1
|
Moisseiev E, Smit-McBride Z, Oltjen S, Zhang P, Zawadzki RJ, Motta M, Murphy CJ, Cary W, Annett G, Nolta JA, Park SS. Intravitreal Administration of Human Bone Marrow CD34+ Stem Cells in a Murine Model of Retinal Degeneration. Invest Ophthalmol Vis Sci 2017; 57:4125-35. [PMID: 27537262 PMCID: PMC6733500 DOI: 10.1167/iovs.16-19252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Intravitreal murine lineage-negative bone marrow (BM) hematopoietic cells slow down retinal degeneration. Because human BM CD34+ hematopoietic cells are not precisely comparable to murine cells, this study examined the effect of intravitreal human BM CD34+ cells on the degenerating retina using a murine model. Methods C3H/HeJrd1/rd1 mice, immunosuppressed systemically with tacrolimus and rapamycin, were injected intravitreally with PBS (n = 16) or CD34+ cells (n = 16) isolated from human BM using a magnetic cell sorter and labeled with enhanced green fluorescent protein (EGFP). After 1 and 4 weeks, the injected eyes were imaged with scanning laser ophthalmoscopy (SLO)/optical coherence tomography (OCT) and tested with electroretinography (ERG). Eyes were harvested after euthanasia for immunohistochemical and microarray analysis of the retina. Results In vivo SLO fundus imaging visualized EGFP-labeled cells within the eyes following intravitreal injection. Simultaneous OCT analysis localized the EGFP-labeled cells on the retinal surface resulting in a saw-toothed appearance. Immunohistochemical analysis of the retina identified EGFP-labeled cells on the retinal surface and adjacent to ganglion cells. Electroretinography testing showed a flat signal both at 1 and 4 weeks following injection in all eyes. Microarray analysis of the retina following cell injection showed altered expression of more than 300 mouse genes, predominantly those regulating photoreceptor function and maintenance and apoptosis. Conclusions Intravitreal human BM CD34+ cells rapidly home to the degenerating retinal surface. Although a functional benefit of this cell therapy was not seen on ERG in this rapidly progressive retinal degeneration model, molecular changes in the retina associated with CD34+ cell therapy suggest potential trophic regenerative effects that warrant further exploration.
Collapse
Affiliation(s)
- Elad Moisseiev
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States 2Department of Ophthalmology, Tel Aviv Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zeljka Smit-McBride
- Vitreoretinal Research Laboratory, University of California Davis Department of Ophthalmology, University of California, Davis, California, United States
| | - Sharon Oltjen
- Vitreoretinal Research Laboratory, University of California Davis Department of Ophthalmology, University of California, Davis, California, United States
| | - Pengfei Zhang
- University of California Davis Research Investments in the Sciences and Engineering (RISE) Eye-Pod Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States 4University of California Davis Research Investments in the Sciences and Engineering (RISE) Eye-Pod Laboratory, Department of Cel
| | - Monica Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, United States
| | - Christopher J Murphy
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States 5Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, Un
| | - Whitney Cary
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States
| | - Geralyn Annett
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States
| | - Jan A Nolta
- Stem Cell Program, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States
| | - Susanna S Park
- Department of Ophthalmology & Vision Science University of California Davis Eye Center, Sacramento, California, United States
| |
Collapse
|
2
|
Novel Strategies for the Improvement of Stem Cells' Transplantation in Degenerative Retinal Diseases. Stem Cells Int 2016; 2016:1236721. [PMID: 27293444 PMCID: PMC4887645 DOI: 10.1155/2016/1236721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/17/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Currently, there is no cure for the permanent vision loss caused by degenerative retinal diseases. One of the novel therapeutic strategies aims at the development of stem cells (SCs) based neuroprotective and regenerative medicine. The main sources of SCs for the treatment of retinal diseases are the embryo, the bone marrow, the region of neuronal genesis, and the eye. The success of transplantation depends on the origin of cells, the route of administration, the local microenvironment, and the proper combinative formula of growth factors. The feasibility of SCs based therapies for degenerative retinal diseases was proved in the preclinical setting. However, their translation into the clinical realm is limited by various factors: the immunogenicity of the cells, the stability of the cell phenotype, the predilection of SCs to form tumors in situ, the abnormality of the microenvironment, and the association of a synaptic rewiring. To improve SCs based therapies, nanotechnology offers a smart delivery system for biomolecules, such as growth factors for SCs implantation and differentiation into retinal progenitors. This review explores the main advances in the field of retinal transplantology and applications of nanotechnology in the treatment of retinal diseases, discusses the challenges, and suggests new therapeutic approaches in retinal transplantation.
Collapse
|
3
|
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 2016; 7:42. [PMID: 26983784 PMCID: PMC4793534 DOI: 10.1186/s13287-016-0299-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. The reduction in color/contrast sensitivity due to the loss of neural cells in the ganglion cell layer of the retina is an early event in the onset of diabetic retinopathy. Multipotent mesenchymal stromal cells (MSCs) are an attractive tool for the treatment of neurodegenerative diseases, since they could differentiate into neuronal cells, produce high levels of neurotrophic factors and reduce oxidative stress. Our aim was to determine whether the intravitreal administration of adipose-derived MSCs was able to prevent the loss of retinal ganglion cells in diabetic mice. Methods Diabetes was induced in C57BL6 mice by the administration of streptozotocin. When retinal pro-damage mechanisms were present, animals received a single intravitreal dose of 2 × 105 adipose-derived MSCs or the vehicle. Four and 12 weeks later we evaluated: (a) retinal ganglion cell number (immunofluorescence); (b) neurotrophic factor levels (real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA)); (c) retinal apoptotic rate (TUNEL); (d) retinal levels of reactive oxygen species and oxidative damage (ELISA); (e) electrical response of the retina (electroretinography); (f) pro-angiogenic and anti-angiogenic factor levels (RT-qPCR and ELISA); and (g) retinal blood vessels (angiography). Furthermore, 1, 4, 8 and 12 weeks post-MSC administration, the presence of donor cells in the retina and their differentiation into neural and perivascular-like cells were assessed (immunofluorescence and flow cytometry). Results MSC administration completely prevented retinal ganglion cell loss. Donor cells remained in the vitreous cavity and did not differentiate into neural or perivascular-like cells. Nevertheless, they increased the intraocular levels of several potent neurotrophic factors (nerve growth factor, basic fibroblast growth factor and glial cell line-derived neurotrophic factor) and reduced the oxidative damage in the retina. Additionally, MSC administration has a neutral effect on the electrical response of the retina and did not result in a pathological neovascularization. Conclusions Intravitreal administration of adipose-derived MSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Thus, MSCs represent an interesting tool in order to prevent diabetic retinopathy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0299-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Cristhian A Urzua
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Scarleth Montecino
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Karla Leal
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Paulette Conget
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile.
| |
Collapse
|
4
|
Gao H, Zhang HL, Shou J, Chen L, Shen Y, Tang Q, Huang J, Zhu J. Towards retinal ganglion cell regeneration. Regen Med 2013; 7:865-75. [PMID: 23164085 DOI: 10.2217/rme.12.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic optic nerve injury and glaucoma are among the leading causes of incurable vision loss across the world. What is worse, neither pharmacological nor surgical interventions are significantly effective in reversing or halting the progression of vision loss. Advances in cell biology offer some hope for the victims of optic nerve damage and subsequent partial or complete visual loss. Retinal ganglion cells (RGCs) travel through the optic nerve and carry all visual signals to the brain. After injury, RGC axons usually fail to regrow and die, leading to irreversible loss of vision. Various kinds of cells and factors possess the ability to support the process of axon regeneration for RGCs. This article summarizes the latest advances in RGC regeneration.
Collapse
Affiliation(s)
- Huasong Gao
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Park SS, Caballero S, Bauer G, Shibata B, Roth A, Fitzgerald PG, Forward KI, Zhou P, McGee J, Telander DG, Grant MB, Nolta JA. Long-term effects of intravitreal injection of GMP-grade bone-marrow-derived CD34+ cells in NOD-SCID mice with acute ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 2012; 53:986-94. [PMID: 22247454 DOI: 10.1167/iovs.11-8833] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine long-term safety of intravitreal administration of good manufacturing practice (GMP)-grade human bone-marrow-derived CD34(+) cells in NOD-SCID (nonobese diabetic-severe combined immunodeficiency) mice with acute retinal ischemia-reperfusion injury, a model for retinal vasculopathy. METHOD Acute ischemia-reperfusion injury was induced in the right eye of adult NOD-SCID mice (n = 23) by transient elevation of intraocular pressure. Seven days later, 12 injured eyes and 5 normal contralateral eyes were injected each intravitreally with 5 × 10(4) CD34(+) cells isolated under GMP conditions from a healthy human donor bone marrow using an immunomagnetic cell isolation system. The remaining 11 injured eyes were not treated and served as controls. Mice were euthanized 1 day, 4 months, and 8 months later. Both eyes were enucleated and examined by immunohistochemical analysis and hematoxylin and eosin staining. Among mice followed for 8 months, electroretinography (ERG) was performed on both eyes before euthanization. All major organs were examined grossly and histologically after serial sectioning. RESULTS Immunohistochemical staining 4 months after injection showed detectable CD34(+) cells in the retinal vasculature. ERG at 8 months after CD34(+) cell injection showed signals that were similar in untreated eyes. Histology of the enucleated eyes injected with CD34(+) cells showed no intraocular tumor or abnormal tissue growth after 8 months. Histologic analysis of all major organs showed no abnormal proliferation of human cells. CONCLUSIONS Intravitreal administration of GMP-grade human bone-marrow-derived CD34(+) cells appears to be well tolerated long-term in eyes with acute retinal ischemic injury. A clinical trial will start to further explore this therapy.
Collapse
Affiliation(s)
- Susanna S Park
- Department of Ophthalmology and Vision Science, University of California Davis Eye Center, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li H, Yan Z, Cao H, Wang Y. Effective mobilisation of bone marrow-derived cells through proteolytic activity: a new treatment strategy for age-related macular degeneration. Med Hypotheses 2011; 78:286-90. [PMID: 22129485 DOI: 10.1016/j.mehy.2011.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 10/16/2011] [Accepted: 11/08/2011] [Indexed: 12/12/2022]
Abstract
Selective targeting of bone marrow-derived cells (BMCs) has been heralded as a promising avenue for age-related macular degeneration (AMD) therapeutics. Many researchers have demonstrated that the function of circulating BMCs is related to disease severity in patients with AMD. Transplanted BMCs are able to transdifferentiate into retina-specific cells to replace those lost due to damage or degeneration in the pathologic process of experimental models of AMD, which may provide beneficial effects in patients with AMD. However, a major barrier to transferring the use of BMCs into clinical practice is the limited quantity of BMCs in the peripheral circulation. Technology has not yet reached a stage where ex vivo-expanded BMCs can be routinely used for cell therapy. A feasible strategy to circumvent this issue of BMC scarcity is to increase the mobilisation of autologous BMCs from the patient's bone marrow into the blood circulation. Extensive studies have demonstrated that the SDF-1/CXCR4 axis is a key regulator for BMC mobilisation. Moreover, abrogation of the SDF-1/CXCR4 axis by proteolytic modification can efficiently increase BMC mobilisation. We speculate that BMC mobilisation by proteolytic enzymes may supply a sufficient amount of autologous cells to repair and regenerate injured and degenerated the retinal pigment epithelium (RPE), photoreceptors, or other retina-specific cells, which could prevent AMD progression. If the BMC mobilisation strategy is used to treat AMD, it may overcome the existing problems of transferring BMC-based therapy into the clinic and become a particularly feasible therapeutic approach for AMD.
Collapse
Affiliation(s)
- Hong Li
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | |
Collapse
|
7
|
Goldenberg-Cohen N, Avraham-Lubin BCR, Sadikov T, Goldstein RS, Askenasy N. Primitive stem cells derived from bone marrow express glial and neuronal markers and support revascularization in injured retina exposed to ischemic and mechanical damage. Stem Cells Dev 2011; 21:1488-500. [PMID: 21905921 DOI: 10.1089/scd.2011.0366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ischemic or mechanical injury to the optic nerve is an irreversible cause of vision loss, associated with limited regeneration and poor response to neuroprotective agents. The aim of this study was to assess the capacity of adult bone marrow cells to participate in retinal regeneration following the induction of anterior ischemic optic neuropathy (AION) and optic nerve crush (ONC) in a rodent model. The small-sized subset of cells isolated by elutriation and lineage depletion (Fr25lin(-)) was found to be negative for the neuroglial markers nestin and glial fibrillary acidic protein (GFAP). Syngeneic donor cells, identified by genomic marker in sex-mismatched transplants and green fluorescent protein, incorporated into the injured retina (AION and ONC) at a frequency of 0.35%-0.45% after intravenous infusion and 1.8%-2% after intravitreous implantation. Perivascular cells with astrocytic morphology expressing GFAP and vimentin were of the predominant lineage that engrafted after AION injury; 10%-18% of the donor cells incorporated in the retinal ganglion cell layer and expressed NeuN, Thy-1, neurofilament, and beta-tubulin III. The Fr25lin(-) cells displayed an excellent capacity to migrate to sites of tissue disruption and developed coordinated site-specific morphological and phenotypic neural and glial markers. In addition to cellular reconstitution of the injured retinal layers, these cells contributed to endothelial revascularization and apparently supported remodeling by secretion of insulin-like growth factor-1. These results suggest that elutriated autologous adult bone marrow-derived stem cells may serve as an accessible source for cellular reconstitution of the retina following injury.
Collapse
Affiliation(s)
- Nitza Goldenberg-Cohen
- Krieger Eye Research Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | | | | | | | | |
Collapse
|
8
|
Singh T, Prabhakar S, Gupta A, Anand A. Recruitment of stem cells into the injured retina after laser injury. Stem Cells Dev 2011; 21:448-54. [PMID: 21561324 DOI: 10.1089/scd.2011.0002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Retinal degeneration is a devastating complication of diabetes and other disorders. Stem cell therapy for retinal degeneration has shown encouraging results but functional regeneration has not been yet achieved. Our study was undertaken to evaluate the localization of stem cells delivered to the retina by intravenous versus intravitreal infusion, because stem cell localization is a key factor in ultimate in vivo function. We used lineage-negative bone marrow-derived stem cells in a model wherein retina of mice was induced by precise and reproducible laser injury. Lin(-ve) bone marrow cells (BMCs) were labeled with a tracking dye and their homing capacity was analyzed at time points after infusion. We found that Lin(-ve) BMCs get incorporated into laser-injured retina when transplanted through either the intravitreal or intravenous route. The intravenous route resulted in optimal localization of donor cells at the site of injury. These cells incorporated into injured retina in a dose-dependent manner. The data presented in this study reflect the importance of dose and route for stem cell-based treatment designed to result in retinal regeneration.
Collapse
Affiliation(s)
- Tajinder Singh
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
9
|
Chung JK, Park TK, Ohn YH, Park SK, Hong DS. Modulation of retinal wound healing by systemically administered bone marrow-derived mesenchymal stem cells. KOREAN JOURNAL OF OPHTHALMOLOGY 2011; 25:268-74. [PMID: 21860575 PMCID: PMC3149139 DOI: 10.3341/kjo.2011.25.4.268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
Purpose To evaluate whether systemically injected bone marrow-derived mesenchymal stem cells (MSCs) can be incorporated into neuroretinal tissues and play an important role in retinal wound healing in the laser-induced retinal trauma model. Methods Retinotomies were made by applying an Nd:YAG laser to rat retina. On the first day after the injuries, cell suspensions that were obtained from the same line of rat (containing 1 × 106 green fluorescence protein [GFP]-marked bone marrow-derived MSCs) were injected through a tail vein in the experimental group and phosphate buffer solution (PBS) was injected in the same way in the control group. Fundus photographs were taken serially for fundus examination and eyeballs were enucleated for histological studies that were conducted at five and seven weeks after MSC and PBS injection. After the tissues were prepared, the retinotomy sites were observed with routine histological staining and confocal microscopy. Results Retinal detachment resolved in the experimental group, whereas it progressed in the control group. The retinotomy sites closed partially with identifiable GFP positive cells 5 weeks after MSC injection. At 7 weeks after MSC injection, complete healing without retinal detachment and plentiful GFP positive cells were observed at the transitional zone between damaged and normal retina. Conclusions Systemically administered GFP-marked MSCs may be incorporated into the neuroretinal tissues and play an important role in the wound modulation of physically damaged retinal tissues.
Collapse
Affiliation(s)
- Jin Kwon Chung
- Department of Ophthalmology, University Hospital, Soonchunhyang University College of Medicine, #1174 Jung-dong, Wonmi-gu, Bucheon, Korea
| | | | | | | | | |
Collapse
|
10
|
Yanai S, Adachi Y, Shi M, Shigematsu A, Shima C, Imai Y, Kwon AH, Ikehara S. Adult bone marrow cells can differentiate into hemopoietic cells and endothelial cells but not into other lineage cells in normal growth and normal life. Int J Hematol 2010; 91:213-8. [PMID: 20087796 DOI: 10.1007/s12185-009-0479-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 12/05/2009] [Accepted: 12/10/2009] [Indexed: 01/20/2023]
|
11
|
Machalińska A, Baumert B, Kuprjanowicz L, Wiszniewska B, Karczewicz D, Machaliński B. Potential application of adult stem cells in retinal repair--challenge for regenerative medicine. Curr Eye Res 2009; 34:748-60. [PMID: 19839868 DOI: 10.1080/02713680903050592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stem cells (SCs) maintain the balance among somatic cell populations in various tissues and are responsible for organ regeneration. The remarkable progress of regenerative medicine in the last few years indicates promise for the use of SCs in ophthalmic disorder treatment. This review describes the current view on hierarchy in the SC compartment and presents the latest attempts to use adult SCs in the regeneration of the retina. Research performed primarily in animal models gives hope for using similar strategies in humans. However, the search for the optimal source of SCs for cell therapy continues. We briefly discuss various potential sources of adult SCs that could be employed in regenerative medicine, particularly focusing on recently identified, very small embryonic-like SCs (VSEL-SCs). These cells are even present in the bone marrow and adult tissues of older patients and could be harvested from cord blood. We believe that VSEL-SCs, after the establishment of ex vivo expansion and differentiation protocols, could be harnessed for retina regeneration.
Collapse
Affiliation(s)
- Anna Machalińska
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Transplantation of quantum dot-labelled bone marrow-derived stem cells into the vitreous of mice with laser-induced retinal injury: survival, integration and differentiation. Vision Res 2009; 50:665-73. [PMID: 19782698 DOI: 10.1016/j.visres.2009.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 12/21/2022]
Abstract
Accidental laser exposure to the eyes may result in serious visual impairment due to retina degeneration. Currently limited treatment is available for laser eye injury. In the current study, we investigated the therapeutic potential of bone marrow-derived stem cells (BMSCs) for laser-induced retinal trauma. Lineage negative bone marrow cells (Lin(-) BMCs) were labelled with quantum dots (Qdots) to track the cells in vivo. Lin(-) BMCs survived well after intravitreal injection. In vivo bromodeoxyuridine (BrdU) labelling showed these cells continued to proliferate and integrate into injured retinas. Furthermore, they expressed markers that distinguished retinal pigment epithelium (RPE), endothelium, pericytes and photoreceptors. Our results suggest that BMSCs participate in the repair of retinal lesions by differentiating into retinal cells. Intravitreal transplantation of BMSCs is a potential treatment for laser-induced retinal trauma.
Collapse
|
13
|
Limb GA, Daniels JT, Cambrey AD, Secker GA, Shortt AJ, Lawrence JM, Khaw PT. Current Prospects for Adult Stem Cell–Based Therapies in Ocular Repair and Regeneration. Curr Eye Res 2009; 31:381-90. [PMID: 16714229 DOI: 10.1080/02713680600681210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent advances in stem cell biology have led to the exploration of stem cell-based therapies to treat a wide range of human diseases. In the ophthalmic field, much hope has been placed on the potential use of these cells to restore sight, particularly in those conditions in which other established treatments have failed and in which visual function has been irreversibly damaged by disease or injury. At present, there are many limitations for the immediate use of embryonic stem cells to treat ocular disease, and as more evidence emerges that adult stem cells are present in the adult human eye, it is clear that these cells may have advantages to develop into feasible therapeutic treatments without the problems associated with embryonic research and immune rejection. Here we discuss the current prospects for the application of various adult ocular stem cells to human therapies for restoration of vision.
Collapse
Affiliation(s)
- G A Limb
- Ocular Repair and Regeneration Biology Unit, Departments of Cell Biology and Pathology, Institute of Ophthalmology, UCL and Moorfields Eye Hospital, 11 Bath Street, London, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yu S, Tanabe T, Dezawa M, Ishikawa H, Yoshimura N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun 2006; 344:1071-9. [PMID: 16643846 DOI: 10.1016/j.bbrc.2006.03.231] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/28/2006] [Indexed: 12/18/2022]
Abstract
We investigated if bone marrow stromal cells (BMSCs) transplanted into the vitreous body of a glaucoma model eye could be integrated in the host retina and also whether they could rescue the retinal ganglion cells (RGCs) from death induced by the elevated intraocular pressure. Glaucoma was induced in the right eye of adult Wistar rats by ligating the episcleral veins. The GFP-expressing BMSCs (GFP-BMSCs) were injected into the vitreous body of both the control and the glaucomatous eyes. After transplantation, GFP-BMSCs were mostly present along with the inner limiting membrane and only a few cells were integrated into the ganglion cell layer. At 2 or 4 weeks after transplantation, GFP-BMSCs were observed to express various trophic factors. The BMSCs injected glaucoma model eyes showed less reduction in the number of RGCs compared to the glaucomatous eyes with PBS injection. This study suggests that BMSC transplantation may be worthy as a neuroprotective tool to treat glaucoma.
Collapse
Affiliation(s)
- Saiyuu Yu
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
15
|
Chan-Ling T, Baxter L, Afzal A, Sengupta N, Caballero S, Rosinova E, Grant MB. Hematopoietic stem cells provide repair functions after laser-induced Bruch's membrane rupture model of choroidal neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1031-44. [PMID: 16507916 PMCID: PMC1606537 DOI: 10.2353/ajpath.2006.050697] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular repair by adult hematopoietic stem cells (HSCs) is well-appreciated because these cells are known for their plasticity. We have shown that adult HSCs differentiate into endothelial cells and participate in both retinal and choroidal neovascularization. We asked whether HSCs participated in the wounding response by forming astrocytes, retinal pigment epithelia (RPE), macrophages, and pericytes. Lethally irradiated C57BL6/J mice were reconstituted with HSCs from mice homozygous for green fluorescent protein (GFP) and then subjected to laser-induced rupture of Bruch's membrane. After immunohistochemical examination of ocular tissue, GFP(+) astrocytes were observed concentrated along the edge of the laser wound, where they and mural cells closely ensheathed the neovasculature. GFP(+) vascular endothelial cells and macrophages/microglia were also evident. Large irregularly shaped GFP(+) RPE cells constituted approximately 93% of RPE cells adjacent to the edge of the denuded RPE area. In regions farther away from the wound, GFP(+) RPE cells were integrated among the GFP(-) host RPE. Thus, postnatal HSCs can differentiate into cells expressing markers specific to astrocytes, macrophages/microglia, mural cells, or RPE. These studies suggest that HSCs could serve as a therapeutic source for long-term regeneration of injured retina and choroid in diseases such as age-related macular degeneration and retinitis pigmentosa.
Collapse
Affiliation(s)
- Tailoi Chan-Ling
- Department of Anatomy and Histology, Institute for Biomedical Research, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|