1
|
Said HM, Kaya D, Yavuz I, Dost FS, Altun ZS, Isik AT. A Comparison of Cerebrospinal Fluid Beta-Amyloid and Tau in Idiopathic Normal Pressure Hydrocephalus and Neurodegenerative Dementias. Clin Interv Aging 2022; 17:467-477. [PMID: 35431542 PMCID: PMC9012339 DOI: 10.2147/cia.s360736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/02/2022] [Indexed: 01/17/2023] Open
Abstract
Purpose Idiopathic normal pressure hydrocephalus (iNPH) is the leading reversible cause of cognitive impairment and gait disturbance that has similar clinical manifestations and accompanies to major neurodegenerative disorders in older adults. We aimed to investigate whether cerebrospinal fluid (CSF) biomarker for Alzheimer’s disease (AD) may be useful in the differential diagnosis of iNPH. Patients and Methods Amyloid-beta (Aß) 42 and 40, total tau (t-tau), phosphorylated tau (p-tau) were measured via ELISA in 192 consecutive CSF samples of patients with iNPH (n=80), AD (n=48), frontotemporal dementia (FTD) (n=34), Lewy body diseases (LBDs) (n=30) consisting of Parkinson’s disease dementia and dementia with Lewy bodies. Results The mean age of the study population was 75.6±7.7 years, and 54.2% were female. CSF Aβ42 levels were significantly higher, and p-tau and t-tau levels were lower in iNPH patients than in those with AD and LBDs patients. Additionally, iNPH patients had significantly higher levels of t-tau than those with FTD. Age and sex-adjusted multi-nominal regression analysis revealed that the odds of having AD relative to iNPH decreased by 37% when the Aβ42 level increased by one standard deviation (SD), and the odds of having LBDs relative to iNPH decreased by 47%. The odds of having LBDs relative to iNPH increased 76% when the p-tau level increased 1SD. It is 2.5 times more likely for a patient to have LBD relative to NPH and 2.1 times more likely to have AD relative to iNPH when the t-tau value increased 1SD. Conclusion Our results suggest that levels of CSF Aβ42, p-tau, and t-tau, in particularly decreased t-tau, are of potential value in differentiating iNPH from LBDs and also confirm previous studies reporting t-tau level is lower and Aβ42 level is higher in iNPH than in AD.
Collapse
Affiliation(s)
- Harun Muayad Said
- Department of Molecular Medicine, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Derya Kaya
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Idil Yavuz
- Department of Statistics, Dokuz Eylul University, Faculty of Science, Izmir, Turkey
| | - Fatma Sena Dost
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Zekiye Sultan Altun
- Department of Basic Oncology, Oncology Institute, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ahmet Turan Isik
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Geriatric Science Association, Izmir, Turkey
- Correspondence: Ahmet Turan Isik, Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey, Tel +90 232 412 43 41, Fax +90 232 412 43 49, Email
| |
Collapse
|
2
|
Smethurst P, Franklin H, Clarke BE, Sidle K, Patani R. The role of astrocytes in prion-like mechanisms of neurodegeneration. Brain 2022; 145:17-26. [PMID: 35265969 PMCID: PMC8967097 DOI: 10.1093/brain/awab366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that neurodegenerative diseases are not merely neuronal in nature but comprise multicellular involvement, with astrocytes emerging as key players. The pathomechanisms of several neurodegenerative diseases involve the deposition of misfolded protein aggregates in neurons that have characteristic prion-like behaviours such as template-directed seeding, intercellular propagation, distinct conformational strains and protein-mediated toxicity. The role of astrocytes in dealing with these pathological prion-like protein aggregates and whether their responses either protect from or conspire with the disease process is currently unclear. Here we review the existing literature implicating astrocytes in multiple neurodegenerative proteinopathies with a focus on prion-like behaviour in this context.
Collapse
Affiliation(s)
- Phillip Smethurst
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Franklin
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E Clarke
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katie Sidle
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Correspondence may also be addressed to: Katie Sidle E-mail:
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence to: Rickie Patani The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK E-mail:
| |
Collapse
|
3
|
Fellner L, Buchinger E, Brueck D, Irschick R, Wenning GK, Stefanova N. Limited effects of dysfunctional macroautophagy on the accumulation of extracellularly derived α-synuclein in oligodendroglia: implications for MSA pathogenesis. BMC Neurosci 2018; 19:32. [PMID: 29783943 PMCID: PMC5963177 DOI: 10.1186/s12868-018-0431-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/10/2018] [Indexed: 01/08/2023] Open
Abstract
Background The progressive neurodegenerative disorder multiple system atrophy (MSA) is characterized by α-synuclein-positive (oligodendro-) glial cytoplasmic inclusions (GCIs). A connection between the abnormal accumulation of α-synuclein in GCIs and disease initiation and progression has been postulated. Mechanisms involved in the formation of GCIs are unclear. Abnormal uptake of α-synuclein from extracellular space, oligodendroglial overexpression of α-synuclein, and/or dysfunctional protein degradation including macroautophagy have all been discussed. In the current study, we investigated whether dysfunctional macroautophagy aggravates accumulation of extracellular α-synuclein in the oligodendroglia. Results We show that oligodendroglia uptake monomeric and fibrillar extracellular α-synuclein. Blocking macroautophagy through bafilomycin A1 treatment or genetic knockdown of LC3B does not consistently change the level of incorporated α-synuclein in oligodendroglia exposed to extracellular soluble/monomeric or fibrillar α-synuclein, however leads to higher oxidative stress in combination with fibrillar α-synuclein treatment. Finally, we detected no evidence for GCI-like formation resulting from dysfunctional macroautophagy in oligodendroglia using confocal microscopy. Conclusion In summary, isolated dysfunctional macroautophagy is not sufficient to enhance abnormal accumulation of uptaken α-synuclein in vitro, but may lead to increased production of reactive oxygen species in the presence of fibrillar α-synuclein. Multiple complementary pathways are likely to contribute to GCI formation in MSA.
Collapse
Affiliation(s)
- Lisa Fellner
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020, Innsbruck, Austria.
| | - Edith Buchinger
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020, Innsbruck, Austria
| | - Dominik Brueck
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020, Innsbruck, Austria
| | - Regina Irschick
- Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innrain 66, G2, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
5
|
Xuan Q, Zhang YX, Liu DG, Chan P, Xu SL, Cui YQ. Post-translational modifications of α-synuclein contribute to neurodegeneration in the colon of elderly individuals. Mol Med Rep 2016; 13:5077-83. [PMID: 27109489 PMCID: PMC4878562 DOI: 10.3892/mmr.2016.5166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 02/23/2016] [Indexed: 01/24/2023] Open
Abstract
Synucleinopathies and abnormalities in the nerves of the enteric nervous system are hypothesized to be involved in age-associated motility disorders. The aim of the present study was to investigate the expression of various antigens, including α‑synuclein (Syn) and its post‑translational modified forms, in the human colon at various ages. In addition, the study aimed to correlate the expression of Syn with neurodegeneration. Immunohistochemistry was used to detect the expression of neurofilament (NF), Syn, as well as its nitrated (N) form in the healthy colonic tissue of 12 young (34.08±5.12 years), 10 middle‑aged (51.80±3.52 years), and 11 elderly (75.82±7.70 years) individuals. To the best of our knowledge, the current study is the first to demonstrate the presence of N‑Syn in the colonic tissue. N‑Syn was identified in the upper layer of the mucosa and submucosa layer. Furthermore, Syn (wild‑type) was present in the mucosa and submucosa. The number of NF‑positive neurons in the submucosal layer declined significantly with age (P<0.01). In addition, Syn and N‑Syn significantly increased during aging (P<0.01). Furthermore, a negative correlation was identified between neuron number and synucleinopathies, indicating the abnormal accumulation of both wild-type Syn and N‑Syn in the mucosa, submucosa, muscle layer and myenteric plexus. The present study demonstrates that the Syn pathology may be linked to colic neuronal degeneration during normal aging, and this link may cause functional deficits.
Collapse
Affiliation(s)
- Qi Xuan
- Department of Nutrition, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yu-Xian Zhang
- Department of Internal Medicine, Beijing Moslem Hospital, Beijing 100054, P.R. China
| | - Dian-Gang Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Piu Chan
- Department of Neurobiology, Institute of Geriatrics of Beijing, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, P.R. China
| | - Sheng-Li Xu
- Department of Neurobiology, Institute of Geriatrics of Beijing, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing 100053, P.R. China
| | - Ye-Qing Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
6
|
Ye W, Ji D, Wang W, Luo R, Chen HF. Test and Evaluation of ff99IDPs Force Field for Intrinsically Disordered Proteins. J Chem Inf Model 2015; 55:1021-9. [PMID: 25919886 DOI: 10.1021/acs.jcim.5b00043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over 40% of eukaryotic proteomic sequences have been predicted to be intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) and confirmed to be associated with many diseases. However, widely used force fields cannot well reproduce the conformers of IDPs. Previously the ff99IDPs force field was released to simulate IDPs with CMAP energy corrections for the eight disorder-promoting residues. In order to further confirm the performance of ff99IDPs, three representative IDP systems (arginine-rich HIV-1 Rev, aspartic proteinase inhibitor IA3, and α-synuclein) were used to test and evaluate the simulation results. The results show that for free disordered proteins, the chemical shifts from the ff99IDPs simulations are in quantitative agreement with those from reported NMR measurements and better than those from ff99SBildn. Thus, ff99IDPs can sample more clusters of disordered conformers than ff99SBildn. For structural proteins, both ff99IDPs and ff99SBildn can well reproduce the conformations. In general, ff99IDPs can successfully be used to simulate the conformations of IDPs and IDRs in both bound and free states. However, relative errors could still be found at the boundaries of ordered residues scattered in long disorder-promoting sequences. Therefore, polarizable force fields might be one of the possible ways to further improve the performance on IDPs.
Collapse
Affiliation(s)
- Wei Ye
- †State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dingjue Ji
- †State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Wang
- †State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ray Luo
- ‡Department of Molecular Biology and Biochemistry, Department of Chemical Engineering and Materials Science, and Department of Biomedical Engineering, University of California, Irvine, California 92697-3900, United States
| | - Hai-Feng Chen
- †State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.,§Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai 200235, China
| |
Collapse
|
7
|
Wang W, Ye W, Jiang C, Luo R, Chen H. New Force Field on Modeling Intrinsically Disordered Proteins. Chem Biol Drug Des 2014; 84:253-69. [DOI: 10.1111/cbdd.12314] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/15/2014] [Accepted: 02/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Microbial metabolism Department of Bioinformatics and Biostatistics College of Life Sciences and Biotechnology Shanghai Jiaotong University 800 Dongchuan Road Shanghai 200240 China
| | - Wei Ye
- State Key Laboratory of Microbial metabolism Department of Bioinformatics and Biostatistics College of Life Sciences and Biotechnology Shanghai Jiaotong University 800 Dongchuan Road Shanghai 200240 China
| | - Cheng Jiang
- State Key Laboratory of Microbial metabolism Department of Bioinformatics and Biostatistics College of Life Sciences and Biotechnology Shanghai Jiaotong University 800 Dongchuan Road Shanghai 200240 China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry and Biomedical Engineering University of California Irvine CA 92697‐3900 USA
| | - Hai‐Feng Chen
- State Key Laboratory of Microbial metabolism Department of Bioinformatics and Biostatistics College of Life Sciences and Biotechnology Shanghai Jiaotong University 800 Dongchuan Road Shanghai 200240 China
- Shanghai Center for Bioinformation Technology 1275 Keyuan Road Shanghai 200235 China
| |
Collapse
|
8
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|
9
|
Kroksveen A, Opsahl J, Aye T, Ulvik R, Berven F. Proteomics of human cerebrospinal fluid: Discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics 2011; 74:371-88. [DOI: 10.1016/j.jprot.2010.11.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 01/01/2023]
|
10
|
Riedel M, Goldbaum O, Wille M, Richter-Landsberg C. Membrane Lipid Modification by Docosahexaenoic Acid (DHA) Promotes the Formation of α-Synuclein Inclusion Bodies Immunopositive for SUMO-1 in Oligodendroglial Cells After Oxidative Stress. J Mol Neurosci 2010; 43:290-302. [DOI: 10.1007/s12031-010-9439-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/10/2010] [Indexed: 11/29/2022]
|
11
|
Abstract
Over the past few years, genetic findings have changed our views on the molecular pathogenesis of Parkinson disease (PD), as mutations in a growing number of genes have been found to cause monogenic forms of the disorder. These mutations cause neuronal dysfunction and neurodegeneration either by a toxic gain of function, as in the case of the dominant forms of monogenic PD caused by mutations in the genes for alpha-synuclein or LRRK2, or by a loss of an intrinsic protective function, as is likely for the recessive PD genes parkin (PRKN), PINK1 and DJ-1. Evidence is emerging that at least some of the pathways uncovered in the rare monogenic forms of PD may play a direct role in the aetiology of the common sporadic disorder and that variants of the respective genes contribute to the risk of developing the disease. These findings will allow the search for new treatment strategies that focus on the underlying molecular pathophysiology, rather than simply on ameliorating symptoms.
Collapse
|
12
|
Abstract
The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-beta) members of the SNARE family.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
13
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|
14
|
Urie KG, Angulo D, Lee JC, Kozak JJ, Gray HB, Winkler JR. Synchronous vs asynchronous chain motion in alpha-synuclein contact dynamics. J Phys Chem B 2009; 113:522-30. [PMID: 19099437 DOI: 10.1021/jp806727e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
alpha-Synuclein (alpha-syn) is an intrinsically unstructured 140-residue neuronal protein of uncertain function that is implicated in the etiology of Parkinson's disease. Tertiary contact formation rate constants in alpha-syn, determined from diffusion-limited electron-transfer kinetics measurements, are poorly approximated by simple random polymer theory. One source of the discrepancy between theory and experiment may be that interior-loop formation rates are not well approximated by end-to-end contact dynamics models. We have addressed this issue with Monte Carlo simulations to model asynchronous and synchronous motion of contacting sites in a random polymer. These simulations suggest that a dynamical drag effect may slow interior-loop formation rates by about a factor of 2 in comparison to end-to-end loops of comparable size. The additional deviations from random coil behavior in alpha-syn likely arise from clustering of hydrophobic residues in the disordered polypeptide.
Collapse
Affiliation(s)
- Kristopher G Urie
- Department of Chemistry, DePaul University, 243 South Wabash Ave, Chicago, Illinois 60604-2301, USA
| | | | | | | | | | | |
Collapse
|
15
|
Parnetti L, Tiraboschi P, Lanari A, Peducci M, Padiglioni C, D'Amore C, Pierguidi L, Tambasco N, Rossi A, Calabresi P. Cerebrospinal fluid biomarkers in Parkinson's disease with dementia and dementia with Lewy bodies. Biol Psychiatry 2008; 64:850-5. [PMID: 18395699 DOI: 10.1016/j.biopsych.2008.02.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clinical criteria for differentiating Parkinson's disease (PD) with dementia (PDD) from dementia with Lewy bodies (DLB) are unsatisfactory. Their existence as distinct clinicopathologic entities is still debated, although the burden of Alzheimer's disease (AD) pathology seems higher in DLB. Thus, analysis of cerebrospinal fluid (CSF) biomarkers (beta-amyloid(1-42) [Abeta42], total tau, and hyperphosphorylated tau [p-tau]) in living subjects might provide significant pathophysiological information on these diseases. METHODS Cerebrospinal fluid biomarkers were measured in DLB (n = 19), PDD (n = 18), and AD (n = 23) subjects matched for age, sex, and dementia severity, as well as in PD (n = 20) and normal control subjects (n = 20). RESULTS DLB showed the lowest mean CSF Abeta42 levels, with a negative association to dementia duration (rho = -.42, p = .07). In DLB patients, mean CSF total tau levels were significantly lower than in AD patients (508 +/- 387 vs. 960 +/- 619, respectively) but twofold to threefold higher than in PDD (286 +/- 184), PD (160 +/- 64), or normal control subjects (177 +/- 76), with a positive association to dementia severity (Mini-Mental State Examination: rho = -.54, p = .02; Milan Overall Dementia Assessment: rho = -.66, p = .002). PDD patients had mean CSF Abeta42 and total tau levels similar to those seen in PD patients. Hyperphosphorylated tau was significantly increased in the AD group only. CONCLUSIONS Cerebrospinal fluid Abeta42 and total tau have a different behavior in DLB and PDD, being related to duration and severity of dementia in DLB alone. Hyperphosphorylated tau is not significantly altered in these conditions.
Collapse
Affiliation(s)
- Lucilla Parnetti
- Section of Neurology, Department of Medical and Surgical Specialties and Public Health, University of Perugia, Perugia General Hospital, Perugia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG. Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 2008; 64:239-46. [PMID: 18825660 DOI: 10.1002/ana.21465] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To this day, the cause of multiple system atrophy (MSA) remains stubbornly enigmatic. A growing body of observations regarding the clinical, morphological, and biochemical phenotypes of MSA has been published, but the interested student is still left without a clue as to its underlying cause. MSA has long been considered a rare cousin of Parkinson's disease and cerebellar degeneration; it is rich in acronyms but poor in genetic and environmental leads. Because of the worldwide research efforts conducted over the last two decades and the discovery of the alpha-synuclein-encoding SNCA gene as a cause of rare familial Parkinson's disease, the MSA field has seen advances on three fronts: the identification of its principal cellular target, that is, oligodendrocytes; the characterization of alpha-synuclein-rich glial cytoplasmic inclusions as a suitable marker at autopsy; and improved diagnostic accuracy in living patients resulting from detailed clinicopathological studies. The working model of MSA as a primary glial disorder was recently strengthened by the finding of dysregulation in the metabolism of myelin basic protein and p25alpha, a central nervous system-specific phosphoprotein (also called tubulin polymerization promoting protein, TPPP). Intriguingly, in early cases of MSA, the oligodendrocytic changes in myelin basic protein and p25alpha processing were recorded even before formation of glial cytoplasmic inclusions became detectable. Here, we review the evolving concept that MSA may not just be related to Parkinson's disease but also share traits with the family of demyelinating disorders. Although these syndromes vary in their respective cause of oligodendrogliopathy, they have in common myelin disruption that is often followed by axonal dysfunction.
Collapse
Affiliation(s)
- Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
17
|
Jellinger KA, Attems J. Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol 2008; 115:427-36. [PMID: 18273624 DOI: 10.1007/s00401-008-0347-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/21/2008] [Accepted: 01/30/2008] [Indexed: 08/30/2023]
Abstract
Whereas the prevalence and impact of vascular pathology in Alzheimer diease (AD) are well established, the role of vascular and Alzheimer pathologies in the progression of neurodegeneration and cognitive impairment in Parkinson disease (PD) is under discussion. A retrospective clinico-pathologic study of 100 patients with autopsy proven PD (including 44 cases with dementia/PDD) and 20 cases of dementia with Lewy bodies (DLB) confirmed essential clinical (duration of illness, Mini-Mental State Examination/MMSE, age at death) and morphologic differences between these groups; Lewy body Braak scores and Alzheimer pathologies (neuritic Braak stage, cortical Abeta plaque load, and generalized cerebral amyloid angiopathy or CAA) were significantly higher/more severe in DLB and PDD than in PD without dementia. Duration of illness showed no association to any of the examined pathologic parameters, while there was a moderate association between LB scores and neuritic Braak stages, the latter significantly increasing with age. Significant association between cerebrovascular lesions and neuritic Braak stage was seen in PDD but not in PD subjects without dementia. These data suggest an influence of Alzheimer-related lesions on the progression of the neurodegenerative process and, in particular, on cognitive decline in both PDD and DLB. On the other hand, both these factors in PD and DLB appear to be largely independent from coexistent vascular pathology, except in cases with severe cerebrovascular lesions or those related to neuritic AD pathology. Assessment of ApoE genotype in a small number of cases showed no significant differences in the severity of Abeta plaque load and CAA except for much lower intensities in non-demented epsilon3/3 patients. Despite increasing evidence suggesting synergistic reactions between alpha-synuclein (alphaSyn), tau and Abeta-peptides, the major protein markers of both AD and Lewy body diseases, and of both vascular pathology and AD, the molecular background and pathophysiological impact of these pathologies on the progression of neurodegeneration and development of cognitive decline in PD await further elucidation.
Collapse
|
18
|
Jellinger KA. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. NEURODEGENER DIS 2008; 5:118-21. [PMID: 18322367 DOI: 10.1159/000113679] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Proteinopathies are a heterogenous group of neurodegenerative disorders, characterized by intra- and extracellular accumulation of abnormal filament proteins. OBJECTIVE To describe the neuropathology of specific forms of tauopathies and synucleinopathies, the overlap of morphologic features and molecular interactions. METHODS The study uses currently available morphologic criteria of different proteinopathies. RESULTS Alzheimer disease (AD) is featured by deposition of beta-amyloid peptides, phosphorylated tau protein (3- and 4-repeat tau) and frequent alpha-synuclein (aSyn) deposits. Lewy body diseases (LBD), such as sporadic Parkinson disease (PD) and dementia with Lewy bodies (DLB), show aSyn-positive deposits in neurons, neurites, glia, and presynaptic terminals, while frontotemporal dementias present tau-positive and tau-negative, ubiquitin- and TDP-43-positive neuronal and glial inclusions. The latter have also been observed in AD, PD, PD dementia and motor neuron disorders. Molecular interactions between major proteins, which may occur within the same brain in various distribution patterns, cause variable phenotypes and mixed pathologies, e.g. AD with aSyn pathology in the brainstem and amygdala, PD and DLB with AD lesions, and frontotemporal dementia with a mixture of various deposits, while others are featured by one principal pathology without other lesions (e.g. tangle-predominant type of dementia, pure PD, brainstem-predominant LBD). CONCLUSION Animal models and in vitro studies showing co-occurrence and mutual promotion of fibrillation of these proteins indicate their synergistic interactions in the pathogenesis of these disorders which, at least in part, are genetically influenced.
Collapse
|
19
|
Cerebral amyloid angiopathy in Lewy body disease. J Neural Transm (Vienna) 2008; 115:473-82. [PMID: 18301958 DOI: 10.1007/s00702-007-0856-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/01/2007] [Indexed: 01/06/2023]
Abstract
While Alzheimer and Lewy body pathologies are discussed as major substrates of dementia in Parkinson's disease (PD/Lewy body disease of brainstem type), the incidence and impact of cerebral amyloid angiopathy (CAA) and its association with cognitive decline in PD and dementia with Lewy bodies (DLB) are unknown. The severity of CAA and other Alzheimer lesions were assessed in 68 cases of autopsy-confirmed PD, 32 of them with dementia (PDD), and in 20 cases of DLB. PDD patients were significantly older than those without dementia (mean age 84.5 vs 77.6 years; p < 0.01), the age of DLB patients was in between both groups (mean 80.0 years), while duration of disease was DLB < PDD < PD (mean 6.5 vs 8.5 and 14.3 years). PDD patients had a significantly higher neuritic Braak stage (mean 4.2 vs 2.4, p < 0.01), significantly higher cortical amyloid beta (Abeta) load, capillary cerebral amyloid angiopathy (CapCAA) and generalized CAA than those without dementia (mild CapCAA in 22% vs moderate to severe CapCAA in 87%; mild generalized CAA in 5.5% vs moderate to severe generalized CAA in 82%). Mean PD stage was higher in both DLB and PDD than in PD (mean 5.2 vs 4.5 and 4.0, respectively): Mean neuritic Braak stage in DLB was 3.4, severe Abeta plaque load was seen in 95%, moderate to severe CapCAA in 90% and mild to severe generalized CAA in 70%. This and other recent studies imply an association of CAA with cognitive decline in both PD/PDD and DLB, particularly in cases with concomitant AD-type pathology.
Collapse
|
20
|
Abstract
Epidemiological and clinical data suggest that homocysteine (Hcy) may increase the risk of Alzheimer's disease, but the underlying mechanisms are elusive. To investigate the effect of Hcy on phosphorylation of tau, we injected Hcy into the lateral cerebral ventricle of rats. We found that level of the hyperphosphorylated tau at PHF-1 (Ser396/404) and tau-1 (Ser198/199/202) epitopes was elevated prominently at 6, 9, and 12 h after the injection, and it was recovered to normal at 24 h. Simultaneously, the level of protein phosphatase-2A catalytic subunit (PP-2Ac) was reduced markedly as compared with control. These results imply that Hcy may induce hyperphosphorylation of tau with PP-2Ac involved mechanism.
Collapse
|
21
|
Jellinger KA. More frequent Lewy bodies but less frequent Alzheimer-type lesions in multiple system atrophy as compared to age-matched control brains. Acta Neuropathol 2007; 114:299-303. [PMID: 17476513 DOI: 10.1007/s00401-007-0227-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/02/2007] [Accepted: 04/02/2007] [Indexed: 11/25/2022]
|
22
|
Abstract
Tertiary contact formation rates in alpha-synuclein, an intrinsically disordered polypeptide implicated in Parkinson's disease, have been determined from measurements of diffusion-limited electron-transfer kinetics between triplet-excited tryptophan:3-nitrotyrosine pairs separated by 10, 12, 55, and 90 residues. Calculations based on a Markovian lattice model developed to describe intrachain diffusion dynamics for a disordered polypeptide give contact quenching rates for various loop sizes ranging from 6 to 48 that are in reasonable agreement with experimentally determined values for small loops (10-20 residues). Contrary to expectations, measured contact rates in alpha-synuclein do not continue to decrease as the loop size increases (>/=35 residues), and substantial deviations from calculated rates are found for the pairs W4-Y94, Y39-W94, and W4-Y136. The contact rates for these large loops indicate much shorter average donor-acceptor separations than expected for a random polymer.
Collapse
Affiliation(s)
- Jennifer C Lee
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
23
|
Attems J, Quass M, Jellinger KA. Tau and alpha-synuclein brainstem pathology in Alzheimer disease: relation with extrapyramidal signs. Acta Neuropathol 2007; 113:53-62. [PMID: 17031655 DOI: 10.1007/s00401-006-0146-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/05/2006] [Accepted: 09/05/2006] [Indexed: 11/26/2022]
Abstract
Extrapyramidal symptoms (EPS) in Alzheimer disease (AD) often increase with disease severity. Their neuropathological substrate is a matter of discussion. We investigated tau and alpha-synuclein (AS) pathologies in brainstem in AD patients with and without EPS. Among 160 elderly subjects with autopsy-proven AD (110 female, 50 male, aged 61-102, mean 84.1 +/- 8.3 SD years), 151 (94.4%) being demented, 35 (21.9%) had clinically reported EPS (rigidity, bradykinesia, gait impairment). Neuropathological examination included standardized classification of AD according to current criteria, and semiquantitative assessment of neuronal loss in substantia nigra (SN), locus coeruleus (LC), and of tau and AS lesions in brainstem, and, in addition, of cerebrovascular lesions. The prevalence of EPS was only slightly more frequent in higher Braak stages. Tau pathology in brainstem significantly increased with increasing Braak stages, while AS lesions did not. EPS correlated best with SN cell loss (P < 0.001) and much less with AS pathology in several brain areas (P < 0.05), except in medulla oblongata (P < 0.001). Although both pathologies in substantia nigra correlated with neuron loss (P < 0.001), nigral tau lesions, present in 88.5% of EPS positive cases (without AS lesions in 55.6%), did not correlate with EPS. Additional cerebrovascular changes apparently did not influence the development of EPS symptoms in fully developed AD. With other recent data, these results suggest that neuronal loss in SN, partly related to tau lesions, is a major pathological substrate of EPS in AD, but some cases with and without EPS may show no or only minimal nigral changes. However, often associated with nigral tau lesions and higher Braak stages, EPS in elderly patients may be a surrogate marker for severe neuritic AD pathology.
Collapse
Affiliation(s)
- Johannes Attems
- Institute of Pathology, Otto Wagner Hospital, Vienna, Austria
| | | | | |
Collapse
|
24
|
Ozawa T. Pathology and genetics of multiple system atrophy: an approach to determining genetic susceptibility spectrum. Acta Neuropathol 2006; 112:531-8. [PMID: 16855831 DOI: 10.1007/s00401-006-0109-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/19/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Recent advances in the molecular pathology and genetics of multiple system atrophy (MSA) indicate that the disease involves plural pathogenic mechanisms. The determination of the morphological spectrum of MSA using quantitative pathological analysis points to the need for further investigation to determine the population-bound phenotype distribution of MSA. These notions support the hypothesis that a spectrum of genetic susceptibility factors underlies MSA pathogenesis. A possibly effective strategy for determining this genetic susceptibility spectrum is to perform an association study of important genes for neurodegenerative diseases, which are prevalent in a population, using linkage disequilibrium mapping in MSA patients with well-characterized morphological phenotypes.
Collapse
Affiliation(s)
- Tetsutaro Ozawa
- Department of Neurology, Niigata University Brain Research Institute, 1 Asahimachi, Niigata, Japan.
| |
Collapse
|
25
|
Jellinger KA, Attems J. Does striatal pathology distinguish Parkinson disease with dementia and dementia with Lewy bodies? Acta Neuropathol 2006; 112:253-60. [PMID: 16804711 DOI: 10.1007/s00401-006-0088-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 12/28/2022]
Abstract
The morphological differentiation of Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB) is a matter of discussion. The objective of this study was to investigate the regional distribution of beta-amyloid (Abeta) plaques, alpha-synuclein (AS), and pathology in both disorders. The basal ganglia from 17 age-matched patients of PDD and DLB each were immunohistochemically examined with variable degrees of associated Alzheimer pathology using antibodies to Abeta, AS, and tau. DLB brains showed a significantly higher burden of (diffuse) amyloid plaques in the putamen and caudate nucleus and slightly more severe tau pathology than PDD brains despite similar neuritic Braak stages. Phases of Abeta development in DLB brains often, but inconsistently, correlated with both neuritic Braak stages and severity of striatal Abeta load, while these correlations were almost never seen in PDD cases with Alzheimer lesions. They also revealed a higher burden of AS-lesions (both Lewy neurites and Lewy bodies) than PDD cases that commonly had a paucity of all three types of lesion. The globus pallidus was virtually spared in both phenotypes. Differences in AS and Abeta pathologies and much less of tau lesions in the striatum support a morphologic distinction between PDD and DLB, which may be of pathophysiologic importance, but the causes of these differences are unclear.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, 1070 Vienna, Austria.
| | | |
Collapse
|
26
|
Jellinger KA. P25alpha immunoreactivity in multiple system atrophy and Parkinson disease. Acta Neuropathol 2006; 112:112. [PMID: 16688462 DOI: 10.1007/s00401-006-0075-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
|