1
|
Moradi MT, Khazaei M, Khazaei M. The effect of catalase C262T gene polymorphism in susceptibility to ovarian cancer in Kermanshah province, Western Iran. J OBSTET GYNAECOL 2018; 38:562-566. [PMID: 29421935 DOI: 10.1080/01443615.2017.1381672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ovarian cancer has a heterogeneous biology and behaviour. Oxidative stress can initiate chronic inflammation, which can sequentially facilitate chronic diseases, including cancer. Oxidative stress may arise when there is extra reactive oxygen species (ROS) production and/or inadequate defence mechanisms. There are some antioxidant defences that can fight against oxidative damage, including catalase (CAT) enzyme. We sought to evaluate the association of CAT C262T gene polymorphism with increased risk of ovarian cancer. A total of 74 paraffin-embedded ovarian cancer blocks were taken from the archive of Imam-Reza Hospital, Kermanshah University of Medical Sciences, between 2010 and 2014. Also, 153 blood samples were harvested from healthy volunteers. For genotyping of CAT C262T, we designed allele-specific polymerase chain reaction (AS-PCR). 'T' allele of CAT C262T showed a protective effect against the risk of ovarian cancer [OR = 0.4 (95% CI 0.25-0.6), p value <.001]. Calculating adjusted odds ratio showed the distribution of alleles and genotypes was not affected by age. The present study reported a significant association between the distribution of CAT C262T gene polymorphism and ovarian cancer for the first time in a sample of the Iranian population. Impact Statement What is already known on this subject: Ovarian cancer has a heterogeneous biology and behaviour at the clinical, cellular and molecular aspects. Ovulation releases follicular fluid containing reactive oxygen species which is related to changes in the microenvironment, such as inflammation, that could be a factor in early ovarian carcinogenesis. There are some antioxidant defences that can protect cells against oxidative damage, including catalase (CAT). Different studies investigated the relationships between CAT C262T polymorphism and several diseases. Belotte et al. ( 2015 ), for the first time, indicated no significant association between CAT C262T and the risk of ovarian cancer, while they showed this SNP is associated with poor survival and therefore may serve as a prognostic factor for ovarian cancer. What the results of this study add: In the present study, 'T' allele of CAT C262T showed a protective effect against the risk of ovarian cancer. Calculating adjusted odds ratio showed that the distribution of alleles and genotypes is not affected by age. What the implications are of these findings for clinical practice and/or further research: Pair-wise genetic analyses using SNPSTATS software showed that this genotyping was more compatible with recessive models, i.e. two copies of the associated variant are required to increase the risk of ovarian cancer. Further research about other antioxidant genes in a larger population is needed to predict the risk of ovarian cancer and survival rate of patients.
Collapse
Affiliation(s)
- Mohammad-Taher Moradi
- a Fertility and Infertility Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Mansour Khazaei
- a Fertility and Infertility Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Mozafar Khazaei
- a Fertility and Infertility Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
2
|
Tseng YM, Tsai SM, Lin CC, Jin YR, Yeh WH, Hsiao JK, Chen CF, Lan WH, Tsai LY. Oxidative stress-related enzyme polymorphisms associated with the immunological biomarkers levels in heavy drinkers in Taiwan. J Clin Lab Anal 2014; 27:494-503. [PMID: 24218133 DOI: 10.1002/jcla.21633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/08/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Excessive alcohol intake can result in the oxidative stress in cells and the genetic variations of alcohol-metabolizing enzymes are responsible for the different degrees of toxicity of alcohol in several organs, such as the liver and immunological systems. We hypothesized that the alteration of oxidative stress due to some genetic variations of oxidative stress-related enzymes could result in changes of specific biomarkers, and heavy drinkers could be cautioned about the predictive likelihood to induce drinking-induced diseases. METHODS A total of 108 heavy drinkers and 106 nonheavy drinkers were enrolled and the hematological, biochemical, and immunological tests were measured; the genotypes of oxidative stress-related enzymes, including manganese superoxide dismutase (MnSOD1183T>C), glutathione peroxidase 1 (GPX1Pro198Leu), catalase (CAT-262C>T), and myeloperoxidase (MPO-463G>A), were assayed by real-time polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). RESULTS For the males, the levels of carbohydrate-deficient transferrin (CDT), malondialdehyde (MDA), CD4(+), immunoglobulin G (IgG), immunoglobulin M (IgM), and IL-6 were significantly different between the two groups. Furthermore, there were higher proportions of CD19(+) cells and lower TNF-α levels in heavy drinkers with the MnSOD C carriers, and there were higher percentages of CD19(+) cells and IL-6 levels in heavy drinkers with the combined genotypes of MnSOD C carriers and MPO A carriers. CONCLUSIONS Our findings indicate that heavy drinkers may be cautioned predictive likelihood for them to induce drinking-induced diseases by analyzing their MnSOD genotypes and immunological biomarkers.
Collapse
Affiliation(s)
- Yang-Ming Tseng
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sun GG, Wang YD, Lu YF, Hu WN. Different association of manganese superoxide dismutase gene polymorphisms with risk of prostate, esophageal, and lung cancers: evidence from a meta-analysis of 20,025 subjects. Asian Pac J Cancer Prev 2014; 14:1937-43. [PMID: 23679296 DOI: 10.7314/apjcp.2013.14.3.1937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Altered expression or function of manganese superoxide dismutase (MnSOD) has been shown to be associated with cancer risk but assessment of gene polymorphisms has resulted in inconclusive data. Here a search of published data was made and 22 studies were recruited, covering 20,025 case and control subjects, for meta- analyses of the association of MnSOD polymorphisms with the risk of prostate, esophageal, and lung cancers. The data on 12 studies of prostate cancer (including 4,182 cases and 6,885 controls) showed a statistically significant association with the risk of development in co-dominant models and dominant models, but not in the recessive model. Subgroup analysis showed there was no statistically significant association of MnSOD polymorphisms with aggressive or nonaggressive prostate cancer in different genetic models. In addition, the data on four studies of esophageal cancer containing 620 cases and 909 controls showed a statistically significant association between MnSOD polymorphisms and risk in all comparison models. In contrast, the data on six studies of lung cancer with 3,375 cases and 4,050 controls showed that MnSOD polymorphisms were significantly associated with the decreased risk of lung cancer in the homozygote and dominant models, but not the heterozygote model. A subgroup analysis of the combination of MnSOD polymorphisms with tobacco smokers did not show any significant association with lung cancer risk, histological type, or clinical stage of lung cancer. The data from the current study indicated that the Ala allele MnSOD polymorphism is associated with increased risk of prostate and esophageal cancers, but with decreased risk of lung cancer. The underlying molecular mechanisms warrant further investigation.
Collapse
Affiliation(s)
- Guo-Gui Sun
- Department of Chemoradiation Therapy, Tangshan People's Hospital, 3Department of Endocrinology, Tangshan Workers Hospital, Tangshan, China
| | | | | | | |
Collapse
|
4
|
Kim A. Modulation of MnSOD in Cancer:Epidemiological and Experimental Evidence. Toxicol Res 2013; 26:83-93. [PMID: 24278510 PMCID: PMC3834467 DOI: 10.5487/tr.2010.26.2.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/08/2023] Open
Abstract
Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702, Korea
| |
Collapse
|
5
|
Ashour W, Fathy M, Hamed M, Youssif O, Fawzy N. Association between environmental tobacco smoke exposure and lung cancer susceptibility: Modification by antioxidant enzymes genetic polymorphisms. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2013. [DOI: 10.1016/j.ejcdt.2013.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Association between SOD2 C47T polymorphism and lung cancer susceptibility: a meta-analysis. Tumour Biol 2013; 35:955-9. [PMID: 23990443 DOI: 10.1007/s13277-013-1127-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022] Open
Abstract
UNLABELLED Lung cancer is one of the most common cancers worldwide, but its etiology is still unclear. Superoxide dismutase 2 (SOD2) plays an essential role in oxidative stress and may be involved in the development of lung cancer. The association between SOD2 C47T polymorphism and lung cancer risk has been widely investigated, but the results of previous studies are contradictory. We conducted a meta-analysis to comprehensively assess the association between SOD2 C47T polymorphism and lung cancer. The association was estimated by odds ratio (OR) with 95 % confidence interval (95 % CI). A total of 10 studies with 5,146 cases and 6,173 controls were identified. The results showed that SOD2 C47T polymorphism was significantly associated with lung cancer (T versus C: OR = 0.88, 95 % CI = 0.83-0.93, P < 0.001; TT versus CC: OR = 0.74, 95 % CI = 0.66-0.83, P < 0.001; TT versus CC/CT OR = 0.81, 95 % CI = 0.73-0.89, P < 0.001). Subgroup analysis by ethnicity suggested that SOD2 C47T polymorphism was significantly associated with lung cancer in both East Asians and Caucasians. Conclusively, this meta-analysis strongly suggests that SOD2 C47T polymorphism is significantly associated with lung cancer.
Collapse
|
7
|
Fathy M, Hamed M, Youssif O, Fawzy N, Ashour W. Association Between Environmental Tobacco Smoke Exposure and Lung Cancer Susceptibility: Modification by Antioxidant Enzyme Genetic Polymorphisms. Mol Diagn Ther 2013; 18:55-62. [DOI: 10.1007/s40291-013-0051-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Attatippaholkun W, Wikainapakul K. Predominant Genotypes and Alleles of Two Functional Polymorphisms in the Manganese Superoxide Dismutase Gene are Not Associated with Thai Cervical or Breast Cancer. Asian Pac J Cancer Prev 2013; 14:3955-61. [DOI: 10.7314/apjcp.2013.14.6.3955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, Coombes JS. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 2012; 501:89-103. [PMID: 22525041 DOI: 10.1016/j.gene.2012.04.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/21/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
The presence and progression of numerous diseases have been linked to deficiencies in antioxidant systems. The relationships between single nucleotide polymorphisms (SNPs) arising from specific antioxidant enzymes and diseases associated with elevated oxidative stress have been studied with the rationale that they may be useful in screening for diseases. The purpose of this narrative review is to analyse evidence from these studies. The antioxidant enzyme SNPs selected for analysis are based on those most frequently investigated in relation to diseases in humans: superoxide dismutase (SOD2) Ala16Val (80 studies), glutathione peroxidise (GPx1) Pro197Leu (24 studies) and catalase C-262T (22 studies). Although the majority of evidence supports associations between the SOD2 Ala16Val SNP and diseases such as breast, prostate and lung cancers, diabetes and cardiovascular disease, the presence of the SOD2 Ala16Val SNP confers only a small, clinically insignificant reduction (if any) in the risk of these diseases. Other diseases such as bladder cancer, liver disease, nervous system pathologies and asthma have not been consistently related to this SOD SNP genotype. The GPx1 Pro197Leu and catalase C-262T SNP genotypes have been associated with breast cancer, but only in a small number of studies. Thus, currently available evidence suggests antioxidant enzyme SNP genotypes are not useful for screening for diseases in humans.
Collapse
Affiliation(s)
- Amanda Crawford
- School of Human Life Sciences, University of Tasmania, Newnham, Launceston, Tasmania 7248, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Yuzhalin AE, Kutikhin AG. Inherited variations in theSODandGPXgene families and cancer risk. Free Radic Res 2012; 46:581-99. [DOI: 10.3109/10715762.2012.658515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Kucukgergin C, Sanli O, Amasyalı AS, Tefik T, Seckin S. Genetic variants of MnSOD and GPX1 and susceptibility to bladder cancer in a Turkish population. Med Oncol 2011; 29:1928-34. [DOI: 10.1007/s12032-011-0057-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/22/2011] [Indexed: 12/22/2022]
|
12
|
Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 2011; 254:86-99. [PMID: 21296097 DOI: 10.1016/j.taap.2009.11.028] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 11/29/2009] [Accepted: 11/29/2009] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.
Collapse
|
13
|
Association between manganese superoxide dismutase (MnSOD) Val-9Ala polymorphism and cancer risk – A meta-analysis. Eur J Cancer 2009; 45:2874-81. [DOI: 10.1016/j.ejca.2009.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/12/2009] [Accepted: 04/20/2009] [Indexed: 12/25/2022]
|
14
|
Miao L, St. Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009; 47:344-56. [PMID: 19477268 PMCID: PMC2731574 DOI: 10.1016/j.freeradbiomed.2009.05.018] [Citation(s) in RCA: 576] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 01/22/2023]
Abstract
Numerous short-lived and highly reactive oxygen species (ROS) such as superoxide (O2(.-)), hydroxyl radical, and hydrogen peroxide are continuously generated in vivo. Depending upon concentration, location, and intracellular conditions, ROS can cause toxicity or act as signaling molecules. The cellular levels of ROS are controlled by antioxidant enzymes and small-molecule antioxidants. As major antioxidant enzymes, superoxide dismutases (SODs), including copper-zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase, and extracellular superoxide dismutase, play a crucial role in scavenging O2(.-). This review focuses on the regulation of the sod genes coding for these enzymes, with an emphasis on the human genes. Current knowledge about sod structure and regulation is summarized and depicted as diagrams. Studies to date on genes coding for Cu/ZnSOD (sod1) are mostly focused on alterations in the coding region and their associations with amyotrophic lateral sclerosis. Evaluation of nucleotide sequences reveals that regulatory elements of the sod2 gene reside in both the noncoding and the coding region. Changes associated with sod2 lead to alterations in expression levels as well as protein function. We also discuss the structural basis for the changes in SOD expression associated with pathological conditions and where more work is needed to establish the relationship between SODs and diseases.
Collapse
Affiliation(s)
| | - Daret K. St. Clair
- Author to whom correspondence should be addressed: Daret K. St.Clair, Ph.D., Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, HSRB 454, Lexington, KY 40536-0298, Phone: 1-(859) 257-3956, FAX: 1-(859) 323-1059,
| |
Collapse
|
15
|
Yang JO, Gil HW, Kang MS, Lee EY, Hong SY. Serum total antioxidant statuses of survivors and nonsurvivors after acute paraquat poisoning. Clin Toxicol (Phila) 2009; 47:226-9. [PMID: 18788002 DOI: 10.1080/15563650802269901] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The plasma paraquat (PQ) concentration is an excellent prognostic indicator. However, at the bedside, it is difficult to predict survivors even with known PQ concentrations. We examined the association of total antioxidant status (TAS) in serum to clinical outcome in patients with acute PQ intoxication. METHODS After acute PQ intoxication, 296 patients were admitted to the Institute of Pesticide Poisoning, Soonchunhyang University Cheonan Hospital, from January through December 2007. Serum total antioxidant levels in emergency department were compared between a survivor group and a nonsurvivor group. RESULTS Age, the amount of PQ ingested, plasma PQ concentration, leukocyte count, blood urea nitrogen (BUN), serum creatinine, uric acid, aspartate aminotransferase, alanine aminotransferase (ALT), and amylase in the emergency department were individually associated with the clinical outcome (p < 0.001), but TAS was not. Multiple logistic regression found the odds ratio (95% confidence interval) to be 10.79 (3.45-33.74) for plasma PQ concentration, but 0.43 (0.02-8.52) for TAS in serum. TAS was not associated with survival. CONCLUSION TAS in serum was not a significant influence on the clinical outcome in patients with acute PQ intoxication.
Collapse
Affiliation(s)
- Jong-Oh Yang
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | | | | | | | | |
Collapse
|