanics Laboratory and Technological Innovation, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
39
|
Huai G, Qi P, Yang H, Wang Y. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review). Int J Mol Med 2015; 37:11-20. [PMID: 26531137 PMCID: PMC4687435 DOI: 10.3892/ijmm.2015.2397] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
The α-Gal epitope (Galα1,3Galα1,4GlcNAc-R) is ubiquitously presented in non-primate mammals, marsupials and New World Monkeys, but it is absent in humans, apes and Old World monkeys. However, the anti-Gal antibody (~1% of immunoglobulins) is naturally generated in human, and is found as the immunoglobulin G (IgG), IgM and IgA isotypes. Owing to the specific binding of the anti-Gal antibody with the α-Gal epitope, humans have a distinct anti-α-gal reactivity, which is responsible for hyperacute rejection of organs transplanted from α-gal donors. In addition, the α1,3 galactosyltransferases (α1,3GT) can catalyze the synthesis of the α-Gal epitope. Therefore, the α1,3GT gene, which encodes the α1,3GT, is developed profoundly. The distributions of the α-Gal epitope and anti-Gal antibody, and the activation of α1,3GT, reveal that the enzyme of α1,3GT in ancestral primates is ineffective. Comparison of the nucleotide sequence of the human α1,3-GT pseudogene to the corresponding different species sequence, and according to the evolutionary tree of different species, the results of evolutionary inactivation of the α1,3GT gene in ancestral primates attribute to the mutations under a stronger selective pressure. However, on the basis of the structure, the mechanism and the specificity of the α-Gal epitope and anti-Gal antibody, they can be applied to clinical exploitation. Knocking out the α1,3GT gene will eliminate the xenoantigen, Gal(α1,3)Gal, so that the transplantation of α1,3GT gene knockout pig organ into human becomes a potential clinically acceptable treatment for solving the problem of organ shortage. By contrast, the α-Gal epitope expressed through the application of chemical, biochemical and genetic engineering can be exploited for the clinical use. Targeting anti-Gal-mediated autologous tumor vaccines, which express α-Gal epitope to antigen-presenting cells, would increase their immunogenicity and elicit an immune response, which will be potent enough to eradicate the residual tumor cells. For tumor vaccines, the way of increasing immunogenicity of certain viral vaccines, including flu vaccines and human immunodeficiency virus vaccines, can also be used in the elderly. Recently, α-Gal epitope nanoparticles have been applied to accelerate wound healing and further directions on regeneration of internally injured tissues.
Collapse
Affiliation(s)
- Guoli Huai
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Hongji Yang
- Department of Biomedical Engineering, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Yi Wang
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
40
|
Galili U. Avoiding Detrimental Human Immune Response Against Mammalian Extracellular Matrix Implants. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:231-41. [DOI: 10.1089/ten.teb.2014.0392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Uri Galili
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
41
|
Lomas A, Ryan C, Sorushanova A, Shologu N, Sideri A, Tsioli V, Fthenakis G, Tzora A, Skoufos I, Quinlan L, O'Laighin G, Mullen A, Kelly J, Kearns S, Biggs M, Pandit A, Zeugolis D. The past, present and future in scaffold-based tendon treatments. Adv Drug Deliv Rev 2015; 84:257-77. [PMID: 25499820 DOI: 10.1016/j.addr.2014.11.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Tendon injuries represent a significant clinical burden on healthcare systems worldwide. As the human population ages and the life expectancy increases, tendon injuries will become more prevalent, especially among young individuals with long life ahead of them. Advancements in engineering, chemistry and biology have made available an array of three-dimensional scaffold-based intervention strategies, natural or synthetic in origin. Further, functionalisation strategies, based on biophysical, biochemical and biological cues, offer control over cellular functions; localisation and sustained release of therapeutics/biologics; and the ability to positively interact with the host to promote repair and regeneration. Herein, we critically discuss current therapies and emerging technologies that aim to transform tendon treatments in the years to come.
Collapse
|
42
|
Salama A, Evanno G, Harb J, Soulillou JP. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation 2014; 22:85-94. [PMID: 25308416 DOI: 10.1111/xen.12142] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
Human beings do not synthesize the glycolyl form of the sialic acid (Neu5Gc) and only express the acetylated form of the sugar, whereas a diet-based intake of Neu5Gc provokes a natural immunization and production of anti-Neu5Gc antibodies in human serum. However, Neu5Gc is expressed on mammal glycoproteins and glycolipids in most organs and cells. We review here the relevance of Neu5Gc and anti-Neu5Gc antibodies in the context of xenotransplantation and the use of animal-derived molecules and products, as well as the possible consequences of a long-term exposure to anti-Neu5Gc antibodies in recipients of xenografts. In addition, the importance of an accurate estimation of the anti-Neu5Gc response following xenotransplantation and the future contribution of knockout animals mimicking the human situation are also assessed.
Collapse
Affiliation(s)
- Apolline Salama
- INSERM UMR1064, Centre for Research in Transplantation and Immunology-ITUN, Université de Nantes, Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Société d'Accélération du Transfert de Technologies Ouest Valorisation, Rennes Cedex, France
| | | | | | | |
Collapse
|
43
|
Wang Y, Bao J, Wu Q, Zhou Y, Li Y, Wu X, Shi Y, Li L, Bu H. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation 2014; 22:48-61. [PMID: 25291435 DOI: 10.1111/xen.12141] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Whole-organ engineering provides a new alternative source of donor organs for xenotransplantation. Utilization of decellularized whole-organ scaffolds, which can be created by detergent perfusion, is a strategy for tissue engineering. In this article, our aim is to scale up the decellularization process to human-sized liver and kidney to generate a decellularized matrix with optimal and stable characteristics on a clinically relevant scale. METHODS Whole porcine liver and kidney were decellularized by perfusion using different detergents (1% SDS, 1% Triton X-100, 1% peracetic acid (PAA), and 1% NaDOC) via the portal vein and renal artery of the liver and kidney, respectively. After rinsing with PBS to remove the detergents, the obtained liver and kidney extracellular matrix (ECM) were processed for histology, residual cellular content analysis, and ECM components evaluation to investigate decellularization efficiency, xenoantigens removal, and ECM preservation. RESULTS The resulting liver and kidney scaffolds in the SDS-treated group showed the most efficient clearance of cellular components and xenoantigens, including DNA and protein, and preservation of the extracellular matrix composition. In comparison, cell debris was observed in the other decellularized groups that were generated using Triton X-100, PAA, and NaDOC. Special staining and immunochemistry of the porcine liver and kidney ECMs further confirmed the disrupted three-dimension ultrastructure of the ECM in the Triton X-100 and NaDOC groups. Additionally, Triton X-100 effectively eliminated the residual SDS in the SDS-treated group, which ensured the scaffolds were not cytotoxic to cells. Thus, we have developed an optimal method that can be scaled up for use with other solid whole organs. CONCLUSIONS Our SDS-perfusion protocol can be used for porcine liver and kidney decellularization to obtain organ scaffolds cleared of cellular material, xenoimmunogens, and preserved vital ECM components.
Collapse
Affiliation(s)
- Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barone A, Benktander J, Teneberg S, Breimer ME. Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts. Xenotransplantation 2014; 21:510-22. [PMID: 25041314 DOI: 10.1111/xen.12123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although xenotransplantation of vascularized organs/cells has not yet reached the clinic, glutaraldehyde-treated bioprosthetic heart valves (BHV), derived from porcine or bovine tissues, are today used for clinical replacement of diseased heart valves. However, the durability of these valve cusps is limited partly due to the onset of immune responses to the grafts. The xenoantigen-determinant Galα3Gal- and corresponding anti-Gal antibodies have been postulated to in part contribute to BHV damage. However, the presence of other non-Gal carbohydrate antigen determinants as well as the immune response to these non-Gal antigens and the inflammatory response generated by their interaction with the immune system has not been studied. In this study, we have isolated and structurally characterized both non-acid and acid glycosphingolipids from naïve porcine aortic and pulmonary valve cusps. METHODS Total non-acid and acid glycosphingolipids were isolated from porcine aortic and pulmonalis valve cusps of 20 animals. Glycosphingolipid components were structurally characterized by thin-layer chromatography, liquid chromatography-mass spectrometry and binding of monoclonal antibodies and lectins. RESULTS The non-acid glycosphingolipids were characterized as globotetraosylceramide, H-type 2 pentaosylceramide, fucosyl-gangliotetraosylceramide, and Galα3neolactotetraosylceramide. The acid glycosphingolipid fractions had both sulfatide and gangliosides (GM3, GM2, GM1, fucosyl-GM1, GD3 and GD1a), and all gangliosides contained N-acetyl-neuraminic acid. Significantly, the N-glycolyl-neuraminic acid (NeuGc) variant, a major component in many pig organs and to which humans can develop antibodies, was not detected among the gangliosides. CONCLUSIONS Pig valve cusps contain several complex lipid-bound carbohydrate structures that may be targets for the human immune system. Notable, the NeuGc determinant was absent in the cusp gangliosides. This work forms a platform for further characterizing the antibody reactivity of patients with porcine-derived BHV.
Collapse
Affiliation(s)
- Angela Barone
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
45
|
Xing S, Liu C, Xu B, Chen J, Yin D, Zhang C. Effects of various decellularization methods on histological and biomechanical properties of rabbit tendons. Exp Ther Med 2014; 8:628-634. [PMID: 25009631 PMCID: PMC4079434 DOI: 10.3892/etm.2014.1742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/02/2014] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the effects of various decellularization methods on the histological and biomechanical properties of rabbit tendons. In total, six chemical reagents, including 1% t-octyl-phenoxypolyethoxyethanol (Triton-X 100), 0.5% sodium dodecyl sulfate (SDS), 1% tri-n-butyl phosphate (TnBP), 1% Triton-X 100 + 0.5% SDS, 1% TnBP + 0.5% SDS and 1% TnBP + 1% Triton-X 100, were used on rabbit semitendinosus muscles and flexor digitorum tendons for 24 h to remove cells. Hematoxylin and eosin staining was applied for histological observation, while tension testing was used for biomechanical studies. The effects of the various decellularization methods on the histological structure and biomechanical properties of rabbit tendons were evaluated. A group of fresh tendons treated with phosphate-buffered saline served as controls. The various decellularization methods resulted in different effects on the tendons. All the treatment groups exhibited a decrease in tendon biomechanical properties, but no statistically significant differences were observed among the experimental groups. The extensibility of the 1% TnBP-treated group was found to be greater than that of the other groups; however, the difference was not statistically significant. Histologically, the 1% TnBP + 0.5% SDS treatment was shown to have the least impact on the rabbit tendon structure, with good decellularization and no clear cellular remnants observed. The 1% Triton-X 100 + 0.5% SDS treatment had a pronounced effect on the tendon collagen structure and a number of collagen ruptures were observed. Overall, 1% TnBP + 0.5% SDS was found to be the most effective compared with the other treatments, as this treatment preserved the tendon collagen structure while completely removing the cells. Tendons treated with 1% TnBP + 0.5% SDS were histologically similar to normal tendon tissue and biomechanically similar to the tendons in the control group.
Collapse
Affiliation(s)
- Shuxing Xing
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Cong Liu
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Bing Xu
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Jianchang Chen
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Dongfeng Yin
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| | - Chunhao Zhang
- Second Department of Orthopedics, Ürümqi General Hospital, Lanzhou Command, Ürümqi, Xinjiang 830000, P.R. China
| |
Collapse
|
46
|
Park MS, Kim TG, Lee KM, Chung CY, Kwon SS, Yoon IH, Park CG. Effects of reduction in the alpha-gal antigen on bony union: a model of xenobone graft using GalT knockout mouse. Xenotransplantation 2014; 21:267-73. [PMID: 24635119 DOI: 10.1111/xen.12092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/05/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Among the bone graft sources used currently, the availability of autografts is limited and allografts are expensive. Therefore, xenobone grafts have drawn attention as a new source of bone grafts, although immunologic rejection issues are unresolved. This study used a GalT knockout mouse model to investigate the effects of reducing the alpha-gal epitope using alpha-galactosidase on the union of porcine xenobone grafts. METHODS Sixty-eight alpha-gal knockout C57/BL6 mice and eight wild-type mice were used. The mice were divided into five groups: In group 1 (26 alpha-gal knockout mice), an alpha-galactosidase-treated porcine xenograft was transplanted into the mouse femur to reduce antigenicity, and intramedullary fixation was performed. In group 2 (26 alpha-gal knockout mice), a non-treated porcine xenobone graft was performed. In group 3 (eight alpha-gal knockout C57/BL6 mice), syngenic bone grafts were performed. In group 4 (eight wild-type C57/BL6 mice), syngenic bone grafts were performed. In group 5 (eight C57/BL6 alpha-gal knockout mice), a bone defect model was obtained by maintaining the gap of the osteotomy site. Groups 3, 4, and 5 were used for positive and negative control groups. Qualitative immunohistochemical analysis of the porcine bone was performed to detect the presence of the alpha-gal epitope in groups 1 and 2. The concentration of the anti-alpha-gal antibody was evaluated using a quantitative enzyme-linked immunosorbent assay (ELISA) at the time of sacrifice (3, 4, and 5 weeks after the operation). Histologic and radiologic results (Goldberg method) for the bone union were compared. RESULTS The qualitative immunohistochemical analysis showed that the alpha-gal epitope was reduced when xenobone grafts were treated with alpha-galactosidase. Compared with group 2, group 1 showed a low anti-alpha-gal antibody concentration in the ELISA results. In group 2, the anti-alpha-gal antibody concentration increased with time. Group 1 showed significantly better histologic union than group 2, but the amount of radiologic union was similar in the two groups. CONCLUSIONS Alpha-galactosidase treatment of a porcine xenobone graft can reduce the alpha-gal epitope. This reduction in the antigen could significantly reduce the humoral immune response to the alpha-gal antigen in C57/BL6 alpha-gal knockout mice, leading to significant improvements in histologic union. This study provides a relevant GalT knockout mouse model for detecting the effects of alpha-gal epitope reduction by alpha-galactosidase on the union of porcine xenobone grafts.
Collapse
Affiliation(s)
- Moon Seok Park
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Kyungki, Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32:462-84. [PMID: 24417915 PMCID: PMC3959761 DOI: 10.1016/j.biotechadv.2013.12.012] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic.
Collapse
Affiliation(s)
- Christina W Cheng
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA.
| | - Loran D Solorio
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA.
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Wickenden Building, Rm 218, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
48
|
Keane TJ, Badylak SF. The host response to allogeneic and xenogeneic biological scaffold materials. J Tissue Eng Regen Med 2014; 9:504-11. [DOI: 10.1002/term.1874] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/09/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Timothy J. Keane
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; PA USA
- Department of Bioengineering; University of Pittsburgh; PA USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; PA USA
- Department of Bioengineering; University of Pittsburgh; PA USA
- Department of Surgery; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
49
|
Galili U. α1,3Galactosyltransferase knockout pigs produce the natural anti-Gal antibody and simulate the evolutionary appearance of this antibody in primates. Xenotransplantation 2013; 20:267-76. [PMID: 23968556 DOI: 10.1111/xen.12051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/31/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Anti-Gal is the most abundant natural antibody in humans and Old World primates (apes and Old World monkeys). Its ligand, the α-gal epitope (Galα1-3Galβ1-4GlcNAc-R), is abundant in nonprimate mammals, prosimians and New World monkeys whereas it is absent in humans and Old World primates as a result of inactivation of the α1,3galactosyltransferase (α1,3GT) gene in ancestral Old World primates, as recent as 20-28 million years ago. Since anti-Gal has been a "forbidden" autoantibody for >140 million years of evolution in mammals producing α-gal epitopes it was of interest to determine whether ancestral Old World primates could produce anti-Gal once α-gal epitopes were eliminated, i.e. did they carry anti-Gal encoding immunoglobulin genes, or did evolutionary selection eliminate these genes that may be detrimental in mammals synthesizing α-gal epitopes. This question was studied by evaluating anti-Gal prodution in α1,3GT knockout (GT-KO) pigs recently generated from wild-type pigs in which the α-gal epitope is a major self-antigen. METHODS Anti-Gal antibody activity in pig sera was assessed by ELISA, flow cytometry and complement mediated cytolysis and compared to that in human sera. RESULTS The study demonstrates abundant production of the natural anti-Gal antibody in GT-KO pigs at titers even higher than in humans. The fine specificity of GT-KO pig anti-Gal is identical to that of human anti-Gal. CONCLUSIONS Pigs and probably other mammals producing α-gal epitopes carry immunoglobulin genes encoding anti-Gal as an autoantibody. Once the α-gal epitope is eliminated in GT-KO pigs, they produce anti-Gal. These findings strongly suggest that similar to GT-KO pigs, inactivation of the α1,3GT gene in ancestral Old World primates enabled the immediate production of anti-Gal, possibly as a protective antibody against detrimental microbial agents carrying α-gal epitopes.
Collapse
Affiliation(s)
- Uri Galili
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
50
|
Böer U, Spengler C, Jonigk D, Klingenberg M, Schrimpf C, Lützner S, Harder M, Kreipe HH, Haverich A, Wilhelmi M. Coating decellularized equine carotid arteries with CCN1 improves cellular repopulation, local biocompatibility, and immune response in sheep. Tissue Eng Part A 2013; 19:1829-42. [PMID: 23521030 DOI: 10.1089/ten.tea.2012.0558] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Decellularized equine carotid arteries (dEAC) are potential alternatives to alloplastic vascular grafts although there are certain limitations in biocompatibility and immunogenicity. Here, dEAC were coated with the matricellular protein CCN1 and evaluated in vitro for its cytotoxic and angiogenic effects and in vivo for cellular repopulation, local biocompatibility, neovascularization, and immunogenicity in a sheep model. CCN1 coating resulted in nontoxic matrices not compromising viability of L929 fibroblasts and endothelial cells (ECs) assessed by WST-8 assay. Functionality of CCN1 was maintained as it induced typical changes in fibroblast morphology and MMP3 secretion. For in vivo testing, dEAC±CCN1 (n=3 each) and polytetrafluoroethylene (PTFE) protheses serving as controls (n=6) were implanted as cervical arteriovenous shunts. After 14 weeks, grafts were harvested and evaluated immunohistologically. PTFE grafts showed a patency rate of only 33% and lacked cellular repopulation. Both groups of bioartificial grafts were completely patent and repopulated with ECs and smooth muscle cells (SMCs). However, whereas dEAC contained only patch-like aggregates of SMCs and a partial luminal lining with ECs, CCN1-coated grafts showed multiple layers of SMCs and a complete endothelialization. Likewise, CCN1 coating reduced leukocyte infiltration and fibrosis and supported neovascularization. In addition, in a three-dimensional assay, CCN1 coating increased vascular tube formation in apposition to the matrix 1.6-fold. Graft-specific serum antibodies were increased by CCN1 up to 6 weeks after implantation (0.89±0.03 vs. 1.08±0.04), but were significantly reduced after 14 weeks (0.85±0.04 vs. 0.69±0.02). Likewise, restimulated lymphocyte proliferation was significantly lower after 14 weeks (1.78±0.09 vs. 1.32±0.09-fold of unstimulated). Thus, CCN1 coating of biological scaffolds improves local biocompatibility and accelerates scaffold remodeling by enhancing cellular repopulation and immunologic tolerance, making it a promising tool for generation of bioartificial vascular prostheses.
Collapse
Affiliation(s)
- Ulrike Böer
- GMP Model Laboratory for Tissue Engineering, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|