1
|
Machner B, Lencer MC, Möller L, von der Gablentz J, Heide W, Helmchen C, Sprenger A. Unbalancing the Attentional Priority Map via Gaze-Contingent Displays Induces Neglect-Like Visual Exploration. Front Hum Neurosci 2020; 14:41. [PMID: 32153377 PMCID: PMC7045871 DOI: 10.3389/fnhum.2020.00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 11/15/2022] Open
Abstract
Selective spatial attention is a crucial cognitive process that guides us to the behaviorally relevant objects in a complex visual world by using exploratory eye movements. The spatial location of objects, their (bottom-up) saliency and (top-down) relevance is assumed to be encoded in one “attentional priority map” in the brain, using different egocentric (eye-, head- and trunk-centered) spatial reference frames. In patients with hemispatial neglect, this map is supposed to be imbalanced, leading to a spatially biased exploration of the visual environment. As a proof of concept, we altered the visual saliency (and thereby attentional priority) of objects in a naturalistic scene along a left-right spatial gradient and investigated whether this can induce a bias in the exploratory eye movements of healthy humans (n = 28; all right-handed; mean age: 23 years, range 19–48). We developed a computerized mask, using high-end “gaze-contingent display (GCD)” technology, that immediately and continuously reduced the saliency of objects on the left—“left” with respect to the head (body-centered) and the current position on the retina (eye-centered). In both experimental conditions, task-free viewing and goal-driven visual search, this modification induced a mild but significant bias in visual exploration similar to hemispatial neglect. Accordingly, global eye movement parameters changed (reduced number and increased duration of fixations) and the spatial distribution of fixations indicated an attentional bias towards the right (rightward shift of first orienting, fixations favoring the scene’s outmost right over left). Our results support the concept of an attentional priority map in the brain as an interface between perception and behavior and as one pathophysiological ground of hemispatial neglect.
Collapse
Affiliation(s)
- Björn Machner
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marie C Lencer
- Department of Psychology II, University of Lübeck, Lübeck, Germany
| | - Lisa Möller
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | | | - Wolfgang Heide
- Department of Neurology, General Hospital Celle, Celle, Germany
| | | | - Andreas Sprenger
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Bulboaca A, Stanescu I, Dogaru G, Boarescu PM, Bulboaca AE. The importance of visuo-motor coordination in upper limb rehabilitation after ischemic stroke by robotic therapy. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Stroke is an acute hypoperfusion of cerebral parenchyma that most often leads to outstanding motor deficits that can last for the rest of the patient’s life. The purpose of the neurorehabilitation process is to limit, as far is possible for the motor deficits and to bring the patient to an independent life. A modern method consists in robotic neurorehabilitation which is more and more used, associated with functional electrical stimulation (FES). At the lower limb, the use of robotic rehabilitation associated with FES is already considered a success due to relatively stereotypical movements of the lower limb. In opposition, the upper limb is more difficult to rehabilitate due to its more complex movements. Therefore, eye-hand coordination (EHC) constitutes an important factor that is conditioning the rehabilitation progress. The eye-hand coordination can be brutally disturbed by stroke with critical consequences on motor-executive component. The EHC development depends on the interaction between a feedback complex and the prediction of the upper limb motility in the space, and requires the association between visual system, oculomotor system and hand motor system. We analyzed the stroke impact on this sensorial-motor functional integration and looked for a possible solution for the interruption of coordination between eyes and the movements of the superior limb. We consider that our study can contribute to a better understanding and to a faster rehabilitation of the motor deficit in the upper limb after stroke.
Key words: stroke, rehabilitation, eye-hand coordination, robotic neurorehabilitation,
Collapse
Affiliation(s)
- Angelo Bulboaca
- 1. "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania 2. Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Ioana Stanescu
- 1. "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania 2. Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Gabriela Dogaru
- 1. "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania 2. Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Paul-Mihai Boarescu
- 1. "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adriana Elena Bulboaca
- 1. "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania 2. Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Oh AJ, Chen T, Shariati MA, Jehangir N, Hwang TN, Liao YJ. A simple saccadic reading test to assess ocular motor function in cerebellar ataxia. PLoS One 2018; 13:e0203924. [PMID: 30403759 PMCID: PMC6221255 DOI: 10.1371/journal.pone.0203924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Cerebellar ataxia is a neurological disorder due to dysfunction of the cerebellum that affects coordination of fine movement, gait, and balance. Although ataxic patients commonly exhibit abnormal eye movement and have difficulties with saccadic reading, quantification of ocular motor abilities during reading in the clinical setting is rarely done. In this study, we assess visual performance with simple reading tests that can be used in the clinical setting and performed video infrared oculography in 11 patients with hereditary or acquired cerebellar ataxia and 11 age-matched controls. We found that compared with controls, ataxic patients read significantly slower on regularly and irregularly spaced 120 single-digit number reading tasks (read aloud) (p = 0.02 for both) but not on a word reading task (read silently), although there was large variability on the word reading task. Among the 3 reading tasks, the regularly spaced number reading task had the greatest difference (44%) between ataxic patients and controls. Analysis of oculography revealed that ataxic patients had slower reading speeds on the regularly spaced number reading task because of significantly higher saccade and fixation counts, impairment of small amplitude progressive saccades as well as large amplitude, line-changing saccades, greater fixation dispersion, and irregularity of scan paths and staircase gaze patterns. Our findings show that infrared oculography remains the gold standard in assessment of ocular motor difficulties during reading in ataxic patients. In the absence of this capability in the clinical setting, a simple 120 regularly spaced single-digit saccadic number reading test, which most patients can perform in less than 2 minutes, can be a possible biomarker for ocular motor abilities necessary for reading.
Collapse
Affiliation(s)
- Angela Jinsook Oh
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tiffany Chen
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mohammad Ali Shariati
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Naz Jehangir
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas N. Hwang
- Department of Ophthalmology, Kaiser Permanente Redwood City Medical Center, Redwood City, California, United States of America
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Neurology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
SubsMatch 2.0: Scanpath comparison and classification based on subsequence frequencies. Behav Res Methods 2018; 49:1048-1064. [PMID: 27443354 DOI: 10.3758/s13428-016-0765-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our eye movements are driven by a continuous trade-off between the need for detailed examination of objects of interest and the necessity to keep an overview of our surrounding. In consequence, behavioral patterns that are characteristic for our actions and their planning are typically manifested in the way we move our eyes to interact with our environment. Identifying such patterns from individual eye movement measurements is however highly challenging. In this work, we tackle the challenge of quantifying the influence of experimental factors on eye movement sequences. We introduce an algorithm for extracting sequence-sensitive features from eye movements and for the classification of eye movements based on the frequencies of small subsequences. Our approach is evaluated against the state-of-the art on a novel and a very rich collection of eye movements data derived from four experimental settings, from static viewing tasks to highly dynamic outdoor settings. Our results show that the proposed method is able to classify eye movement sequences over a variety of experimental designs. The choice of parameters is discussed in detail with special focus on highlighting different aspects of general scanpath shape. Algorithms and evaluation data are available at: http://www.ti.uni-tuebingen.de/scanpathcomparison.html .
Collapse
|
5
|
Implications of Lateral Cerebellum in Proactive Control of Saccades. J Neurosci 2017; 36:7066-74. [PMID: 27358462 DOI: 10.1523/jneurosci.0733-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Although several lines of evidence establish the involvement of the medial and vestibular parts of the cerebellum in the adaptive control of eye movements, the role of the lateral hemisphere of the cerebellum in eye movements remains unclear. Ascending projections from the lateral cerebellum to the frontal and parietal association cortices via the thalamus are consistent with a role of these pathways in higher-order oculomotor control. In support of this, previous functional imaging studies and recent analyses in subjects with cerebellar lesions have indicated a role for the lateral cerebellum in volitional eye movements such as anti-saccades. To elucidate the underlying mechanisms, we recorded from single neurons in the dentate nucleus of the cerebellum in monkeys performing anti-saccade/pro-saccade tasks. We found that neurons in the posterior part of the dentate nucleus showed higher firing rates during the preparation of anti-saccades compared with pro-saccades. When the animals made erroneous saccades to the visual stimuli in the anti-saccade trials, the firing rate during the preparatory period decreased. Furthermore, local inactivation of the recording sites with muscimol moderately increased the proportion of error trials, while successful anti-saccades were more variable and often had shorter latency during inactivation. Thus, our results show that neuronal activity in the cerebellar dentate nucleus causally regulates anti-saccade performance. Neuronal signals from the lateral cerebellum to the frontal cortex might modulate the proactive control signals in the corticobasal ganglia circuitry that inhibit early reactive responses and possibly optimize the speed and accuracy of anti-saccades. SIGNIFICANCE STATEMENT Although the lateral cerebellum is interconnected with the cortical eye fields via the thalamus and the pons, its role in eye movements remains unclear. We found that neurons in the caudal part of the lateral (dentate) nucleus of the cerebellum showed the increased firing rate during the preparation of anti-saccades. Inactivation of the recording sites modestly elevated the rate of erroneous saccades to the visual stimuli in the anti-saccade trials, while successful anti-saccades during inactivation tended to have a shorter latency. Our data indicate that neuronal signals in the lateral cerebellum may proactively regulate anti-saccade generation through the pathways to the frontal cortex, and may inhibit early reactive responses and regulate the accuracy of anti-saccades.
Collapse
|
6
|
Matsuda S, Matsumoto H, Furubayashi T, Fukuda H, Emoto M, Hanajima R, Tsuji S, Ugawa Y, Terao Y. Top-down but not bottom-up visual scanning is affected in hereditary pure cerebellar ataxia. PLoS One 2014; 9:e116181. [PMID: 25545148 PMCID: PMC4278854 DOI: 10.1371/journal.pone.0116181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to clarify the nature of visual processing deficits caused by cerebellar disorders. We studied the performance of two types of visual search (top-down visual scanning and bottom-up visual scanning) in 18 patients with pure cerebellar types of spinocerebellar degeneration (SCA6: 11; SCA31: 7). The gaze fixation position was recorded with an eye-tracking device while the subjects performed two visual search tasks in which they looked for a target Landolt figure among distractors. In the serial search task, the target was similar to the distractors and the subject had to search for the target by processing each item with top-down visual scanning. In the pop-out search task, the target and distractor were clearly discernible and the visual salience of the target allowed the subjects to detect it by bottom-up visual scanning. The saliency maps clearly showed that the serial search task required top-down visual attention and the pop-out search task required bottom-up visual attention. In the serial search task, the search time to detect the target was significantly longer in SCA patients than in normal subjects, whereas the search time in the pop-out search task was comparable between the two groups. These findings suggested that SCA patients cannot efficiently scan a target using a top-down attentional process, whereas scanning with a bottom-up attentional process is not affected. In the serial search task, the amplitude of saccades was significantly smaller in SCA patients than in normal subjects. The variability of saccade amplitude (saccadic dysmetria), number of re-fixations, and unstable fixation (nystagmus) were larger in SCA patients than in normal subjects, accounting for a substantial proportion of scattered fixations around the items. Saccadic dysmetria, re-fixation, and nystagmus may play important roles in the impaired top-down visual scanning in SCA, hampering precise visual processing of individual items.
Collapse
Affiliation(s)
| | | | - Toshiaki Furubayashi
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hideki Fukuda
- Segawa Neurological Clinic for Children, Tokyo, Japan
| | - Masaki Emoto
- Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan
| | | | - Shoji Tsuji
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Matsuda S, Matsumoto H, Furubayashi T, Fukuda H, Hanajima R, Tsuji S, Ugawa Y, Terao Y. Visual Scanning Area is Abnormally Enlarged in Hereditary Pure Cerebellar Ataxia. THE CEREBELLUM 2014; 14:63-71. [PMID: 25231433 DOI: 10.1007/s12311-014-0600-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Alexandre MF, Rivaud-Péchoux S, Challe G, Durr A, Gaymard B. Functional consequences of oculomotor disorders in hereditary cerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2013; 12:396-405. [PMID: 23239280 DOI: 10.1007/s12311-012-0433-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Saccadic eye movements are traditionally cited as an especially successful combination of accuracy and velocity, such high level of performances being believed to be crucial for optimal vision. Although the structures subtending these properties are now well recognized, very little is known about the functional consequences on visually guided behaviors of reduced saccade performances, i.e., slowness and/or inaccuracy. We therefore investigated the impact of such impairments in patients with spino-cerebellar and Friedreich ataxia, i.e., diseases known to affect both saccade parameters. Subjects performed a classical eye movement task, in order to quantify saccade inaccuracy and/or slowness, a visually search task and a reading task and completed a questionnaire designed to evaluate their perceived visual discomfort in daily activities. The first main result was that saccade impairments did have an impact on visually guided behaviors, resulting in an increased time for target detection, especially when accurate foveation was needed, and in an increased reading time. The main responsible oculomotor factor was increased variability of saccade accuracy, and the least responsible factor was reduced saccade velocity. The second main result was that saccade disorders did not induce significant subjective discomfort, since no correlations were found between the results of the questionnaire and saccade parameters. These results emphasize the functional impact of increased variable error of saccade accuracy and question the rationale of high saccade velocities. The discrepancy between objective and subjective measures underlines the largely unconscious aspect of saccade control and leads us to consider the need for an adapted therapy.
Collapse
Affiliation(s)
- M F Alexandre
- Service d'Ophtalmologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Bergman I, Almkvist O. The effect of age on fluid intelligence is fully mediated by physical health. Arch Gerontol Geriatr 2013; 57:100-9. [PMID: 23540273 DOI: 10.1016/j.archger.2013.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 02/23/2013] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
Abstract
The present study investigated the extent to which the effect of age on cognitive ability is predicted by individual differences in physical health. The sample consisted of 118 volunteer subjects who were healthy and ranging in age from 26 to 91. The examinations included a clinical investigation, magnetic resonance imaging (MRI) brain neuroimaging, and a comprehensive neuropsychological assessment. The effect of age on fluid IQ with and without visual spatial praxis and on crystallized IQ was tested whether being fully-, partially- or non-mediated by physical health. Structural equation analyses showed that the best and most parsimonious fit to the data was provided by models that were fully mediated for fluid IQ without praxis, non-mediated for crystallized IQ and partially mediated for fluid IQ with praxis. The diseases of the circulatory and nervous systems were the major mediators. It was concluded from the pattern of findings that the effect of age on fluid intelligence is fully mediated by physical health, while crystallized intelligence is non-mediated and visual spatial praxis is partially mediated, influenced mainly by direct effects of age. Our findings imply that improving health by acting against the common age-related circulatory- and nervous system diseases and risk factors will oppose the decline in fluid intelligence with age.
Collapse
Affiliation(s)
- Ingvar Bergman
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
| | | |
Collapse
|
10
|
Filippopulos F, Eggert T, Straube A. Effects of cerebellar infarcts on cortical processing of saccades. J Neurol 2012; 260:805-14. [PMID: 23086179 DOI: 10.1007/s00415-012-6708-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/26/2012] [Accepted: 10/08/2012] [Indexed: 12/18/2022]
Abstract
The objective of the present study was to investigate cerebellar influences on cortical components of saccadic eye movement programming in human subjects. In 24 patients with a localized cerebellar lesion, saccadic eye movements were recorded in different reflexive (step, gap, overlap) and intentional (anti, memory, short memory sequences) tasks and compared to 23 healthy controls. The cerebellar lesions led to impairments in different saccade parameters. Cerebellar patients tended to show hypermetria and increased latencies compared to the control group. In particular, they executed significantly more erroneous saccades specifically in the memory task (suppression errors) but not in the anti task (pro-saccade errors). Moreover, while reproducing short sequences of saccades from memory, patients with cerebellar infarcts made more errors with regard to the sequence order than controls. The influence of cerebellar hemispheric lesions on the saccade latency, the task-specific lesion effects on the frequency of suppression errors, and the effects on the number of order errors suggest that the cerebellum is involved in cortical processes such as target selection and sequence reproduction.
Collapse
Affiliation(s)
- Filipp Filippopulos
- Department of Neurology, Ludwig-Maximilians-Universität, Klinikum Grosshadern, Marchioninistrasse 23, 81377, Munich, Germany.
| | | | | |
Collapse
|
11
|
Veneri G, Rosini F, Federighi P, Federico A, Rufa A. Evaluating gaze control on a multi-target sequencing task: The distribution of fixations is evidence of exploration optimisation. Comput Biol Med 2012; 42:235-44. [DOI: 10.1016/j.compbiomed.2011.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 10/29/2011] [Accepted: 11/28/2011] [Indexed: 11/15/2022]
|
12
|
Quintero-Gallego E, Gómez C, Morales M, Márquez J. Spatial orientation deficit in children due to cerebellum astrocytoma pediatric tumor obtained by means of the Attentional Network Test. Neurosci Lett 2011; 504:232-6. [DOI: 10.1016/j.neulet.2011.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/31/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
|
13
|
Cooper FE, Grube M, Elsegood KJ, Welch JL, Kelly TP, Chinnery PF, Griffiths TD. The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behav Neurol 2010; 23:3-15. [PMID: 20714057 PMCID: PMC4040404 DOI: 10.3233/ben-2010-0265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study sought evidence for a specific cerebellar contribution to cognition by characterising the cognitive phenotype of Spinocerebellar Ataxia Type 6 (SCA-6); an autosomal dominant genetic disease which causes a highly specific late-onset cerebellar degeneration. A comprehensive neuropsychological assessment was administered to 27 patients with genetically confirmed SCA-6. General intellectual ability, memory and executive function were examined using internationally standardised tests (Wechsler Adult Intelligence Scale-III, Wechsler Memory Scale-III, Delis and Kaplan Executive Function System, Brixton Spatial Anticipation test). The patient group showed no evidence of intellectual or memory decline. However, tests of executive function involving skills of cognitive flexibility, inhibition of response and verbal reasoning and abstraction demonstrated significant impairment at the group level with large effect sizes. The results demonstrate an executive deficit due to SCA-6 that can be conceptualised as parallel to the motor difficulties suffered by these patients: the data support a role for the cerebellum in the regulation and coordination of cognitive, as well as motor processes that is relevant to individual performance.
Collapse
Affiliation(s)
- Freya E Cooper
- Institute of Neuroscience, Newcastle University Medical School, Framlington Place, Newcastle Upon Tyne, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Machner B, Sprenger A, Kömpf D, Sander T, Heide W, Kimmig H, Helmchen C. Visual search disorders beyond pure sensory failure in patients with acute homonymous visual field defects. Neuropsychologia 2009; 47:2704-11. [PMID: 19500605 DOI: 10.1016/j.neuropsychologia.2009.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
|
15
|
Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage 2009; 47:2073-82. [PMID: 19524048 DOI: 10.1016/j.neuroimage.2009.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 05/13/2009] [Accepted: 06/01/2009] [Indexed: 11/22/2022] Open
Abstract
In working memory (WM), functional imaging studies demonstrate cerebellar involvement indicating a cognitive role of the cerebellum. These cognitive contributions were predominantly interpreted as part of the phonological loop within the Baddeley model of WM. However, those underlying investigations were performed in the context of visual verbal WM which could pose a bias when interpreting the results. The aim of this fMRI study was to address the question of whether the cerebellum supports additional aspects of WM in the context of higher cognitive functions. Furthermore, laterality effects were investigated to further disentangle the cerebellar role in the context of the phonological loop and the visuospatial sketchpad. A direct comparison of verbal and abstract visual WM was performed in 17 young volunteers by applying a 2-back paradigm and extracting the % change in BOLD signal from the fMRI data. To minimize potential verbal strategies, Attneave and Arnoult shapes of non-nameable objects were chosen for the abstract condition. The analyses revealed no significant differences in verbal vs. abstract WM. Moreover, no laterality effects were demonstrated in both verbal and abstract WM. These results provide further evidence of a broader cognitive involvement of the cerebellum in WM that is not only confined to the phonological loop but also supports central executive subfunctions. The fact that no lateralization effects are found might be attributed to the characteristics of the n-back paradigm which emphasizes central executive subfunctions over the subsidiary slave systems.
Collapse
|
16
|
Machner B, Sprenger A, Sander T, Heide W, Kimmig H, Helmchen C, Kömpf D. Visual Search Disorders in Acute and Chronic Homonymous Hemianopia. Ann N Y Acad Sci 2009; 1164:419-26. [PMID: 19645941 DOI: 10.1111/j.1749-6632.2009.03769.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Björn Machner
- Department of Neurology, University of Lübeck, Lübeck, Germamy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bergman I, Blomberg M, Almkvist O. The importance of impaired physical health and age in normal cognitive aging. Scand J Psychol 2007; 48:115-25. [PMID: 17430364 DOI: 10.1111/j.1467-9450.2007.00594.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this study was to investigate the importance of impaired physical health and age in normal cognitive aging. In our cross-sectional, clinical and explorative study, medical and neuropsychological data from 118 voluntary healthy controls aged 26-91 years were collected from five recruitment occasions. Health was assessed according to a criterion reflecting clinical and subclinical severity. The examinations included a clinical investigation, brain neuroimaging, and a comprehensive neuropsychological assessment. Regression analyses showed a significant incidence of clinical and subclinical medical disorders that explained 10.8% of the variation in cognitive performance, while age-related impairment explained 5.6%. Findings of the central nervous system were important but various other medical findings explained about half of the health-related variation. Cognitively demanding tasks were more susceptible to impaired physical health while tasks comprising salient motor- and visual spatial elements were more prone to be impaired by age. Our findings suggest (1) that impaired physical health is more important than chronological age in accounting for cognitive impairment across the adult lifespan, (2) that age and health dissociate with regard to cognitive functions affected, and (3) that selection for so-called "super healthy" elderly people might be justified in cognitive research. Because the prevalent diseases in normal aging are potentially preventable, the present findings promise good prospect for prevention of future cognitive disability among elderly people.
Collapse
Affiliation(s)
- Ingvar Bergman
- Neurotec department, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden.
| | | | | |
Collapse
|
18
|
Tomasi D, Chang L, Caparelli EC, Ernst T. Different activation patterns for working memory load and visual attention load. Brain Res 2006; 1132:158-65. [PMID: 17169343 PMCID: PMC1831676 DOI: 10.1016/j.brainres.2006.11.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/23/2006] [Accepted: 11/13/2006] [Indexed: 11/22/2022]
Abstract
Attention is a basic component of cognition, and is modulated by cognitive load. We aimed to map the common network that supports attentional load across different tasks using functional magnetic resonance imaging (fMRI). Twenty-two healthy volunteers performed two sets of tasks with graded levels of cognitive load: verbal working memory (WM) and visual attention (VA) tasks. For both tasks, increased cognitive load (WM-load and VA-load) activated a common network comprising parietal and occipital cortices, thalamus, and the cerebellum, indicating that these brain regions are involved in higher level of attention. The fMRI signals in the prefrontal cortices increased with WM-load but not with VA-load, suggesting that executive function is involved for the more demanding WM tasks but not for the more difficult VA tasks. Conversely, VA tasks activated more strongly an occipito-parietal network comprising the postcentral (PostCG) and the superior occipital (SOG) gyri, suggesting complex visual processing in this network.
Collapse
Affiliation(s)
- D Tomasi
- Medical Department, Bldg. 490, Brookhaven National Laboratory, 30 Bell Ave., Upton, NY 11973, USA.
| | | | | | | |
Collapse
|
19
|
de Haan EH, Nys GM, Van Zandvoort MJ. Cognitive function following stroke and vascular cognitive impairment. Curr Opin Neurol 2006; 19:559-64. [PMID: 17102694 DOI: 10.1097/01.wco.0000247612.21235.d9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review of the cognitive status following stroke and vascular cognitive impairment starts by questioning the concept of vascular dementia and related concepts. Our position is that in many cases these labels promote a superficial conceptualization of an inherently complex and heterogeneous phenomenon hampering a more detailed understanding. RECENT FINDINGS After stroke or disease of the cerebral vasculature, the cognitive and emotional outcome is dependent on a combination of three factors with the relative importance differing between causes. First, focal damage may lead to selective impairments that are dependent on the localization of the (grey matter) lesion. Second, diffuse neuronal dysfunction produces a more uniform profile of a decrease in mental speed, memory problems, and reduced executive functioning. Third, cognitive outcome is further modulated - notably in terms of severity - by patient variables such as age, sex, premorbid level of functioning, and comorbidity (e.g. hypertension). SUMMARY The complex character of the cognitive repercussions of stroke can be better harnessed by employing modern neuropsychological assessment procedures. This allows both a detailed categorization of the patients for the selection and effectiveness of therapeutic intervention, as well as the construction of reliable prognostic models.
Collapse
Affiliation(s)
- Edward H de Haan
- Experimental Psychology, Helmholtz Institute, Utrecht University and Department of Neurology, University Medical Centre, Utrecht, The Netherlands.
| | | | | |
Collapse
|
20
|
Suh M, Basu S, Kolster R, Sarkar R, McCandliss B, Ghajar J. Increased oculomotor deficits during target blanking as an indicator of mild traumatic brain injury. Neurosci Lett 2006; 410:203-7. [PMID: 17055156 DOI: 10.1016/j.neulet.2006.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/01/2006] [Indexed: 11/23/2022]
Abstract
Given the susceptibility of cerebellar-cortical tracts to shearing injury from traumatic brain injury (TBI), we investigated impairment in the generation of predictive eye movements and its relationship to cognitive deficits in mild TBI patients using a smooth pursuit target-blanking paradigm. Compared to a target-tracking paradigm without blanking, this paradigm more greatly necessitates the generation of predictive eye movements, which are subserved by brain regions involved in cognitive processing. Mild TBI patients showed impaired prediction of target trajectories during target blanking, demonstrated by generation of saccades at earlier and more variable time points, as well as greater and more variable oculomotor error compared to controls. In addition, California Verbal Learning Test (CVLT-II) scores related to working memory, learning, and executive function were more highly correlated with oculomotor variability during target blanking than during target tracking. Our results suggest that a disruption of cerebellar-cortical connections in TBI may account for both oculomotor and cognitive impairment, and that measures of predictive eye movements during target blanking may be a sensitive metric of cognitive deficits after mild TBI.
Collapse
Affiliation(s)
- Minah Suh
- Department of Neurological Surgery, Weill-Cornell Medical College, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Suh M, Kolster R, Sarkar R, McCandliss B, Ghajar J. Deficits in predictive smooth pursuit after mild traumatic brain injury. Neurosci Lett 2006; 401:108-13. [PMID: 16554121 DOI: 10.1016/j.neulet.2006.02.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 11/20/2022]
Abstract
Given that even mild traumatic brain injury (TBI) may produce extensive diffuse axonal injury (DAI), we hypothesized that mild TBI patients would show deficits in predictive smooth pursuit eye movements (SPEM), associated with impaired cognitive functions, as these processes are dependent on common white matter connectivity between multiple cerebral and cerebellar regions. The ability to predict target trajectories during SPEM was investigated in 21 mild TBI patients using a periodic sinusoidal paradigm. Compared to 26 control subjects, TBI patients demonstrated decreased target prediction. TBI patients also showed increased eye position error and variability of eye position, which correlated with decreased target prediction. In all subjects, average target prediction, eye position error and eye position variability correlated with scores related to attention and executive function on the California Verbal Learning Test (CVLT-II). However, there were no differences between TBI and control groups in average eye gain or intra-individual eye gain variability, or in performance on the Wechsler Abbreviated Scale of Intelligence (WASI), suggesting that the observed deficits did not result from general oculomotor impairment or reduced IQ. The correlation between SPEM performance and CVLT-II scores suggests that predictive SPEM may be a sensitive assay of cognitive functioning, including attention and executive function. This is the first report to our knowledge that TBI patients show impaired predictive SPEM and eye position variability, and that these impairments correlate with cognitive deficits.
Collapse
Affiliation(s)
- Minah Suh
- Department of Neurological Surgery, Weill-Cornell Medical College, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|